RU2663434C1 - Способ получения синтетической целлюлозы - Google Patents
Способ получения синтетической целлюлозы Download PDFInfo
- Publication number
- RU2663434C1 RU2663434C1 RU2017141160A RU2017141160A RU2663434C1 RU 2663434 C1 RU2663434 C1 RU 2663434C1 RU 2017141160 A RU2017141160 A RU 2017141160A RU 2017141160 A RU2017141160 A RU 2017141160A RU 2663434 C1 RU2663434 C1 RU 2663434C1
- Authority
- RU
- Russia
- Prior art keywords
- solution
- glucose
- graphite tube
- cellulose
- heteropoly acid
- Prior art date
Links
- 229920002678 cellulose Polymers 0.000 title claims abstract description 30
- 239000001913 cellulose Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 28
- 239000010439 graphite Substances 0.000 claims abstract description 28
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 24
- 239000008103 glucose Substances 0.000 claims abstract description 24
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012153 distilled water Substances 0.000 claims abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 5
- 239000010935 stainless steel Substances 0.000 claims abstract description 5
- NWJUARNXABNMDW-UHFFFAOYSA-N tungsten vanadium Chemical compound [W]=[V] NWJUARNXABNMDW-UHFFFAOYSA-N 0.000 claims abstract description 5
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 4
- 230000001351 cycling effect Effects 0.000 claims abstract description 4
- 238000010292 electrical insulation Methods 0.000 claims abstract description 4
- 238000011049 filling Methods 0.000 claims abstract description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 3
- 238000004090 dissolution Methods 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 28
- 239000007864 aqueous solution Substances 0.000 abstract description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000007747 plating Methods 0.000 abstract description 3
- 239000002023 wood Substances 0.000 abstract description 3
- 229920000742 Cotton Polymers 0.000 abstract description 2
- 239000013543 active substance Substances 0.000 abstract description 2
- 125000000129 anionic group Chemical group 0.000 abstract description 2
- 230000008859 change Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 230000002441 reversible effect Effects 0.000 abstract description 2
- 239000002002 slurry Substances 0.000 abstract description 2
- 238000004520 electroporation Methods 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 5
- 230000008166 cellulose biosynthesis Effects 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920001503 Glucan Polymers 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 241000589220 Acetobacter Species 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 108010040093 cellulose synthase Proteins 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 235000002837 Acetobacter xylinum Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001136169 Komagataeibacter xylinus Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- ZETCGWYACBNPIH-UHFFFAOYSA-N azane;sulfurous acid Chemical compound N.OS(O)=O ZETCGWYACBNPIH-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-UKLRSMCWSA-N dextrose-2-13c Chemical compound OC[C@H]1OC(O)[13C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-UKLRSMCWSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006377 glucose transport Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 p. 22 Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Изобретение относится к способам получения синтетической целлюлозы путем полимеризации водного раствора глюкозы. Изобретение может быть использовано для получения целлюлозы высокой чистоты, и данный способ в перспективе может лечь в основу новой промышленной технологии получения синтетической целлюлозы без использования природной древесины и без использования натурального хлопка. Целлюлозу получают методом электрополимеризации из водного раствора глюкозы в присутствии в качестве каталитически активного вещества гетерополикислоты 1-12 ряда. Способ осуществляют следующим образом. В качестве реагента используют 20-40% по массе водный раствор глюкозы, полученный путем растворения кристаллической глюкозы в дистиллированной воде. После чего в этот раствор добавляют вольфрамово-ванадиевую гетерополикислоту 1-12 ряда, имеющую химическую формулу H[PWVO], стабильную в водных растворах и обладающую каталитической активностью за счет