RU2667320C1 - Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации - Google Patents

Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации Download PDF

Info

Publication number
RU2667320C1
RU2667320C1 RU2017138282A RU2017138282A RU2667320C1 RU 2667320 C1 RU2667320 C1 RU 2667320C1 RU 2017138282 A RU2017138282 A RU 2017138282A RU 2017138282 A RU2017138282 A RU 2017138282A RU 2667320 C1 RU2667320 C1 RU 2667320C1
Authority
RU
Russia
Prior art keywords
coordinate system
digital platform
linear
values
inertial coordinate
Prior art date
Application number
RU2017138282A
Other languages
English (en)
Inventor
Виктор Иванович Галкин
Евгений Владимирович Кузин
Дмитрий Николаевич Воробьев
Original Assignee
Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") filed Critical Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА")
Priority to RU2017138282A priority Critical patent/RU2667320C1/ru
Application granted granted Critical
Publication of RU2667320C1 publication Critical patent/RU2667320C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к системам ориентации и навигации летательных аппаратов, в частности к бесплатформенным гировертикалям, курсовертикалям и навигационным системам, в которых измерительная информация поступает с датчиков угловых скоростей и акселерометров. Способ управления цифровой платформой в бесплатформенной гировертикали включает измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную систему координат, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат и приведение цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат. При этом линейные ускорения в связанной системе координат предварительно фильтруются, а величина угловой скорости приведения цифровой платформы из зоны превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат устанавливается в зависимости от величины линейных ускорений в инерциальной системе координат и значения признака включения приведения платформы в зону допустимых для управления значений линейных ускорений в инерциальной системе координат, за счет чего обеспечивается компенсация вибрационных и шумовых воздействий на гировертикаль. Технический результат - повышение точности измерения выходных углов ориентации объекта. 2 н.п. ф-лы, 1 ил.

