RU2661314C1 - Способ контроля параметров сыпучих материалов в резервуарах - Google Patents

Способ контроля параметров сыпучих материалов в резервуарах Download PDF

Info

Publication number
RU2661314C1
RU2661314C1 RU2017117123A RU2017117123A RU2661314C1 RU 2661314 C1 RU2661314 C1 RU 2661314C1 RU 2017117123 A RU2017117123 A RU 2017117123A RU 2017117123 A RU2017117123 A RU 2017117123A RU 2661314 C1 RU2661314 C1 RU 2661314C1
Authority
RU
Russia
Prior art keywords
tank
bulk material
angle
bulk
distance
Prior art date
Application number
RU2017117123A
Other languages
English (en)
Inventor
Геннадий Васильевич Смирнов
Николай Владимирович Замятин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority to RU2017117123A priority Critical patent/RU2661314C1/ru
Application granted granted Critical
Publication of RU2661314C1 publication Critical patent/RU2661314C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Изобретение может быть использовано для регистрации уровня сыпучих сред в резервуарах в различных отраслях промышленности: химической, фармацевтической, пищевой, строительной и т.д. В способе измерения параметров сыпучих материалов в резервуарах с помощью оптического устройства в качестве измерительного устройства используют лазер-дальномер, который закрепляют на поворотном шарнире над оптически прозрачным элементом, выполненным в периферийной области герметически отделенной от сыпучего материала крышке резервуара и покрытым прозрачной пылеотталкивающей пленкой, при этом в процессе измерения, не открывая герметической крышки резервуара, включают лазер-дальномер и определяют кратчайшее расстояние h1 от крышки до линии пересечения поверхности сыпучего материала с боковой стенкой резервуара, после чего поворачивают лазер-дальномер на угол β, лежащий в диапазоне 0<β≤α, где α - угол откоса сыпучего материала, и под указанным углом β измеряют расстояние до поверхности сыпучего расстояния, сравнивают величины h1 и h2 и общий объем сыпучего вещества Vc в резервуаре и рассчитывают по соответствующей формуле. Техническим результатом является упрощение способа и повышение точности контроля. 1 ил., 2 пр.

