RU2666893C1 - Способ получения изопропилового спирта из ацетона - Google Patents

Способ получения изопропилового спирта из ацетона Download PDF

Info

Publication number
RU2666893C1
RU2666893C1 RU2018112443A RU2018112443A RU2666893C1 RU 2666893 C1 RU2666893 C1 RU 2666893C1 RU 2018112443 A RU2018112443 A RU 2018112443A RU 2018112443 A RU2018112443 A RU 2018112443A RU 2666893 C1 RU2666893 C1 RU 2666893C1
Authority
RU
Russia
Prior art keywords
hydrogen
acetone
catalyst
temperature
hydrogenation
Prior art date
Application number
RU2018112443A
Other languages
English (en)
Inventor
Юрий Геннадьевич Носков
Галина Александровна Корнеева
Дмитрий Вячеславович Марочкин
Сергей Николаевич Руш
Татьяна Евгеньевна Крон
Ольга Георгиевна Карчевская
Павел Михайлович Болотов
Original Assignee
Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") filed Critical Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority to RU2018112443A priority Critical patent/RU2666893C1/ru
Application granted granted Critical
Publication of RU2666893C1 publication Critical patent/RU2666893C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Настоящее изобретение относится к способу получения изопропилового спирта, который широко используется в качестве октаноповышающей добавки к бензинам, противообледенительной жидкости, растворителя при получении поверхностно-активных веществ. Способ заключается в гидрировании ацетона водородсодержащим газом, содержащим, об. %: водород 40-50, азот 5-20, метан 27-45, диоксид углерода 5-7 и монооксид углерода 2-6 в жидкой фазе, при использовании в качестве катализатора меди в количестве 10-30 масс. %, нанесенной на носитель в виде гранул силикагеля с размером зерна 2,8-7,0 мм, удельной поверхностью 290-330 м/г - остальное, активированного при температуре 150-180°С сначала в токе смеси водород : азот = 1:1 по объему в течение 2-3 ч, затем в токе водорода в течение 0,5 ч. Предлагаемый способ позволяет получить целевой продукт с высоким выходом. 3 з.п. ф-лы, 2 табл., 25 пр.

