RU2574379C1 - Способ управления бесплатформенной гировертикалью и устройство для его реализации - Google Patents

Способ управления бесплатформенной гировертикалью и устройство для его реализации Download PDF

Info

Publication number
RU2574379C1
RU2574379C1 RU2014141889/28A RU2014141889A RU2574379C1 RU 2574379 C1 RU2574379 C1 RU 2574379C1 RU 2014141889/28 A RU2014141889/28 A RU 2014141889/28A RU 2014141889 A RU2014141889 A RU 2014141889A RU 2574379 C1 RU2574379 C1 RU 2574379C1
Authority
RU
Russia
Prior art keywords
digital platform
coordinate system
block
control
inertial
Prior art date
Application number
RU2014141889/28A
Other languages
English (en)
Inventor
Виктор Иванович Галкин
Альберт Михайлович Якубович
Дмитрий Николаевич Воробьев
Original Assignee
Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА")
Filing date
Publication date
Application filed by Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА") filed Critical Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА")
Application granted granted Critical
Publication of RU2574379C1 publication Critical patent/RU2574379C1/ru

Links

Images

Abstract

Изобретение относится к области авиационного приборостроения и может быть использовано в бесплатформенных инерциальных системах, в частности в гировертикалях, курсовертикалях и навигационных системах при измерении углов крена и тангажа подвижного объекта. Технический результат - повышение надежности. Для этого осуществляют измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат, при этом обеспечена возможность выполнения вычисления и компенсации ошибок определения углов крена и тангажа при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат, за счет чего обеспечивается восстанавливаемость управления цифровой платформой после работы гировертикали в неуправляемом режиме, а это повышает надежность работы системы управления воздушным судном. 2 н. и 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области авиационного приборостроения и может быть использовано в бесплатформенных инерциальных системах, в частности в гировертикалях, курсовертикалях и навигационных системах при измерении углов крена и тангажа подвижного объекта.
Известны бесплатформенные навигационные системы, гировертикали и курсовертикали, с радиальной коррекцией, описанные в патентах RU 2380656 С1 и RU 2382988 С1, в которых для обеспечения вычисления углов тангажа и крена с необходимой точностью во всех режимах движения объекта используется дополнительная информация о параметрах движения объекта от других источников информации - системы воздушных сигналов или спутниковой навигационной системы. Основным недостатком таких систем является их не автономность и большой объем вычислений, требующий вычислителей большой мощности.
Известны бесплатформенные гировертикали с радиальной коррекцией, в которых по показаниям датчиков угловых скоростей с помощью цифровой вычислительной платформы определяется положение летательного объекта в инерциальной системе координат, а восстановление местной вертикали при движении объекта по сфере Земли осуществляется в виде радиальной коррекции - управления положением цифровой платформы по показаниям акселерометров, измеряющих составляющие ускорения силы тяжести при равномерном движении объекта. При этом компенсируется и скорость вращения Земли и дрейф датчиков угловых скоростей [1-3].
Основным недостатком таких гировертикалей является большая погрешность в определении углов крена и тангажа при разгонах и торможениях подвижного объекта, так как в этом случае акселерометры измеряют кажущееся ускорение, включающее в себя как составляющую от ускорения силы тяжести, так и составляющую ускорения от внешних сил (разгонных двигателей, центростремительных сил при координированных разворотах и виражах), воздействующих на подвижный объект.
Прототипом заявленного изобретения является способ управления бесплатформенной гировертикалью, включающий измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат, и устройство для реализации этого способа (RU 2348903 С1, фиг. 1), содержащее трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при уменьшении линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой.
При таком способе управления при разгонах и торможениях объекта, координированных разворотах и виражах вследствие отключения обратной связи по управлению происходит нарастание ошибок определения углов крена и тангажа, вызванных движением объекта по сфере Земли, вращением Земли и дрейфом датчиков угловых скоростей. Накопленные угловые погрешности могут достигать такой величины, что после окончания разгона или разворота подвижного объекта и перехода в прямолинейное равномерное движение значения линейных ускорений в инерциальной системе координат будет превышать допустимые для управления, и система управления не восстановится. Произойдет так называемый «завал» цифровой платформы гировертикали.
Задачей, на решение которой направлено заявленное изобретение, является достижение такого технического результата, как обеспечение восстанавливаемости управления цифровой платформой после окончания работы гировертикали в неуправляемом режиме, с достижением такого технического результата, как повышение надежности работы системы управления воздушным судном, путем исключения вероятности отказа гировертикали.
Указанный технический результат достигается способом управления бесплатформенной гировертикалью, включающем измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат, при этом дополнительно введена возможность выполнения вычислений и компенсации ошибок определения углов крена и тангажа при превышении предельно допустимых для управления значений линейных ускорений в инерциальной системе координат.