Description

Заявленное изобретение относится к системам ориентации и навигации летательных аппаратов, в частности к бесплатформенным гировертикалям, курсовертикалям и навигационным системам, в которых измерительная информация поступает с датчиков угловых скоростей и акселерометров.
Известны бесплатформенные инерциальные системы ориентации с радиальной коррекцией, в которых положение цифровой платформы в инерциальной системе координат определяется по показаниям датчиков угловой скорости, а приведение к местной вертикали осуществляется по показаниям акселерометров. В этом случае также компенсируется дрейф датчиков угловых скоростей. При этом осуществляется отключение приведения платформы при воздействии на подвижный объект линейных ускорений в связанной системе координат, вызванных разгоном и разворотом объекта.
Основным недостатком таких систем является накопление угловых погрешностей вызванных дрейфом датчиков угловых скоростей и движением объекта по сфере Земли при отключении обратной связи в гировертикали во время разгона и торможения. В результате чего значения ускорений в инерциальной системе координат после включения обратной связи гировертикали превышают допустимые для управления, что приводит к невозможности восстановления системы управления цифровой платформы.
Прототипом заявленного изобретения является способ управления бесплатформенной гировертикалью с радиальной коррекцией и устройство для реализации этого способа (Патент РФ №2574379, МПК: G01C 23/00, опубл. 10.02.2016 г.).
Известный способ включает измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат с дополнительной возможностью выполнения вычислений и компенсации ошибок определения углов крена и тангажа при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат.
При этом устройство для реализации известного способа содержит трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при уменьшении линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой, блок приведения цифровой платформы для компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы.
При таком способе управления при наличии шумовых и вибрационных воздействий на гировертикаль величина амплитуды которых превышает допустимые для управления, система управления цифровой платформой будет отключена на всем промежутке времени действия вибраций. Это приведет к накоплению погрешностей измерения углов тангажа и крена, вызванных наличием дрейфа датчиков угловых скоростей и движением летательного аппарата по сфере Земли.
Техническим результатом заявленного изобретения является повышение точности измерения выходных углов ориентации объекта за счет компенсации вибрационных и шумовых воздействий на гировертикаль.
Указанный технический результат достигается способом управления цифровой платформой в бесплатформенной гировертикали, путем приведения цифровой платформы в зону управления бесплатформенной гировертикали, включающим измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную систему координат, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорениях в инерциальной системе координат и приведение цифровой платформы при превышении допустимых для управления значениях величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат, при этом дополнительно введена фильтрация линейных ускорений в связанной системе координат, а величина угловой скорости приведения цифровой платформы из зоны превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат устанавливается в зависимости от величины линейных ускорений в инерциальной системе координат и значения признака включения приведения платформы в зону допустимых для управления значений линейных ускорений в инерциальной системе координат.
Заявленный технический результат достигается также бесплатформенной гировертикалью, содержащей трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок пересчета линейных ускорений из связанной системы координат в инерциальную, блок управления цифровой платформой, блок приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы, при этом блок цифровой платформы соединен первым входом с выходом блока датчиков угловых скоростей, вторым входом с выходом блока управления цифровой платформой, третьим входом с выходом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, первым выходом со входом блока вычисления углов крена и тангажа, и вторым выходом с первым входом блока пересчета линейных ускорений из связанной системы координат в инерциальную, который вторым входом соединен с первым выходом трехосного блока датчиков линейных ускорений, первым выходом со входом блока управления цифровой платформой, и вторым выходом с первым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, при этом дополнительно введены блок фильтрации линейных ускорений в связанной системе координат и блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы, причем, вход блока фильтрации линейных ускорений в связанной системе координат соединен со вторым выходом трехосного блока датчиков линейных ускорений, а выход со входом блока включения приведения цифровой платформы, блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы первым входом соединен с выходом блока включения приведения цифровой платформы, вторым входом с третьим выходом блока пересчета линейных ускорений из связанной системы координат в инерциальную, первым выходом со вторым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, а вторым выходом соединен с четвертым входом блока цифровой платформы.
На Фиг. представлена структурно-функциональная блок-схема предложенной бесплатформенной гировертикали, где:
1 - трехосный блок датчиков угловых скоростей;
2 - трехосный блок датчиков линейных ускорений;
3 - блок цифровой платформы;
4 - блок пересчета линейных ускорений из связанной системы координат в инерциальную;
5 - блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при достижении допустимых для управления значений величин линейных ускорений в инерциальной системе координат;
6 - блок вычисления углов крена и тангажа;
7 - блок включения приведения цифровой платформы;
8 - блок приведения цифровой платформы для вычисления и компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат;
9 - блок фильтрации линейных ускорений в связанной системе координат;
10 - блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы.
Заявленные способ и устройство работают следующим образом.
Информация об угловых скоростях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических датчиков угловых скоростей 1 в блок 3 цифровой платформы, в котором производится преобразование приращения углов из связанной системы координат в инерциальную и расчет углового положение цифровой платформы в виде коэффициентов aN матрицы направляющих косинусов. Коэффициенты матрицы направляющих косинусов передаются в блок 4 и в блок 6.
В блоке 6 по коэффициентам матрицы направляющих косинусов рассчитываются углы крена (γ) и тангажа (ϑ) летательного объекта в инерциальной системе координат.
Информация о линейных ускорениях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических акселерометров 2 в блоки 4 и 9.
В блоке 4 по информации об угловом положении цифровой платформы, поступающей из блока 3 в виде коэффициентов матрицы направляющих косинусов, производится пересчет линейных ускорений из связанной системы координат в инерциальную систему координат.
Результаты расчета в виде проекций ускорений на инерциальные оси Ах,у передаются в блоки 5, 8, 10.
В блоке 5 рассчитывается угловая скорость управления цифровой платформой
Figure 00000001
, корректирующая положение цифровой платформы в блоке 3 по перекрестным инерциальным осям:
Figure 00000002
,
где ky - коэффициент усиления сигнала управления.
Если углы крена и тангажа определены с ошибкой, вызванной, например, дрейфом гироскопов или угловой скоростью облета вокруг Земли, то проекции ускорений на инерциальные оси не будут равны нулю Ах,у≠0. В результате, в блоке 5 будет сформирован корректирующий сигнал
Figure 00000001
, с помощью которого в блоке 3 будет скомпенсирована ошибка углового положения цифровой платформы.
Действие линейных ускорений по связанным осям летательного объекта axl,yl,zl≠0 также будет вызывать появление в блоке 4 ускорений по инерциальным осям Аx,y, а, следовательно, и сигналы обратной связи
Figure 00000001
. Однако в этом случае они будут не компенсировать ошибки определения углового положения цифровой платформы, а, наоборот, создавать их.
Величина допустимого значения Аa,y≤АД определяется заданными ошибками определения углов крена и тангажа.
При больших линейных ускорениях, когда Аx,y становится равной или больше АД, обратная связь системы управления разрывается -
Figure 00000003
. В этот момент ошибки определения углов крена и тангажа будут возрастать из-за дрейфа гироскопов и скорости облета Земли.
При исчезновении линейных ускорений, вызванных разгонными двигателями летательного аппарата или виражами и координированными разворотами, величина накопленной ошибки определения углов, определяемая величиной Ах,у, может оказаться больше допустимой (Ax,yД), что не позволит включиться обратной связи в блоке управления цифровой платформой 5.
Приведение цифровой платформы в область линейных ускорений по инерциальным осям Ах,уД осуществляется следующим образом.
В блоке 7 по информации, поступающей из блока 9, анализируется величина, действующих по связанным осям линейных ускорений в виде:
Figure 00000004
,
где:
Figure 00000005
- сумма квадратов текущих значений линейных ускорений, действующих по связанным осям;
Figure 00000006
- сумма квадратов линейных ускорений, действующих по связанным осям в момент первоначального включения гировертикали при неподвижном объекте.
При
Figure 00000007
в блоке 7 вырабатывается признак С=0, передаваемый в блок 10 и разрешающий включение приведения цифровой платформы в область значений Аx,y, допустимых для управления цифровой платформой. При
Figure 00000008
вырабатывается признак С=1, запрещающий включение приведения гировертикали. Значение допустимого
Figure 00000009
определяется коэффициентом δ, который устанавливается в соответствии с техническим заданием.
Для обеспечения качественного управления обратной связью признак С должен реагировать на постоянную составляющую линейных ускорений по связанным осям. При вибрационном воздействии на летательный аппарат признак С тоже будет носить знакопеременный характер, что приведет к искажениям выходной информации гировертикали. В связи с этим, линейные ускорения, поступающие в блок 7 должны быть отфильтрованы. В блоке 9 осуществляется фильтрация линейных ускорений по связанным осям, поступающих из блока 2 в блок 7.
Однако наличие фильтрации вызывает запаздывание определения признака С в блоке 7. В результате запаздывания при возрастании линейного ускорения по связанным осям за пределы зоны управления, приведение платформы осуществляется с ошибкой, определяемой величиной действующих линейных ускорений по связанным осям, что приводит к ошибкам определения углов крена и тангажа.
Минимизация ошибок, вызванных запаздыванием выработки признака С, осуществляется следующим образом. В блоке 10 анализируются ускорения по инерциальным осям Аx,y, текущее значение признака С и предыдущее значение Спред. В блоке 10 установлены следующие условия, которые определяют три возможных режима обратной связи.
Если признак С=1, то управление цифровой платформой не производится (обратная связь отключена).
Если признак С=0, Спред=0 и Аx,yд, то приведение цифровой платформы производится с ограниченной скоростью ωмин, обеспечивающей компенсацию дрейфа гироскопа.
Если признак С=0, Спред=1 и Аx,yд, то приведение цифровой платформы осуществляется со скоростью, выработанной в блоке 8:
Figure 00000010
где kп - коэффициент усиления сигнала приведения.
Таким образом, применение заявленного изобретение обеспечит повышение точности измерения выходных углов ориентации за счет подавления вибрационных и шумовых воздействий на летательный аппарат.