Description

Изобретение относится к органической химии, к области получения одноатомных спиртов восстановлением карбонильных соединений водородом, а именно, к гидрированию ацетона до изопропилового спирта. Изопропиловый спирт широко используется в качестве октаноповышающей добавки к бензинам, противообледенительной жидкости, растворителя при производстве поверхностно-активных веществ, пластификаторов, присадок к маслам, медицинских препаратов и др.
Известен способ получения алифатических спиртов путем двухстадийного гидрирования альдегидов при температуре 125-180°С и давлении 50-300 атм в присутствии на первой стадии медного катализатора на силикагеле с содержанием меди не более 10%, на второй стадии - никельхромового катализатора. Степень превращения альдегида составила 99,5%. SU 277761, опубл. 05.08.1970.
Недостатком способа является относительно невысокая степень превращения альдегида при двухстадийном способе гидрирования водородом, а также необходимость использования и обслуживания двух разных катализаторов.
Известен способ получения изопропилового спирта (ИПС) гидрированием ацетона водородом на гетерогенных катализаторах, в частности, на основе меднохромовой или никельхромовой композиции. Процесс осуществляют с использованием чистого водорода при температуре 100-250°С, чаще при температуре 130-160°С, молярном отношении водород : ацетон = (3-5):1, при атмосферном или повышенном давлении. Степень превращения ацетона - 97,6-100% за проход. RU 2047590 С1, опубл. 10.11.1995.
Результаты жидкофазного гидрирования ацетона при использовании никельхромового губчатого катализатора, обеспечивающего конверсию ацетона 99,9% при температурах 80-160°С приведены в патенте US 7041857 В1, опубл. 09.05.2006.
Известен способ гидрирования ацетона до изопропанола в присутствии никелевого катализатора при молярном отношении водород : ацетон (1,5:1) - (5:1) при проведении процесса в жидкой фазе при температуре 110°С, конверсия ацетона составила 96,4%. RU 2288210 С2, опубл. 27.11.2006.
Известен способ гидрирования ацетона до изопропанола водородом в жидкой фазе в присутствии катализатора гидрирования на нейтральном носителе, предпочтительно, никельсодержащего катализатора на носителе из α-окиси алюминия, осуществляемый, по меньшей мере, двухстадийно при температуре от 60 до 140°С, при давлении от 20 до 50 атм и мольном соотношении водород : ацетон, равном (1,5-1):1. Реактор первой стадии может быть циркуляционным, а второй стадии - трубчатым. Гидрированию подвергают ацетон с содержанием воды менее 1,0 масс %. Это обеспечивает проведение процесса с высокой селективностью с получением изопропилового спирта с концентрацией примесей менее 300 м.д. RU 2245320 С2, опубл. 27.01.2005.
В обзорах: Yurieva Т.М. Mechanisms for activation of hydrogen and hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts // Catalysis Today. 1999, v. 51, p. 457-467 и Rahman A. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering & Catalysis. 2010, v. 5, №2, p. 113-126 обобщены достижения в области гидрирования ацетона в изопропиловый спирт с использованием медных катализаторов: металлической меди и оксидов CuO и Cu2O, демонстрирующих высокие конверсии и селективность.
Недостатком всех перечисленных выше способов является высокая стоимость применяемого в качестве гидрирующего газа «чистого» водорода, требующего дорогостоящей стадии выделения из газовых смесей и очистки от нежелательных примесей, особенно от монооксида углерода, вызывающего карбонилообразование никеля и хрома.
Известен способ гидрирования ацетона, с упоминанием того, что, наряду с «чистым» водородом, возможно применение водородсодержащего газа с концентрацией Н2>80%. Однако состава водородсодержащего газа, условий и показателей процесса для такого варианта патент не раскрывает.RU 2205818 С1, опубл. 10.06.2003.
Наиболее близким аналогом к настоящему изобретению является способ получения изопропилового спирта путем гидрирования ацетона на меднохромовом катализаторе ГИПХ-105 (Cu2Cr2O3) при атмосферном давлении, температуре 70-160°С, с использованием в качестве водородсодержащего газа азот-водородной смеси при мольном отношении N2 : Н2 = 0,25-0,7 в первые 300 ч работы и 0,05-0,2 - при дальнейшей работе. При контактной нагрузке 0,35 ч-1 выход изопропилового спирта составляет 93,0-98,7%, максимально достигаемая конверсия ацетона составляет 99,0%. SU 1118632 А1, опубл. 15.10.1984.
Недостатками этого способа являются, во-первых, применение «чистого» водорода в составе азот-водородной смеси и, во-вторых, - потенциальная непригодность применения заявленных катализаторов для процесса гидрирования с использованием водородсодержащего газа, имеющего в своем составе монооксид и диоксид углерода.
Техническая задача, решаемая изобретением, состоит в разработке способа получения изопропилового спирта гидрированием ацетона с заменой азот-водородной смеси на водородсодержащий газ, включающий в свой состав метан, азот, диоксид и монооксид углерода, и исключения тем самым стадии получения и концентрирования водорода из заводских топливных, остаточных и сбросных газов.