Кроме того, вычисление и компенсацию ошибок определения углов крена и тангажа при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат начинают с момента превышения допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат и прекращают в момент уменьшения линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой.
Также заявленный технический результат достигается бесплатформенной гировертикалью с радиальной коррекцией, содержащей трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформы при достижении допустимых для управления значений линейных ускорений в инерциальной системе координат. Дополнительно введены блок приведения цифровой платформы для вычисления и компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы таким образом, что вход блока включения приведения цифровой платформы соединен с выходом блока датчиков линейных ускорений, а вход блока приведения цифровой платформы соединен с выходом блока включения приведения цифровой платформы и с выходом блока пересчета линейных ускорений из связанной в инерциальную систему координат, при этом выход блока приведения цифровой платформы и выход блока управления цифровой платформой соединены с входом блока цифровой платформы.
Фиг. 1 - график управления цифровой платформой при значениях величин линейных ускорений в инерциальной системе координат, допустимых для управления положением цифровой платформы, с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений линейных ускорений в инерциальной системе координат и включения цифровой платформы при уменьшении линейных ускорений в инерциальной системе координат до допустимых для управления цифровой платформой значений (интервал работы прототипа).
Фиг. 2 - график приведения цифровой платформы из области превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в область допустимых для управления значений величин линейных ускорений в инерциальной системе координат (интервал работы заявленного изобретения).
Фиг. 3 - структурно-функциональная блок-схема бесплатформенной гировертикали с радиальной коррекцией.
Способ управления бесплатформенной гировертикалью включает измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат, при этом дополнительно введена возможность выполнения вычисления и компенсации ошибок определения углов крена и тангажа, при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат, за счет чего обеспечивается восстанавливаемость управления цифровой платформой после работы гировертикали в неуправляемом режиме, а соответственно повышается надежность работы системы управления воздушным судном.
Кроме того, вычисление и компенсацию ошибок определения углов крена и тангажа цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат начинают с момента превышения допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат и прекращают в момент уменьшения линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой, что позволяет повысить надежность работы гировертикали, а следовательно, и безопасность полета.
Для реализации заявленного способа в бесплатформенную гировертикаль с радиальной коррекцией, содержащей трехосный блок датчиков угловых скоростей 2, трехосный блок датчиков линейных ускорений 1, блок цифровой платформы 3, блок вычисления углов крена и тангажа 6, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат 4, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при уменьшении линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой 5. Дополнительно введены блок приведения цифровой платформы 8 для компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы 7 таким образом, что вход блока включения приведения цифровой платформы 7 соединен с выходом блока датчиков линейных ускорений 1, а вход блока приведения цифровой платформы 8 соединен с выходом блока включения приведения цифровой платформы 7 и с выходом блока пересчета линейных ускорений 4 из связанной в инерциальную систему координат, при этом выход блока приведения цифровой платформы 8 и выход блока управления цифровой платформой 5 соединены с входом блока цифровой платформы 3.
Заявленные способ и устройство работают следующим образом.
Информация об угловых скоростях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических датчиков угловых скоростей 2 фиг. 3 в блок 3 цифровой платформы, в котором производится преобразование приращения углов в связанной системе координат в инерциальную и расчет углового положение цифровой платформы в виде коэффициентов aN матрицы направляющих косинусов. Коэффициенты матрицы направляющих косинусов передаются в блок 4 пересчета линейных ускорений из связанной системы координат в инерциальную и в блок 6 вычисления углов тангажа и крена.
В блоке 6 вычисления углов тангажа и крена по коэффициентам матрицы направляющих косинусов рассчитываются углы крена (γ) и тангажа (ϑ) летательного объекта в инерциальной системе координат.
Информация о линейных ускорениях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических акселерометров 1 (линейных ускорений) в блок 4 пересчета линейных ускорений из связанной системы координат в инерциальную и блок 7 включения приведения цифровой платформы.
В блоке 4 пересчета линейных ускорений из связанной системы координат в инерциальную по информации об угловом положении цифровой платформы, поступающей из блока 3 цифровой платформы в виде матрицы направляющих косинусов в виде коэффициентов aN матрицы направляющих косинусов, производится пересчет линейных ускорений из связанной системы координат в инерциальную систему координат.