Description

Изобретение относится к контрольно-измерительной технике, а именно к области электрических измерений неэлектрических величин, и может быть использовано для регистрации уровня сыпучих сред в резервуарах в различных отраслях промышленности: химической, фармацевтической, пищевой, строительной и т.д.
Известно большое разнообразие способов контроля параметров сыпучих материалов в резервуарах, которые, в частности, сводятся к тому, что в контролируемом резервуаре создают акустическое поле, и уровень среды оценивают по результатам обработки информации о характеристиках поля, получаемой с помощью одного или нескольких датчиков - электроакустических приемников [1÷5].
Недостатком этих способов являются высокие погрешности контроля из-за влияния акустических неоднородностей среды (температуры, плотности и скорости звука), а также формы и материала стенок резервуара.
Известен радиолокационный способ измерения уровня сыпучих материалов [6], включающий измерение времени распространения радиоволн, излученных в направлении на поверхность среды и отраженных от нее, и вычисление по измеренному времени распространения радиоволн дальности до поверхности среды. Указанный способ не позволяет измерять уровень с достаточной точностью при наличии мешающих отражений, вызванных конструктивными особенностями резервуара с жидким материалом, так как мешающие отражения искажают форму сигнала и тем самым приводят к большой ошибке в измерении времени задержки.
Известен способ измерения уровня сыпучих материалов в резервуаре, реализованный в устройстве [7], заключающийся в том, что излучают частотно-модулированный сигнал в направлении содержимого резервуара, принимают, спустя время распространения, отраженный сигнал и смешивают его с частью излучаемого сигнала для получения сигнала разностной частоты (СРЧ). Фазу этого сигнала используют для измерения расстояния до поверхности контролируемой среды, при условии поддержании постоянной самой разностной частоты, путем управления периодом модуляции. При этом фаза сигнала разностной частоты при измерении расстояния будет непрерывно меняться в пределах 2πN+ϕ пропорционально изменению расстояния. Здесь N - целое число периодов СРЧ, содержащееся в периоде модуляции, ϕ - число, соответствующее оставшейся части периода, то есть начальная фаза СРЧ.
Таким образом, определение расстояния сводится к подсчету числа N, измерению фазы ϕ и вычислению расстояния.
Недостатком способа также является невозможность измерения уровня с заданной точностью при наличии мешающих отражений, вызванных элементами конструкции резервуара, так как наличие помех сильно изменяет фазу сигнала и приводит к большой ошибке.
Наиболее близким к заявляемому изобретению является способ и устройство измерения параметров жидких и сыпучих материала в резервуарах [8]
Сущность способа - прототипа заключается в том, параметры жидких и сыпучих материалов в резервуаре определяют путем преобразования изображения мерного элемента в электрический сигнал с последующей его цифровой обработкой и определением уровня, при этом с помощью телекамеры получают изображение линии пересечения поверхности материала с мерным элементом в виде мерной шкалы, преобразуют его в видеосигнал, после чего получают файл данных в виде матрицы пикселей, затем в нем с помощью заранее обученной нейронной сети производят поиск и распознавание ближайшего значения N отсчета первичной мерной шкалы и условной линии поверхности жидкости или сыпучего материала, подсчитывают количество пикселей n в изображении между найденным ближайшим значением N отсчета первичной мерной шкалы и условной линией поверхности жидкости или сыпучего материала, а вычисление уровня материала Н производят по формуле H=N-k×n, где k - коэффициент пропорциональности.
Недостатком способа - прототипа является то, что он применим, в основном, для измерения уровня жидких сред. Для определения уровня сыпучих материалов, например уровня цемента, применение указанного способа затруднено из-за того, что мерная шкала, нанесенная на боковой стороне резервуара, из-за запыленности будет трудно различимой, что приводит к большим погрешностям. Кроме того, реализация способа - прототипа относительно сложна из-за необходимости применения цифровой видеокамеры, нанесения на стенке резервуара цифровой шкалы, из-за необходимости создания архитектуры нейронной сети, применения в ней множества разнообразных нейронов и из-за необходимости ее обучения.
Технической задачей, на которую направлено изобретение, является упрощения способа и повышения точности контроля.
Поставленная техническая задача решается тем, что в способе измерения параметров сыпучих материалов в резервуарах с помощью оптического устройства, закрепленного над поверхностью измеряемого материала и герметически отделенной от него оптически прозрачным элементом, в качестве измерительного устройства используют лазер-дальномер, который закрепляют на поворотном шарнире над оптически прозрачным элементам, выполненным в периферийной области герметически отделенной от сыпучего материала крышке резервуара, и покрытым прозрачной пылеотталкивающей пленкой, при этом в процессе измерения, не открывая герметической крышки резервуара, включают лазер-дальномер, и при помощи него определяют кратчайшее расстояние h1 от крышки до линии пересечения поверхностью сыпучего материала с боковой стенкой резервуара, после чего поворачивают лазер-дальномер на угол β лежащий в диапазоне 0<β≤α, где α - угол откоса сыпучего материала, и под указанным углом β измеряют расстояние h2 до поверхности сыпучего расстояния, сравнивают величины h1 и h2, и общий объем сыпучего вещества в резервуаре и рассчитывают по приведенной ниже формуле объем сыпучего материала Vc, в которой второй член имеет знак «плюс» при выполнении h1>h2, и знак «минус», при h1<h2.