Предлагаемый способ позволяет получать целевой продукт при использовании заводских топливных, остаточных и сбросных газов, не находящих квалифицированного применения. Смоделированный усредненный состав такого типа водородсодержащих газов приближен к составу метан-водородной фракции, получаемой при разделении пирогаза -продукта пиролиза легких углеводородов и представляет собой смесь, содержащую, об %: водород 40-50, азот 5-20, метан 27-45, диоксид углерода 5-7 и монооксид углерода 2-6.
Технический результат заключается в повышении выхода изопропилового спирта в процессе его получения из ацетона за счет повышения конверсии ацетона и использования катализатора гидрирования, стабильно работающего в присутствии примесей, входящих в состав водородсодержащего газа, включая оксиды углерода.
Технический результат достигается тем, что гидрирование ацетона осуществляют в жидкой фазе водородсодержащим газом состава, об %: водород 40-50, азот 5-20, метан 27-45, диоксид углерода 5-7 и монооксид углерода 2-6, используя в качестве катализатора медь в количестве 10-30 масс %, нанесенную на носитель в виде гранул силикагеля с размером зерна 2,8-7,0 мм, удельной поверхностью 290-330 м2/г - остальное, активированного при температуре 150-180°С сначала в токе смеси водород : азот = 1:1 по объему в течение 2-3 ч, затем в токе водорода в течение 0,5 ч. Причем состав используемого водородсодержащего газа приближен к составу метан-водородной фракции, получаемой при разделении пирогаза - продукта пиролиза легких углеводородов, гидрирование проводят под давлением 10-30 атм и при температуре 120-170°С, при мольном отношении водород : ацетон=(2-5):1.
Указанные признаки весьма существенны.
Катализатор готовят из водного раствора нитрата меди концентрацией 21-51 масс %, в качестве носителя используют силикагель с размером зерна 2,8-7,0 мм и удельной поверхностью 290-330 м2/г.Меньшая удельная поверхность не обеспечивает должного распределения меди, необходимого для стабильной работы катализатора. Удельную поверхность носителя определяют с помощью метода БЭТ (Брунауэра-Эммета-Тейлора).
Пропитку носителя водным раствором нитрата меди ведут в течение 5-6 ч с перемешиванием при комнатной температуре, сушку на воздухе в два этапа, первый из которых проводят при температуре 50-60°С в течение 2-3 ч, второй - при температуре 110-120°С в течение 3-4 ч, прокалку в токе воздуха проводят при постепенном доведении температуры до 400-450°С в течение 3-4 ч и выдержке при этой температуре в течение 3-4 ч, после чего катализатор охлаждают в токе воздуха, а затем активируют при температуре 150-180°С сначала в токе смеси водород : азот = 1:1 по объему в течение 2-3 ч, затем в токе водорода в течение 0,5 ч. Несоблюдение приведенного здесь температурного режима обработки приводит к потере механической прочности катализатора - «растрескиванию» и измельчению в процессе загрузки в реактор и эксплуатации. Активация индивидуальным водородом взамен смеси водород : азот приводит к резкому саморазогреву в начальный момент восстановления, в результате чего каталитические свойства ухудшаются. Температура активации ниже 150°С недостаточна для полного восстановления меди, что снижает активность и селективность катализатора в случае использования газа с содержанием водорода 40-50 об % и примесями оксидов углерода. Температуры свыше 180°С технически нецелесообразны.
Полученный по приведенным прописям катализатор не меняет активности и остается стабильным в гидрировании ацетона в изопропиловый спирт при замене чистого водорода на водородсодержащий газ, имеющий в своем составе монооксид углерода, диоксид углерода, метан и азот. Содержание монооксида углерода в гидрирующем водородсодержащем газе может достигать 6 об %, а содержание водорода снижаться до 40-50 об %.
Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры, которые не ограничивают объем притязаний, представленных в формуле изобретения.
Пример 1. Получение катализатора 10 масс % Cu/SiO2
Катализатор получают, используя в качестве прекурсора меди ее нитрат - Cu(NO3)2 '3H2O, а в качестве носителя - силикагель с размером зерна 2,8-7,0 мм и удельной поверхностью 290-330 м2/г.Носитель пропитывают раствором нитрата меди в таком количестве воды, которое полностью поглотится заданной массой носителя. Исходный силикагель сушат при температуре 200°С в течение 5 ч до постоянной массы, и определяют таким образом содержание основного вещества в исходном силикагеле - 94,6 масс %. Влагоемкость высушенного силикагеля составила 1,22 г Н2О на 1 г сухого SiO2.