Результаты расчета в виде проекций ускорений на инерциальные оси Аху передаются в блок 5 управления цифровой платформой и блок 8 приведения цифровой платформы.
В блоке 5 управления цифровой платформой реализуется закон управления цифровой платформой (фиг. 1) с расчетом угловой скорости ω x , y y
Figure 00000001
, корректирующей положение цифровой платформы в блоке 3 цифровой платформы в виде матрицы направляющих косинусов по перекрестным инерциальным осям:
Figure 00000002
где ky - коэффициент усиления сигнала управления.
Если углы крена и тангажа, рассчитанные по показаниям гироскопов, не содержат ошибок, и по связанным осям не действуют линейные ускорения ax11,z1=0, то Ах>у=0, а следовательно, и корректирующий сигнал обратной связи ωx,y=0.
Если же углы крена и тангажа определены с ошибкой, вызванной, например, дрейфом гироскопов или угловой скоростью облета вокруг Земли, то проекции ускорений на инерциальные оси не будут равны нулю Ах,у≠0. В результате, в блоке 5 управления цифровой платформой будет сформирован корректирующий сигнал
Figure 00000003
, с помощью которого в блоке 3 цифровой платформы в виде матрицы направляющих косинусов будет скомпенсирована ошибка углового положения цифровой платформы.
Действие линейных ускорений по связанным осям летательного объекта ax1,y1,z1≠0 также будет вызывать появление в блоке 4 пересчета линейных ускорений из связанной системы координат в инерциальную по инерциальным осям Ax,y, а следовательно, и сигналы обратной связи
Figure 00000004
.
Однако в этом случае они будут не компенсировать ошибки определения углового положения цифровой платформы, а, наоборот, создавать их.
Величина допустимого значения Ax,y≤Ад определяется заданными ошибками определения углов крена и тангажа.
При больших линейных ускорениях, когда Ax,y становится равной или больше Ад, обратная связь системы управления разрывается -
Figure 00000005
. В этот момент ошибки определения углов крена и тангажа будут возрастать из-за дрейфа гироскопов и скорости облета Земли.
При исчезновении линейных ускорений, вызванных разгонными двигателями летательного аппарата или виражами и координированными разворотами, величина накопленной ошибки определения углов, определяемая величиной Ax,y, может оказаться больше допустимой (Ax,yд), что не позволит включиться обратной связи в блоке 5 управления цифровой платформой. Произойдет несанкционированный «завал» цифровой платформы гировертикали.
Приведение цифровой платформы в область линейных ускорений по инерциальным осям Ax,yд осуществляется следующим образом.
В блоке 7 включения приведения цифровой платформы по информации, поступающей из трехосного блока акселерометров, анализируется величина, действующих по связанным осям линейных ускорений в виде:
Figure 00000006
где
Figure 00000007
сумма квадратов текущих значений линейных ускорений, действующих по связанным осям;
Figure 00000008
- сумма квадратов линейных ускорений, действующих по связанным осям в момент первоначального включения гировертикали при неподвижном объекте.
При
Figure 00000009
в блоке 7 включения приведения цифровой платформы вырабатывается признак С, передаваемый в блок 8 приведения цифровой платформы и разрешающий при С=0 или запрещающий при С=1 включение блока 8 приведения цифровой платформы в область значений Ax,y, допустимых для управления цифровой платформой; δ=(Δα/ΜΑ0)2 - коэффициент, характеризующий допустимую по техническому заданию для работы системы управления гировертикалью величину линейных ускорений Δα, действующих по связанным осям.
По сигналу С=0 и поступающему из блока 4 пересчета линейных ускорений из связанной системы координат в инерциальную значению Ax,y в блоке 8 приведения цифровой платформы вырабатывается угловая скорость приведения цифровой платформы в зону управления:
Figure 00000010
где kп - коэффициент усиления сигнала приведения.
Выработанный в блоке 8 приведения цифровой платформы сигнал приведения
Figure 00000011
передается в блок 3 цифровой платформы, где осуществляется компенсация накопленных ошибок определения углов крена и тангажа путем соответствующего поворота цифровой платформы.
Приведение осуществляется по закону, представленному на фиг. 2. То есть приведение осуществляется при любом значении Ax,yД. Но при Ax,yд блок приведения 8 отключается, а включается блок 5 управления цифровой платформой.
Таким образом, использование заявленного изобретения обеспечит восстановление работоспособности гировертикали после отключения системы управления, вызванного действием по связанным осям недопустимых для управления величин линейных ускорений.
В результате использования заявленного изобретения повысится надежность работы гировертикали и, как следствие, безопасность полета.
1. Гироскопические системы, ч.II. Гироскопические приборы и системы. Под ред. Д.С. Пельпора. Учебное пособие для вузов по специальности «Гироскопические приборы и устройства». М., «Высшая школа», 1971, с. 488 (Механические гировертикали с радиальной коррекцией).
2. Браславский Д.А., Логунов С.С., Пельпор Д.С. Авиационные приборы и автоматы Изд. 3-е перераб. и доп. М., машиностроение, 1978, с. 432.
3. Машнин М.Н. Компенсация ускорений, действующих на систему ориентации на борту малоразмерного беспилотного летательного аппарата, Сборник трудов конференции молодых ученых «Навигация и управление движением». 13-16 марта 2012 г. С-Петербург.