Figure 00000001
где Н - высота резервуара, D - диаметр резервуара; α - угол откоса сыпучего материала.
На фиг. 1 изображен сыпучий материал в резервуаре, после засыпки в него порции сыпучего материала (А) и отсыпки из него порции сыпучего материала (Б).
На фиг. 1 введены следующие обозначения:
1 - резервуар высотой Н и диаметром D; 2 - крышка; 3 - лазер-дальномер; 4 - оптически прозрачное окно; 5 - сыпучий материал; 6 - заслонка; 7 - высыпная воронка.
Сущность изобретения заключается в следующем.
К сыпучим материалам можно отнести: цемент, муку, опилки, зерно, сахар, соль, крупу и т.д. Эти материалы широко используются в различных отраслях промышленности. При учете прихода и расхода сыпучего материала основным параметром является его объем. Рассмотренные же выше аналоги не позволяют определить с достаточной точностью указанный параметр. Кроме того, все они обладают сложностью при их реализации.
В предлагаемом решении определение объема сыпучего материала, можно реализовать следующим образом.
Известно, что все сыпучие материалы при их высыпании в любой резервуар в верхней части образуют некоторую нелинейную поверхность, наиболее приближенную к поверхности конуса. Эта характерная особенность сыпучих материалов явилась основанием, для введения в качестве одной из основных характеристик сыпучих материалов так называемого «угла естественного откоса а» (см. фиг. 1А). Угол естественного откоса (иногда также угол внутреннего трения, угол ската) - угол, образованный свободной поверхностью сыпучего материала с горизонтальной плоскостью. Иногда может быть использован термин «угол внешнего трения». Частицы материала, находящиеся на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала.
Обычно для измерения объема вещества в резервуаре, частью объема, находящегося под нелинейной поверхностью пренебрегают, а объема вещества рассчитывают, как объем цилиндра, если резервуар цилиндрический. Так как объем сыпучего материала под нелинейной поверхностью обычно не измеряется, то это приводит к погрешности до 5-10 процентов и более в зависимости от уровня вещества в резервуаре. Поэтому необходимо предложить способ для более точного измерения объема вещества, например цемента, при его дозировании для производства строительных изделий. Рассмотрим, как это можно реализовать.
Наиболее часто для загрузки сыпучего материала используют резервуар 1, выполненный в виде цилиндра (см. фиг. 1).
Резервуар 1 обычно закрывается герметичной крышкой 2, для того чтобы предотвратить попадания в сыпучий материал влаги, пыли или иных инородных включений. Если в центральной части на крышке 1, разместить лазер-дальномер 3 над герметичным оптически прозрачным окном 4, на шарнире то при помощи лазера дальномера можно определить расстояние h1 от крышки до поверхности сыпучего материала и повернув лазер дальномер на угол β, лежащий в диапазоне 0<β<α, где α - угол откоса сыпучего материала, и под указанным углом β измерить расстояние h2 до поверхности сыпучего расстояния, сравнить величины h1 и h2 то общий объем Vc сыпучего вещества в резервуаре можно рассчитать по приведенной ниже формуле, в которой второй член имеет знак «плюс» при выполнении h2<h1, и знак «минус», при h1<h2.
Figure 00000002
где H - высота резервуара, D - диаметр резервуара; α - угол откоса сыпучего материала
При помощи же лазера - дальномера 3, расположенного над герметичным оптически прозрачным окном 4, определяют расстояния hi до точки, лежащей в месте пересечения поверхности резервуара с поверхностью сыпучего материала 5. Затем поворачивают лазер-дальномер, закрепленный на шарнире, на некоторый угол β лежащий в диапазоне 0<β<α, и измеряют под этим углом расстояние h2 от крышки 1 до точки, лежащей на конической поверхности сыпучего материала.
В процессе работы с сыпучим материалом могут быть реализованы два варианта.
Первый вариант возникает при засыпке сыпучего материала в резервуар. При этом в верхней части сыпучего материала образуется горка, в форме круглого конуса, вершина которого направлена вверх (фиг. 1А). Второй вариант реализуется при высыпании некоторого объема сыпучего материала 5 из резервуара 1. При этом на поверхности сыпучего материала образуется коническая воронка, с вершиной направленной в низ (фиг. 1Б).
Рассмотрим как по результатам измерения h1 и h2 при знании внутренних габаритов цилиндрического резервуара (его высоты Н и диаметра D) можно определить объем сыпучего материала в резервуаре.
Сыпучий материал 5 обычно отделяется от высыпной воронки 7 при помощи заслонки 6.
Объем сыпучего материала V1, заключенный между дном (заслонкой 6) резервуара 1 и линией пересечения поверхности сыпучего материала 5 с поверхностью резервуара 1 имеет цилиндрическую форму и его можно определить по формуле
Figure 00000003
Объем V2 сыпучего материала, находящейся в конической части сыпучего материала равен
Figure 00000004
Объем сыпучего материала в резервуаре Vc равен
Figure 00000005
В выражении (3) перед объемом V2 знак (+) ставится в случае, если реализован первый вариант h1>h2 (фиг. 1А). Знак (-) ставится, когда реализован второй вариант h1<h2 (фиг. 1Б).
Подставим в выражение (3) выражения (1) и (2), получим
Figure 00000006