Для приготовления 20 г катализатора 10 масс % Cu/SiO2 навеску Cu(NO3)2 '3Н2О массой 7,6 г растворяют в 20,3 г дистиллированной воды. Указанным раствором пропитывают 18,0 г силикагеля с размером зерна 2,8-7,0 мм, выдерживая при комнатной температуре в течение 5 ч, периодически перемешивая. Пропитанный силикагель высушивают на воздухе при температуре 50°С в течение 3 ч, затем при температуре 110°С в течение 4 ч. Пропитанный и высушенный образец помещают в кварцевую трубку и прокаливают в трубчатой муфельной печи. Образец постепенно нагревают в токе воздуха (20 нл/ч) до температуры 400°С в течение 3 ч, и дополнительно выдерживают при данной температуре в течение 3 ч. После охлаждения в токе воздуха катализатор готов к активации путем восстановления водородом.
Активацию катализатора проводят непосредственно в реакторе гидрирования ацетона, представляющем собой трубку из нержавеющей стали внутренним диаметром 10,2 мм. Реактор оснащен рубашкой для подачи теплоносителя и центральным термопарным карманом наружным диаметром 1 мм для установки датчика температуры. В реактор помещают 10 см3 катализатора, избыточный объем заполняют балластными шариками из керамического бисера, содержащего : ZrO2 - 62-68 масс %, SiO2 - остальное. Затем в реактор подают смесь водород : азот = 1:1 по объему, нагревают до температуры 150°С в течение 2 ч, затем подают индивидуальный водород и выдерживают еще 0,5 ч. По окончании активации катализатор охлаждают в токе водорода, в дальнейшем не допуская контакта с воздухом.
Пример 2. Получение катализатора 30 масс % Cu/SiO2.
Катализатор получают по методике, аналогичной приведенной в примере 1. Для приготовления 20 г катализатора 30 масс % Cu/SiO2 навеску Cu(NO3)2 '3Н2О массой 22,8 г растворяют в 12,2 г дистиллированной воды. Указанным раствором пропитывают 14,8 г силикагеля с размером зерна 2,8-7,0 мм, удельной поверхностью 290-330 м /г и влагоемкостью 1,17 г Н2О на 1 г сухого SiO2, выдерживая при комнатной температуре в течение 6 ч, периодически перемешивая. Пропитанный силикагель высушивают на воздухе при температуре 60°С в течение 2 ч, затем при температуре 120°С в течение 3 ч. Пропитанный и высушенный образец, помещают в кварцевую трубку и прокаливают в трубчатой муфельной печи. Образец постепенно нагревают в токе воздуха со скоростью 20 нл/ч до температуры 450°С в течение 4 ч, и дополнительно выдерживают при данной температуре в течение 4 ч. Активацию катализатора проводят непосредственно в реакторе гидрирования ацетона при температуре 180°С в токе смеси водород : азот = 1:1 в течение 3 ч, затем подают индивидуальный водород и выдерживают еще 0,5 часа. По окончании активации катализатор охлаждают в токе водорода, в дальнейшем не допуская контакта с воздухом.
Примеры 3-13. Получение изопропилового спирта гидрированием ацетона на катализаторе 10 масс % Cu/SiO2 (таблица 1).
Как видно из примеров 3-13 конверсия ацетона и селективность по изопропиловому спирту достигают высоких значений как при использовании в качестве гидрирующего газа индивидуального водорода (пример 3), так и при использовании водородсодержащего газа с различным содержанием компонентов - водорода, азота, метана, диоксида и монооксида углерода. Более того после возвращения к базовым условиям проведения процесса (пример 3) показатели возвращаются на прежний уровень, то есть активность катализатора сохраняется. За все время «пробега» катализатора в экспериментах с использованием водорода и водородсодержащего газа, имеющего в своем составе оксиды углерода, выраженных тенденций к снижению конверсии ацетона, селективности по ИПС и выхода целевого ИПС выявлено не было, флуктуации указанных показателей находились в пределах 0,8, 0,2 и 1,0%, соответственно.
Примеры 14-25. Получение изопропилового спирта гидрированием ацетона на катализаторах с различным массовым содержанием меди при варьировании режимных параметров процесса (таблица 2).
Получение катализаторов с различным содержанием меди осуществляют аналогично примерам 1 и 2. Из примеров 14-25 видно, что варьирование реакционного давления в интервале 10-30 атм практически не влияет на селективность по ИПС, при этом конверсия ацетона несколько увеличивается с ростом давления и достигает 98,9-99,7%. Увеличение реакционного давления выше 30 атм нецелесообразно, поскольку не приводит к улучшению показателей процесса.
Селективность по ИПС и конверсия ацетона существенно зависят от температуры (примеры 14-25). Наилучшая совокупность значений конверсии и селективности 99,7% была достигнута при температуре 130°С. Увеличение температуры выше 170°С приводит к нежелательному снижению обоих показателей процесса.
Таблица 1.
Получение изопропилового спирта гидрированием ацетона на катализаторе 10 масс % Cu/SiO2 (температура 130°С, давление 20 атм, подача ацетона 2 ч-1, продолжительность работы катализатора - 12 ч в каждом эксперименте)
Figure 00000001
Таблица 2.
Получение изопропилового спирта гидрированием ацетона на катализаторах с различным массовым содержанием меди при варьировании режимных параметров процесса. Состав водородсодержащего газа, % об: водород - 50, азот - 5, метан - 38, диоксид углерода - 5, монооксид углерода - 2; мольное отношение водород : ацетон = 5:1
Figure 00000002