обратимого изменения степени окисления анионного комплекса. На 1 л приготовленного водного раствора глюкозы добавляют от 1 до 10 г чистой гетерополикислоты, имеющей формулу H[PWVO]. После полного растворения гетерополикислоты раствор термостатируют в диапазоне температур от 25 до 35°С и с расходом от 0,1 до 7 мл в минуту подают в графитовую трубку 2 (см. фиг. 1), которая может иметь внутренний диаметр от 2 до 15 мм и вокруг которой сделана электрическая изоляция 3, не позволяющая электрически контактировать с наружной стороной графитовой трубки, а сама графитовая трубка опущена в диэлектрическую гальваническую ванну 1, на противоположной стороне которой размещен противоэлектрод 4, который в свою очередь может быть выполнен из графита, нержавеющей стали или никеля. Графитовую трубку электрически соединяют с источником тока постоянного напряжения 5 таким образом, что графитовая трубка является анодом, а противоэлектрод катодом. Для контроля силы тока в электрическую цепь последовательно включают амперметр 6. Приготовленный термостатированный водный раствор глюкозы с добавкой гетерополикислоты подают через гибкую трубку 7, которая подсоединена к графитовой трубке, в результате чего раствор начинает вытекать в гальваническую ванну, постепенно заполняя ее. Как только уровень раствора достигает уровня опущенных электродов, электрическая цепь замыкается. Далее в циклическом режиме с помощью источника тока постоянного напряжения на анод и катод начинает подаваться напряжение в следующем порядке. Сначала в течение одной минуты поднимают напряжение с 0 В до 27 В, далее в течение 2 мин плавно опускают до 5 В и опять поднимают в течение 1 мин до 27 В. Число циклов зависит от необходимого количества получаемой целлюлозы. В результате такого циклирования на аноде, которым является графитовая трубка, начинает происходить образование белых хлопьев 8, которые образуют нерастворимую взвесь в растворе. После этого они могут быть отобраны из раствора для последующих операций с ними. 4 ил., 1 табл.
Description
Изобретение относится к способам получения синтетической целлюлозы путем полимеризации водного раствора глюкозы.
Данное изобретение может быть использовано для получения целлюлозы высокой чистоты, и данный способ в перспективе может лечь в основу новой промышленной технологии получения синтетической целлюлозы без использования природной древесины и без использования натурального хлопка.
В литературных и патентных источниках информации отсутствуют приближенные аналоги к патентуемому изобретению.
На сегодняшний день самый распространенный способ, который используется в промышленности, это выделение целлюлозы из природных материалов, который основан на действии реагентов, растворяющих или разрушающих не целлюлозные компоненты (лигнин и другие) при температурах от 105 до 80°С и при повышенном давлении. Основными способами получения являются сульфитная варка, которая заключается в обработке сырья водным раствором гидросульфита кальция, магния, натрия или аммония, содержащим свободный SO2 [1].
Известен способ биосинтеза целлюлозы [2]. По современным представлениям биосинтез целлюлозы является последовательным процессом полимеризации, кристаллизации и экструзии. Существует 4 модели этого процесса.
Первая модель основывается на том, что каталитический участок целлюлозосинтазы и UDP-глюкоза, находятся в цитоплазме, а образовавшиеся глюкановые цепи транспортируются в неклеточные пространства через структуру подобную поре, которая может быть частью каталитической субъединицы или комплексом из многих субъединиц, а для экструзии необходимо функционирование каталитической субъединицы и связанных белков.
Во второй модели каталитический участок целлюлозосинтазы ориентирован к внеклеточному пространству, где и осуществляется полимеризация. Транспортные белки могут включаться в перенос UDP-глюкозы с использованием при полимеризации глюкановой цепи.
В третьей модели для биосинтеза целлюлозы необходим липидный интермедиатор, который образуется на цитоплазматической поверхности клетки с помощью глекозилтрансеразы. Полимеризация глюкановой цепи происходит в цитоплазме, а для ее экструзии требуются связанные белки.
В четвертой модели для биосинтеза целлюлозы необходимы по крайней мере две глекозилтрансеразы, каталитические участки которых локализованы на цитоплазматической и внецитоплазматической поверхности клетки.