Выбор диапазона изменения угла β обусловлен следующими обстоятельствами.
Если лазер дальномер повернуть на угол α, то при попадании луча на коническую поверхность сыпучего материала, угол между лучом лазера и поверхностью сыпучего материала будет составлять 90°. При этом, если конус имеет выпуклую поверхность (фиг. 1А) расстояние h1 в образованном треугольнике будет являться гипотенузой, а расстояние h2-катетом. При этом если угол поворота лазера-дальномера устанавливать меньшим, чем угол α, то в случае выпуклой поверхности (фиг. 1А) расстояние h1 всегда будет больше h2, т.е. всегда будет выполняться неравенство h1>h2. При равенстве угла β=0 выполняется равенство h1=h2, и сделать какое - либо заключение о поверхности сыпучего материала (имеет ли она форму выпуклого или вдавленного конуса) не представляется возможным. Поэтому угол β всегда должен быть больше 0. Увеличивать угол наклона β за величину α, т.е. наклонять лазер-дальномер на угол β>α не имеет смысла, так как луч лазера в том случае может выйти за поверхность сыпучего материала и возникнет неопределенность в определении знака второго члена уравнения (4). Если поверхность сыпучего материала имеет форму конической впадины (фиг. 1Б), то при изменении угла β в диапазоне 0<β≤α, всегда будет выполняться неравенство h1>h2.
Таким образом, объем сыпучего материала в резервуаре можно определить по формуле (4)
Формула (4) учитывает оба варианта. В случае первого варианта (фиг. 1А) выполняется неравенство h1>h2, и V2 имеет знак «+». В случае второго варианта (фиг.1 Б) выполняется неравенство h1<h2, и V2 имеет знак «-».
Пример конкретного выполнения 1.
В цилиндрический бункер 1 высотой Н=4 метра и диаметром D=1,8 метра был засыпан цемент с заранее измеренным объемом, равным 8,9 м3 (см. фиг. 1А). Естественный угол откоса цемента α лежит в диапазоне (40-50)°. Средняя величина угла откоса цемента α равна 45°
В периферийной части крышки имелось герметичное оптическое окно 4, выполненные из кварцевого оптического стекла, толщиной 10 мм. С внутренней стороны оптическое окно 4 было покрыто прозрачной пылеотталкивающей лаковой пленкой из POLISTAR Р 8670 [9].
С наружной стороны окна 4 был установлен на шарнире лазерный - дальномер 3 фирмы SICK марки ДТ50.
После засыпки в резервуар 1 цемента 5, закрывали крышку 1 и включали лазер-дальномер 3. При помощи лазера - дальномера 3 определяли величину h1. Она оказалась равной h1=0,8 м. С помощью лазера-дальномера 3 измеряли величину h2, она оказалась равна h2=0,5 м. Объем сыпучего материала в резервуаре определяли по формуле (4). Так как h1>h2, то второй член вы выражении (4) нужно было взять со знаком «+». По результатам измерения был вычислен объем по формуле (4)
Figure 00000007
По способу-прототипу при указанных выше параметрах резервуара измеренная величина объема насыпного материала была бы равна Vc=8,1389 м3.
Относительная погрешность измерения объема цемента по заявляемому способу составила
Figure 00000008
Относительная погрешность по способу - прототипу была бы равна
Figure 00000009
Таким образом, погрешность измерения объема сыпучего материала по способу -прототипу имеет чем в 407 раз большую погрешность, чем по заявляемому способу. Пример конкретного выполнения 2.
Из цилиндрического бункера 1 высотой Н=4 метра и диаметром D=1,6 метра, в котором был засыпан цемент с измеренным объемом, равным 9,5 м3, высыпали 2,1 м3. В результате чего в резервуаре должно было остаться 7,4 м3 цемента (см. фиг. 1Б).
После высыпания из резервуара 1 цемента 5 аналогичным образом, как и в примере 1 измерялись h1 и h2. Они оказались равны h1=0,8 м и h2=1,2 м.
Так как h2>h1, то второй член вы выражении (4) нужно было взять со знаком «-». По результатам измерения был вычислен объем по формуле (4). По результатам измерения был вычислен объем сыпучего материала в резервуаре 1.
По способу-прототипу при указанных выше параметрах резервуара измеренная величина объема насыпного материала была бы равна Vc=8,1389 м3.
По заявляемому способу объем Vc был рассчитан по формуле (4)
Figure 00000010
Таким образом, относительная погрешность измерения объема цемента по заявляемому способу была равна
Figure 00000011
По способу прототипу она была равна
Figure 00000012
Таким образом, погрешность измерения по заявляемому способу составляет не выше (0,02÷0,4)%, тогда как измерения по способу - прототипу, по ориентировочным оценкам, она составляет не менее (8÷10)%, что на несколько порядков хуже.
Кроме того, по сравнению со способом - прототипом заявляемый способ существенно упрощен, так как для своей реализации он не требует использования цифровой камеры, измерительной линейки и построения сложной архитектуры нейронной сети, ее обучения и множества датчиков (синапсов).
Источники информации
1. Бергман А. Ультразвук и его применение в науке и технике. ИЛ. М., 1957, с. 406.
2. Патент США N 3922914, МПК G01F 23/28. Каталог переводов описаний изобретений, М, 1988, N 5, с. 88.
3. Патент РФ N 2037144, МПК G01F 23/28. 1995. БИ №6.
4. Патент РФ N 2047844, МПК G01F 23/28, 1995. БИ №26.
5. Патент Франции N 2436372, МПК G01F 23/28.
6. Марфин В.П., Кузнецов Ф.В. СВЧ уровнемер. // Приборы и системы управления. 1979, №11. С. 28-29.
7. Патент РФ №2234717, G01S 13/34, 04.03.2003.
8. Патент РФ№2279642. Способ измерения уровня сыпучих и/или жидких материалов и устройство для его осуществления/Якимович Е.А., Замятин Н.В. – Опубл. 10.07.2006, Бюл. №19 - (Прототип).
9. http://vsedlvapolov.ru/materialy/polimery-dlya-polov/smoly-nalivnye/mpm-smoly/polistar-p-8670.html.