Claims (3)

1. Способ управления бесплатформенной гировертикалью, включающий измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат, отличающийся тем, что дополнительно введена возможность выполнения вычислений и компенсации ошибок определения углов крена и тангажа при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат.
2. Способ по п. 1, отличающийся тем, что вычисление и компенсацию ошибок определения углов крена и тангажа цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат начинают с момента превышения допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат и прекращают в момент уменьшения линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой.
3. Бесплатформенная гировертикаль, содержащая трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при уменьшении линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой, отличающаяся тем, что дополнительно введены блок приведения цифровой платформы для компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы таким образом, что вход блока включения приведения цифровой платформы соединен с выходом блока датчиков линейных ускорений, а вход блока приведения цифровой платформы соединен с выходом блока включения приведения цифровой платформы и с выходом блока пересчета линейных ускорений из связанной в инерциальную систему координат, при этом выход блока приведения цифровой платформы и выход блока управления цифровой платформой соединены с входом блока цифровой платформы.
RU2014141889/28A 2014-10-17 Способ управления бесплатформенной гировертикалью и устройство для его реализации RU2574379C1 (ru)

Publications (1)

Publication Number Publication Date
RU2574379C1 true RU2574379C1 (ru) 2016-02-10

Family

ID=

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659970C1 (ru) * 2017-08-02 2018-07-04 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ управления бесплатформенной гировертикалью с радиальной коррекцией и бесплатформенная гировертикаль для его реализации
RU2667320C1 (ru) * 2017-11-02 2018-09-18 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации
RU2801620C2 (ru) * 2021-09-29 2023-08-11 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ повышения точностных характеристик автономной, бесплатформенной гировертикали с интегральной коррекцией и устройство для его реализации