Claims (4)

1. Способ получения изопропилового спирта из ацетона, предусматривающий гидрирование ацетона водородсодержащим газом в присутствии катализатора гидрирования на нейтральном носителе, отличающийся тем, что гидрирование ацетона осуществляют водородсодержащим газом, содержащим, об. %: водород 40-50, азот 5-20, метан 27-45, диоксид углерода 5-7 и монооксид углерода 2-6 в жидкой фазе, используя в качестве катализатора медь в количестве 10-30 масс. %, нанесенную на носитель в виде гранул силикагеля с размером зерна 2,8-7,0 мм, удельной поверхностью 290-330 м2/г - остальное, активированного при температуре 150-180°С сначала в токе смеси водород : азот = 1:1 по объему в течение 2-3 ч, затем в токе водорода в течение 0,5 ч.
2. Способ по п. 1, отличающийся тем, что водородсодержащий газ приближен к составу метан-водородной фракции, получаемой при разделении пирогаза - продукта пиролиза легких углеводородов.
3. Способ по п. 1, отличающийся тем, что гидрирование проводят при давлении 10-30 атм и при температуре 120-170°С.
4. Способ по п. 1, отличающийся тем, что гидрирование проводят при мольном отношении водород : ацетон = (2-5):1.
RU2018112443A 2018-04-06 2018-04-06 Способ получения изопропилового спирта из ацетона RU2666893C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112443A RU2666893C1 (ru) 2018-04-06 2018-04-06 Способ получения изопропилового спирта из ацетона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112443A RU2666893C1 (ru) 2018-04-06 2018-04-06 Способ получения изопропилового спирта из ацетона

Publications (1)

Publication Number Publication Date
RU2666893C1 true RU2666893C1 (ru) 2018-09-13

Family

ID=63580329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112443A RU2666893C1 (ru) 2018-04-06 2018-04-06 Способ получения изопропилового спирта из ацетона

Country Status (1)

Country Link
RU (1) RU2666893C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738656C1 (ru) * 2020-04-23 2020-12-15 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ приготовления катализатора и способ получения изопропилового спирта с использованием этого катализатора
RU2798625C1 (ru) * 2022-11-22 2023-06-23 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ получения изопропилового спирта