Известен также следующий способ синтеза целлюлозы из глюкозы. Непролиферативные клетки Ацетобактер ксилиум, как известно, при действии на глюкозу в присутствии кислорода синтезируют целлюлозу [3]. Настоящая статья описывает процедуру отделения бактерий Ацетобактер ксилиум от их целлюлозной пленки и подготовку свободной от целлюлозы суспензии непролиферативных высушенных замораживанием клеток, которые полимеризуют глюкозу в высокополимерную целлюлозу. Описываются оптимальные условия синтеза и оценивается специфичная синтетическая активность клеток. Также представлены некоторые наблюдения, которые относятся к механизму роста гелиевых образований целлюлозы.
Синтез целлюлозы из глюкозы был однозначно доказан с помощью использования в качестве подложки глюкозы, меченой углеродом 14.
Техническая задача заключается в создании технически простого способа получения целлюлозы высокой чистоты.
Сущность заявленного технического решения, согласно настоящему изобретению, заключается в том, что целлюлозу получают методом электрополимеризации из водного раствора глюкозы в присутствии в качестве каталитически активного вещества гетерополикислоты 1-12 ряда.
Синтетический способ получения целлюлозы осуществляют следующим образом. Сначала приготавливают водный раствор глюкозы, который может иметь концентрацию от 20 до 40% по массе, путем растворения кристаллической глюкозы в дистиллированной воде. После чего в этот раствор добавляют вольфромовованадиевую гетерополикислоту 1-12 ряда, имеющую химическую формулу H6[PW10V2O40], стабильную в водных растворах и обладающую каталитической активностью за счет обратимого изменения степени окисления анионного комплекса. На 1 л приготовленного водного раствора глюкозы добавляют от 1 до 10 г чистой гетерополикислоты, имеющей формулу H6[PW10V2O40]. После полного растворения гетерополикислоты раствор термостатируют в диапазоне температур от 25 до 35°С и с расходом от 0,1 до 7 мл в минуту подают в графитовую трубку 2 (Фиг. 1), которая может иметь внутренний диаметр от 2 до 15 мм и вокруг которой сделана электрическая изоляция 3, не позволяющая электрически контактировать с наружной стороной графитовой трубки, а сама графитовая трубка опущена в диэлектрическую гальваническую ванну 1, на противоположной стороне которой размещен противоэлектрод 4, который в свою очередь может быть выполнен из графита, нержавеющей стали или никеля. Графитовую трубку электрически соединяют с источником тока постоянного напряжения 5 таким образом, что графитовая трубка является анодом, а противоэлектрод катодом. Для контроля силы тока в электрическую цепь последовательно включают амперметр 6. Приготовленный термостатированный водный раствор глюкозы с добавкой гетерополикислоты подают через гибкую трубку 7, которая подсоединена к графитовой трубке. В результате чего раствор начинает вытекать в гальваническую ванну, постепенно заполняя ее. Как только уровень раствора достигает уровня опущенных электродов, электрическая цепь замыкается. Далее в циклическом режиме с помощью источника тока постоянного напряжения на анод и катод начинает подаваться напряжение в следующем порядке. Сначала в течение одной минуты поднимают напряжение с 0 В до 27 В, далее в течение 2 минут плавно опускают до 5 В и опять поднимают в течение 1 минуты до 27 В. Число циклов зависит от необходимого количества получаемой целлюлозы. В результате такого циклирования на аноде, которым является графитовая трубка, начинает происходить образование белых хлопьев 8, которые образуют нерастворимую взвесь в растворе. После чего они могут быть отобраны из раствора для последующих операций с ними.