Claims (3)

  1. Способ измерения объема сыпучих материалов в резервуарах с помощью оптического устройства, закрепленного над поверхностью измеряемого материала и герметически отделенного от него оптически прозрачным элементом, расположенным над поверхностью измеряемого материала, определения расстояния до точек поверхности измеряемого материала и использования результатов измерений для вычисления объема контролируемого материала, отличающийся тем, что в качестве оптического устройства используют лазер-дальномер, который закрепляют на поворотном шарнире над оптически прозрачным элементом, выполненным в периферийной области герметически отделенной от сыпучего материала крышке резервуара и покрытым прозрачной пылеотталкивающей пленкой, при этом в процессе измерения, не открывая герметической крышки резервуара, включают лазер-дальномер и при помощи него определяют кратчайшее расстояние h1 от крышки до линии пересечения поверхности сыпучего материала с боковой стенкой резервуара, после чего поворачивают лазер-дальномер на угол β, лежащий в диапазоне 0<β≤α, где α - угол откоса сыпучего материала, и под указанным углом β измеряют расстояние h2 до поверхности сыпучего расстояния, сравнивают величины h1 и h2 и рассчитывают по приведенной ниже формуле объем сыпучего материала Vc, в которой второй член имеет знак «плюс» при выполнении h2<h1 и знак «минус» при h1>h2.
  2. Figure 00000013
    ,
  3. где Н - высота резервуара, D - диаметр резервуара; α - угол откоса сыпучего материала.
RU2017117123A 2017-05-16 2017-05-16 Способ контроля параметров сыпучих материалов в резервуарах RU2661314C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017117123A RU2661314C1 (ru) 2017-05-16 2017-05-16 Способ контроля параметров сыпучих материалов в резервуарах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017117123A RU2661314C1 (ru) 2017-05-16 2017-05-16 Способ контроля параметров сыпучих материалов в резервуарах