Claims (2)

1. Способ управления цифровой платформой в бесплатформенной гировертикали путем приведения цифровой платформы в зону управления микромеханической гировертикали, включающий измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную систему координат, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат и приведение цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат, отличающийся тем, что линейные ускорения в связанной системе координат предварительно фильтруются, а величина угловой скорости приведения цифровой платформы из зоны превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат устанавливается в зависимости от величины линейных ускорений в инерциальной системе координат и значения признака включения приведения платформы в зону допустимых для управления значений линейных ускорений в инерциальной системе координат.
2. Бесплатформенная гировертикаль, содержащая трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок пересчета линейных ускорений из связанной системы координат в инерциальную, блок управления цифровой платформой, блок приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы, при этом блок цифровой платформы соединен первым входом с выходом блока датчиков угловых скоростей, вторым входом с выходом блока управления цифровой платформой, третьим входом с выходом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, первым выходом со входом блока вычисления углов крена и тангажа и вторым выходом с первым входом блока пересчета линейных ускорений из связанной системы координат в инерциальную, который вторым входом соединен с первым выходом трехосного блока датчиков линейных ускорений, первым выходом со входом блока управления цифровой платформой и вторым выходом с первым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, отличающаяся тем, что дополнительно введены блок фильтрации линейных ускорений в связанной системе координат и блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы, причем вход блока фильтрации линейных ускорений в связанной системе координат соединен со вторым выходом трехосного блока датчиков линейных ускорений, а выход со входом блока включения приведения цифровой платформы, блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы первым входом соединен с выходом блока включения приведения цифровой платформы, вторым входом с третьим выходом блока пересчета линейных ускорений из связанной системы координат в инерциальную, первым выходом со вторым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, а вторым выходом соединен с четвертым входом блока цифровой платформы.
RU2017138282A 2017-11-02 2017-11-02 Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации RU2667320C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017138282A RU2667320C1 (ru) 2017-11-02 2017-11-02 Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017138282A RU2667320C1 (ru) 2017-11-02 2017-11-02 Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2667320C1 true RU2667320C1 (ru) 2018-09-18