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118632A1 (ru) * 1982-06-17 1984-10-15 Предприятие П/Я В-8469 Способ получени изопропилового спирта
WO2014002884A1 (ja) * 2012-06-27 2014-01-03 三井化学株式会社 イソプロパノールの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118632A1 (ru) * 1982-06-17 1984-10-15 Предприятие П/Я В-8469 Способ получени изопропилового спирта
WO2014002884A1 (ja) * 2012-06-27 2014-01-03 三井化学株式会社 イソプロパノールの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R.S.Rao et al. Influence of Crystallite Size on Acetone Hydrogenation over Copper Catalysts. J.Phys.Chem.B, 2005, 109(6), 2086-2092. *
ШУТКИНА О.В. Гидроалкилирование бензола ацетоном на бифункциональных катализаторах. Авто дис.кандидата химических наук: 02.00.15, 02.00.13/Шуткина Ольга Викторовна [Место защиты: Моск.гос.ун-т им. М.В. Ломоносова]. - Москва, 2014. - 23 с. *
ШУТКИНА О.В. Гидроалкилирование бензола ацетоном на бифункциональных катализаторах. Автореферат дис.кандидата химических наук: 02.00.15, 02.00.13/Шуткина Ольга Викторовна [Место защиты: Моск.гос.ун-т им. М.В. Ломоносова]. - Москва, 2014. - 23 с. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738656C1 (ru) * 2020-04-23 2020-12-15 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ приготовления катализатора и способ получения изопропилового спирта с использованием этого катализатора
RU2798625C1 (ru) * 2022-11-22 2023-06-23 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ получения изопропилового спирта
RU2800947C1 (ru) * 2022-11-22 2023-08-01 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ приготовления катализатора для получения изопропилового спирта

Similar Documents

Publication Publication Date Title
US8058484B2 (en) Flexible glycerol conversion process
TWI394740B (zh) 方法
US6841085B2 (en) Hydrogenolysis of 6-carbon sugars and other organic compounds
TWI245029B (en) Process for the hydrogenation of hydroformylation products
US7038094B2 (en) Hydrogenolysis of 5-carbon sugars, sugar alcohols, and methods of making propylene glycol
JP5611205B2 (ja) 白金/スズ触媒を用いる酢酸からのエタノールの直接且つ選択的な製造
CN101965325B (zh) 使烯属不饱和醇异构化的方法
JP2016153389A (ja) クロムを使用しないヒドロホルミル化混合物の水素化
KR20100046234A (ko) 수소화 촉매 및 카르보닐 화합물의 수소화에 의한 알콜의 제조 방법
JP2009542772A (ja) アルコールの脱水素法
JP5497773B2 (ja) 水素化触媒、特に二硫化炭素用水素化触媒
US20160244391A1 (en) Catalyst and process for producing aldehydes and/or alcohols
KR20010080555A (ko) 알돌 축합
EP3681634A1 (en) Use of phosphorous ylides to enhance acetylene hydrogenation catalysts
RU2666893C1 (ru) Способ получения изопропилового спирта из ацетона
IL110927A (en) Process for the preparation of methyl mercaptan from methyl methyl disulfide
EP1165230A1 (en) Catalyst supports, supported catalysts and process for the manufacture of 1,2-epoxybutane
BRPI0906075B1 (pt) Hydrogenation process
RU2675362C1 (ru) Способ гидрирования ацетона в изопропиловый спирт
Wu et al. Boron nitride supported Pt catalyst for selective hydrogenation
ES2916427T3 (es) Método para la producción continua de 2,3-butanodiol
FR2505819A1 (fr) Procede de fabrication d'alcools par hydrogenation catalytique d'esters d'acides organiques
EP3504174A1 (en) Method for the production of glycols from an anhydrosugar feed
EP3681629B1 (en) Palladium-based acetylene selective hydrogenation catalysts enhanced by organic dopants
JP2019043943A (ja) 1,3−ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法