Пример получения синтетической целлюлозы методом электрополимеризации. Приготовили 30% водный раствор глюкозы путем растворения 300 г кристаллической глюкозы в одном литре дистиллированной воды. Далее в приготовленный раствор добавили 5 г чистой вольфрамовованадиевой гетерополикислоты 1-12 ряда, имеющей химическую формулу H6[PW10V2O40], в виде твердых кристаллов. После того как гетерополикислота (ГПК) полностью растворилась, раствор термостатировали при температуре 30°С. Далее взяли гальваническую ванну 1, выполненную из стекла, в которую опустили два электрода. Катод 4, представляющий собой пластину из нержавеющей стали, и анод 2, представляющий собой графитовую трубку с внутренним диаметром 7 мм. Вокруг графитовой трубки сделали электрическую изоляцию 3, которая не давала наружной стороне графитовой трубки электрически контактировать с водным раствором. Графитовую трубку электрически соединили с источником тока постоянного напряжения 5. Плюсовую клемму подключили к графитовой трубке (аноду), а минусовую клемму к электроду, представляющему собой пластину из нержавеющей стали (катоду). В электрическую цепь последовательно подключили амперметр 6 для контроля силы тока. Далее к графитовой трубке подсоединили гибкую силиконовую трубку 7, и через нее начали подавать подготовленный раствор с расходом 0,9 мл в минуту и общим объемом один литр, термостатированный при температуре 30°С и состоящий из 30% водного раствора глюкозы с добавкой 5 г чистой волфрамовованадиевой гетерополикислоты 1-12 ряда, имеющей химическую формулу H6[PW10V2O40]. Через некоторое время после подачи раствора в трубку жидкость начала вытекать в гальваническую ванну, постепенно заполняя ее. Как только уровень раствора достиг уровня опущенных электродов и электрическая цепь замкнулась через раствор, был включен источник постоянного тока 5, и в циклическом режиме сначала в течение одной минуты поднимали напряжение от 0 В до 27 В, а далее в течение двух минут плавно понижали напряжение до 5 В, а затем опять в течение одной минуты плавно поднимали до 27 В и опять снижали до 5 В. После пятнадцати циклов такого циклирования в раствор из графитовой трубки начали выпадать белые хлопья 8, которые не растворялись в водном растворе, а образовывали мелкодисперсную взвесь. После того, как было выполнено 305 таких циклов, выделение хлопьев прекратилось, и процесс был остановлен путем отключения источника питания. Далее полученный раствор с хлопьями был отфильтрован, после чего отфильтрованные хлопья были промыты дистиллированной водой и высушены. После просушки несколько хлопьев были отобраны и исследованы под цифровым микроскопом «BW1008-500X» с 500-кратным увеличением (Фиг. 2).
Далее были сделаны фотографии этих хлопьев с помощью оптического микроскопа «Analyt» с 900-кратным увеличением (Фиг. 3). Провели сравнение с целлюлозными волокнами, выделенными из древесины классическим способом (Фиг. 4) [4]. Они оказались идентичными.
Схожесть синтезированной целлюлозы с природной целлюлозой была подтверждена следующими испытаниями.
Полученные высушенные хлопья синтезированной целлюлозы распустили на машине БМ-3 в течение 10 минут. Помол составил 15 °ШР.
Для определения механических показателей навеску синтезированной целлюлозы размололи на ЦРА, на мешалке БМ-3 разбили до однородного состояния, после чего подготовили отливки плотностью 100 г/м2 и 125 г/м2, и после кондиционирования провели испытания. Результаты испытания по механическим показателям представлены в таблице.
Вывод. Исследуемый образец целлюлозы хорошо размалывается на ЦРА и на отливке нет узелков нераспущенного волокна и посторонних включений, что указывает на достаточно высокую чистоту полученной целлюлозы.
Источники информации:
1. Химический энциклопедический словарь, Москва «Советская энциклопедия» 1983 г., стр. 673.
2. Биосинтез целлюлозы: современный взгляд и концепции. Институт генетики и цитологии НАН Беларуси, Белорусский государственный технологический университет, Белорусский государственный университет, В.В. Титок, В.Н. Леонтьев, И.В. Федоренко, С.В. Кубрак, С.И. Юренкова, З.Е. Грушецкая, Минск, Республика Беларусь.