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2171450C1 (ru) * 2000-05-22 2001-07-27 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Сигнал" Система курсокреноуказания
RU2174218C2 (ru) * 1999-12-28 2001-09-27 Мокрышев Владимир Вячеславович Прибор для измерения физических величин
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
RU2373498C2 (ru) * 2007-10-08 2009-11-20 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Навигационный комплекс, устройство вычисления скорости и координат, бесплатформенная инерциальная курсовертикаль, способ коррекции инерциальных датчиков и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2174218C2 (ru) * 1999-12-28 2001-09-27 Мокрышев Владимир Вячеславович Прибор для измерения физических величин
RU2171450C1 (ru) * 2000-05-22 2001-07-27 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Сигнал" Система курсокреноуказания
RU2373498C2 (ru) * 2007-10-08 2009-11-20 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Навигационный комплекс, устройство вычисления скорости и координат, бесплатформенная инерциальная курсовертикаль, способ коррекции инерциальных датчиков и устройство для его осуществления
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Гироскопические системы, ч.II. Гироскопические приборы и системы. Под ред. Д.С. Пельпора. Учебное пособие для вузов по специальности "Гироскопические приборы и устройства". М., "Высшая школа", 1971, с. 488 (Механические гировертикали с радиальной коррекцией). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659970C1 (ru) * 2017-08-02 2018-07-04 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ управления бесплатформенной гировертикалью с радиальной коррекцией и бесплатформенная гировертикаль для его реализации
RU2667320C1 (ru) * 2017-11-02 2018-09-18 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации
RU2801620C2 (ru) * 2021-09-29 2023-08-11 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ повышения точностных характеристик автономной, бесплатформенной гировертикали с интегральной коррекцией и устройство для его реализации

Similar Documents

Publication Publication Date Title
Bian et al. Inertial navigation
Unsal et al. Estimation of deterministic and stochastic IMU error parameters
CN101949710B (zh) Gnss辅助mems惯性传感器零偏的快速在线动态标定方法
KR101739390B1 (ko) 중력오차보상을 통한 관성항법장치의 자체정렬 정확도 향상기법
RU2380656C1 (ru) Комплексированная бесплатформенная инерциально-спутниковая система навигации на "грубых" чувствительных элементах
US10365131B2 (en) Hybrid inertial measurement unit
CN103630146A (zh) 一种离散解析与Kalman滤波结合的激光陀螺IMU标定方法
CN103900607A (zh) 一种基于惯性系的旋转式捷联惯导系统转位方法
US3214575A (en) Celestial-inertial navigation system
KR101564020B1 (ko) 이동체의 전자세 예측 방법 및 이를 이용한 전자세 예측 장치
RU2611714C1 (ru) Способ определения масштабных коэффициентов лазерного гироскопа
Reddy et al. Advanced navigation system for aircraft applications
CN104677356A (zh) 一种基于角增量和比力输出的划桨速度计算方法
RU2574379C1 (ru) Способ управления бесплатформенной гировертикалью и устройство для его реализации
RU2502049C1 (ru) Малогабаритная бесплатформенная инерциальная навигационная система средней точности, корректируемая от системы воздушных сигналов
RU2566379C1 (ru) Способ определения величины атмосферной рефракции в условиях космического полета
RU2659970C1 (ru) Способ управления бесплатформенной гировертикалью с радиальной коррекцией и бесплатформенная гировертикаль для его реализации
RU2615033C1 (ru) Бесплатформенная инерциальная вертикаль на "грубых" чувствительных элементах
Liu et al. Multi-sensor fusion algorithm based on GPS/MEMS-IMU tightly coupled for smartphone navigation application
RU2459230C2 (ru) Система автоматического управления полетом высокоманевренного летательного аппарата
Mitikiri et al. Compensation of measurement noise and bias in geometric attitude estimation
RU2505785C1 (ru) Способ определения параметров модели погрешностей измерений акселерометров ведомой инерциальной навигационной системы по измерениям эталонной инерциальной навигационной системы
RU2615032C1 (ru) Бесплатформенная инерциальная курсовертикаль на чувствительных элементах высокой точности
RU2176812C1 (ru) Система управления боковым движением легкого самолета
Li et al. Accelerometer error estimation and compensation for three-axis gyro-stabilized camera mount based on proportional multiple-integral observer