Family

ID=63580538

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017138282A RU2667320C1 (ru) 2017-11-02 2017-11-02 Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2667320C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717552C1 (ru) * 2019-05-27 2020-03-24 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
RU2373498C2 (ru) * 2007-10-08 2009-11-20 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Навигационный комплекс, устройство вычисления скорости и координат, бесплатформенная инерциальная курсовертикаль, способ коррекции инерциальных датчиков и устройство для его осуществления
RU2382988C1 (ru) * 2008-12-24 2010-02-27 Олег Степанович Салычев Бесплатформенная инерциальная система ориентации на "грубых" чувствительных элементах
RU2574379C1 (ru) * 2014-10-17 2016-02-10 Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА") Способ управления бесплатформенной гировертикалью и устройство для его реализации
US20160047675A1 (en) * 2005-04-19 2016-02-18 Tanenhaus & Associates, Inc. Inertial Measurement and Navigation System And Method Having Low Drift MEMS Gyroscopes And Accelerometers Operable In GPS Denied Environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047675A1 (en) * 2005-04-19 2016-02-18 Tanenhaus & Associates, Inc. Inertial Measurement and Navigation System And Method Having Low Drift MEMS Gyroscopes And Accelerometers Operable In GPS Denied Environments
RU2373498C2 (ru) * 2007-10-08 2009-11-20 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Навигационный комплекс, устройство вычисления скорости и координат, бесплатформенная инерциальная курсовертикаль, способ коррекции инерциальных датчиков и устройство для его осуществления
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
RU2382988C1 (ru) * 2008-12-24 2010-02-27 Олег Степанович Салычев Бесплатформенная инерциальная система ориентации на "грубых" чувствительных элементах
RU2574379C1 (ru) * 2014-10-17 2016-02-10 Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА") Способ управления бесплатформенной гировертикалью и устройство для его реализации

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717552C1 (ru) * 2019-05-27 2020-03-24 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках

Similar Documents

Publication Publication Date Title
EP2472225B1 (en) Method and system for initial quaternion and attitude estimation
KR101739390B1 (ko) 중력오차보상을 통한 관성항법장치의 자체정렬 정확도 향상기법
RU2348903C1 (ru) Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
US4882697A (en) Stabilization control circuit for vertical position in an inertial navigator
CN108759845A (zh) 一种基于低成本多传感器组合导航的优化方法
US7970501B2 (en) Methods and systems utilizing true airspeed to improve vertical velocity accuracy
RU2564380C1 (ru) Способ коррекции бесплатформенной инерциальной навигационной системы
US11781836B2 (en) Systems and methods for model based inertial navigation for a spinning projectile
RU2667320C1 (ru) Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации
JP2002538033A (ja) ジャイロメータと加速度計を具備する航空機の姿勢決定装置
JPH07146141A (ja) 垂直基準装置
RU2382988C1 (ru) Бесплатформенная инерциальная система ориентации на "грубых" чувствительных элементах
KR20150012839A (ko) 이동체의 전자세 예측 방법 및 이를 이용한 전자세 예측 장치
RU2646954C2 (ru) Способ коррекции бесплатформенной инерциальной навигационной системы
RU2487318C1 (ru) Бесплатформенная инерциальная курсовертикаль на чувствительных элементах средней точности
RU2608337C1 (ru) Способ автономной начальной выставки стабилизированной платформы трехосного гиростабилизатора в плоскость горизонта и на заданный азимут
KR20210080978A (ko) 전지구위성항법 수신기와 관성항법 센서를 융합한 지표 변위 관측 기법
CN110196050B (zh) 一种捷联惯导系统垂向高度和速度测量方法
RU2313067C2 (ru) Способ определения навигационных параметров летательного аппарата и устройство для его осуществления
Liu et al. Multi-sensor fusion algorithm based on GPS/MEMS-IMU tightly coupled for smartphone navigation application
JP3504529B2 (ja) 構造物、地盤等変位監視用ジャイロ装置
RU2505785C1 (ru) Способ определения параметров модели погрешностей измерений акселерометров ведомой инерциальной навигационной системы по измерениям эталонной инерциальной навигационной системы
JPS62106385A (ja) 乗物の運行角度を計算するためのドップラ慣性ループ
RU2659970C1 (ru) Способ управления бесплатформенной гировертикалью с радиальной коррекцией и бесплатформенная гировертикаль для его реализации
RU2249791C2 (ru) Бесплатформенная инерциальная курсовертикаль