3. Synthesis of Cellulose by Acetobacter xylinum. «Bio-Chemical Journal)), 1954, Vol. 58, pages 345-352, S. Hestrin and M. Schramm.
4. ГОСТ 7500-85 Бумага и картон. Методы определения состава по волокну, стр. 22, Волокна из древесины, Целлюлозные волокна, Черт. 6.
Claims (1)
- Способ получения синтетической целлюлозы, включающий использование в качестве исходного вещества для синтеза глюкозу, отличающийся тем, что в качестве реагента для синтеза целлюлозы приготавливают водный раствор глюкозы, который может иметь концентрацию от 20 до 40% по массе, путем растворения кристаллической глюкозы в дистиллированной воде, после чего в полученный раствор добавляют вольфрамово-ванадиевую гетерополикислоту 1-12 ряда, имеющую химическую формулу H6[PW10V2O40], из расчета от 1 до 10 г гетерополикислоты на один литр приготовленного водного раствора глюкозы, и после полного растворения гетерополикислоты термостатируют раствор в диапазоне температур от 25 до 30°С, далее подготавливают диэлектрическую ванну 1, в которую опускают графитовую трубку, которая может иметь внутренний диаметр от 2 до 15 мм и вокруг которой сделана электрическая изоляция 3, а на противоположной стороне в диэлектрическую ванну опускают противоэлектрод 4, который в свою очередь может быть выполнен из графита, нержавеющей стали или никеля, после чего графитовую трубку электрически соединяют с источником тока постоянного напряжения 5 таким образом, что графитовая трубка является анодом, а противоэлектрод катодом и для контроля силы тока в электрическую цепь последовательно включают амперметр 6, после чего приготовленный термостатированный при температуре от 25 до 35°С водный раствор глюкозы с добавкой гетерополикислоты с расходом от 0,1 до 7 мл в минуту подают в графитовую трубку через гибкую трубку 7, соединенную с графитовой трубкой 2, в результате чего в гальваническую ванну начинает вытекать приготовленный раствор, постепенно заполняя ее, и, как только уровень раствора достигает уровня опущенных электродов, электрическая цепь замыкается, далее в циклическом режиме с помощью источника тока постоянного напряжения на анод и катод начинает подаваться напряжение в следующем порядке: сначала в течение одной минуты поднимают напряжение от 0 В до 27 В, а далее в течение 2 минут плавно опускают до 5 В и опять поднимают в течение 1 минуты до 27 В, где число циклов зависит от необходимого количества получаемой целлюлозы, и в результате такого циклирования на аноде, которым является графитовая трубка, начинает происходить образование белых хлопьев 8, которые образуют нерастворимую взвесь в растворе, после чего они могут быть отобраны из раствора для последующих операций с ними.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017141160A RU2663434C1 (ru) | 2017-11-27 | 2017-11-27 | Способ получения синтетической целлюлозы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017141160A RU2663434C1 (ru) | 2017-11-27 | 2017-11-27 | Способ получения синтетической целлюлозы |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2663434C1 true RU2663434C1 (ru) | 2018-08-06 |
Family
ID=63142626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017141160A RU2663434C1 (ru) | 2017-11-27 | 2017-11-27 | Способ получения синтетической целлюлозы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2663434C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11290075A (ja) * | 1998-02-26 | 1999-10-26 | Univ Kyoto | 組み換えミュータントシュクロース合成酵素によるシュクロースからのセルロースの合成 |
RU2486256C2 (ru) * | 2009-03-06 | 2013-06-27 | Тойота Дзидося Кабусики Кайся | Способ предварительной обработки для осахаривания растительного волокнистого материала и способ осахаривания |
US20160122790A1 (en) * | 2014-10-30 | 2016-05-05 | Polisa Biopolimeros Para Saude Ltda - Epp | Process of scale production and purification of bacterial cellulose obtained by glucose polymerization from sugars of renewable sources via biotechnology through the propagation of gluconoacetobacter hansenii lmspe in reactors and obtainment of purified cellulose for application in health, pharmacotechnical and cosmetic dermatology areas |
-
2017
- 2017-11-27 RU RU2017141160A patent/RU2663434C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11290075A (ja) * | 1998-02-26 | 1999-10-26 | Univ Kyoto | 組み換えミュータントシュクロース合成酵素によるシュクロースからのセルロースの合成 |
RU2486256C2 (ru) * | 2009-03-06 | 2013-06-27 | Тойота Дзидося Кабусики Кайся | Способ предварительной обработки для осахаривания растительного волокнистого материала и способ осахаривания |
US20160122790A1 (en) * | 2014-10-30 | 2016-05-05 | Polisa Biopolimeros Para Saude Ltda - Epp | Process of scale production and purification of bacterial cellulose obtained by glucose polymerization from sugars of renewable sources via biotechnology through the propagation of gluconoacetobacter hansenii lmspe in reactors and obtainment of purified cellulose for application in health, pharmacotechnical and cosmetic dermatology areas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Burrs et al. | A comparative study of graphene–hydrogel hybrid bionanocomposites for biosensing | |
Tanaka et al. | Determination of nanocellulose fibril length by shear viscosity measurement | |
Peng et al. | A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode | |
Wang et al. | Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids | |
CN105651752B (zh) | 淀粉样蛋白的检测方法 | |
CN107315042B (zh) | 锌金属有机骨架纳米材料及其应用 | |
Zhang et al. | Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid | |
CN110257051B (zh) | 一种基于点击化学的dna功能化量子点的制备方法及其在生物标记与检测中的应用 | |
CN109251342A (zh) | 一种纳米纤维素/碳纳米管/聚二甲基硅氧烷导电复合膜及其制备方法 | |
Shibakami et al. | Polysaccharide nanofiber made from euglenoid alga | |
CN104710976A (zh) | 次氯酸根离子荧光探针、制备方法及其应用 | |
Yu et al. | An efficient chiral sensing platform based on graphene quantum dot–tartaric acid hybrids | |
RU2663434C1 (ru) | Способ получения синтетической целлюлозы | |
Wang et al. | Rheological characteristics of novel cellulose/superbase-derived ionic liquid solutions and the coagulation process towards regenerated cellulose films | |
Liang et al. | Electropolymerisation of brilliant cresyl blue and neutral red on carbon-nanotube modified electrodes in binary and ternary deep eutectic solvents | |
Zahorán et al. | Flow-driven synthesis of calcium phosphate–calcium alginate hybrid chemical gardens | |
CN115248237A (zh) | 铜基mof材料修饰的微电极及其在超氧阴离子检测上的应用 | |
Gómez‐Caballero et al. | Voltammetric determination of metamitron with an electrogenerated molecularly imprinted polymer microsensor | |
CN107121418A (zh) | 具有双检测功能的碳点/壳聚糖检测器及其制备方法 | |
CN108727592B (zh) | 一种检测铝离子的有机硅高分子荧光探针及其制备方法和应用 | |
CN113980294B (zh) | 一种基于海藻酸钠的导电性可自愈合水凝胶及其制备方法与应用 | |
Mogha et al. | Does poly (ionic liquid) modulate the non-covalent interactions of chicken egg white lysozyme? Elucidation of biomolecular interactions between biomolecules and macromolecular solvents | |
Song et al. | Silkworm spinning: The programmed self-assembly from natural silk fibroin to superfibre | |
Jara-Ulloa et al. | Adsorptive stripping voltammetric determination of nitroimidazole derivative on multiwalled carbon nanotube modified electrodes: Influence of size and functionalization of nanotubes | |
Liu et al. | Enantioselective cytotoxicity of chiral polymer vesicles with linear and hyperbranched structures |