Publications (1)

Publication Number Publication Date
RU2661314C1 true RU2661314C1 (ru) 2018-07-13

Family

ID=62916926

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017117123A RU2661314C1 (ru) 2017-05-16 2017-05-16 Способ контроля параметров сыпучих материалов в резервуарах

Country Status (1)

Country Link
RU (1) RU2661314C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913335A1 (de) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Verfahren zum bestimmen der schüttgutmenge in einem stehenden behälter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110617A (en) * 1976-03-17 1978-08-29 S.A. Des Anciens Establissements Paul Wurth Infra-red profilometer
SU669202A1 (ru) * 1976-11-10 1979-06-25 Куйбышевский политехнический институт им. В.В.Куйбышева Устройство дл измерени уровн сыпучих материалов
US6986294B2 (en) * 2000-02-17 2006-01-17 Bintech Lllp Bulk materials management apparatus and method
EA020917B1 (ru) * 2010-04-07 2015-02-27 Валерий Александрович Бердников Устройство измерения объема и массы сыпучего материала на тяговом органе конвейера
RU156459U1 (ru) * 2015-01-26 2015-11-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство оптического измерения уровня и объема жидкости в резервуаре
CN105674908A (zh) * 2015-12-29 2016-06-15 中国科学院遥感与数字地球研究所 测量装置和体积测量与监视系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110617A (en) * 1976-03-17 1978-08-29 S.A. Des Anciens Establissements Paul Wurth Infra-red profilometer
SU669202A1 (ru) * 1976-11-10 1979-06-25 Куйбышевский политехнический институт им. В.В.Куйбышева Устройство дл измерени уровн сыпучих материалов
US6986294B2 (en) * 2000-02-17 2006-01-17 Bintech Lllp Bulk materials management apparatus and method
EA020917B1 (ru) * 2010-04-07 2015-02-27 Валерий Александрович Бердников Устройство измерения объема и массы сыпучего материала на тяговом органе конвейера
RU156459U1 (ru) * 2015-01-26 2015-11-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство оптического измерения уровня и объема жидкости в резервуаре
CN105674908A (zh) * 2015-12-29 2016-06-15 中国科学院遥感与数字地球研究所 测量装置和体积测量与监视系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913335A1 (de) * 2020-05-20 2021-11-24 Rosenberger Telematics GmbH Verfahren zum bestimmen der schüttgutmenge in einem stehenden behälter

Similar Documents

Publication Publication Date Title
RU2657104C1 (ru) Способ контроля параметров сыпучих материалов в резервуарах
US8332182B2 (en) Evaluation of an echo shape of filling level sensors
US4417473A (en) Multi-capacitor fluid level sensor
JP5873632B2 (ja) 懸濁液の1以上の特性を測定するデバイス、方法及びシステム
US4448072A (en) Fluid level measuring system
RU2661314C1 (ru) Способ контроля параметров сыпучих материалов в резервуарах
US20150103630A1 (en) Increasing signal to noise ratio of acoustic echoes by a group of spaced apart acoustic transciver arrays
US3133445A (en) Ultrasonic particle size measurement apparatus
US4417472A (en) Fluid level sensor
Park et al. High accuracy pressure type liquid level measurement system capable of measuring density
RU2658079C1 (ru) Способ контроля параметров сыпучих материалов в резервуарах
Song et al. High temporal resolution rainfall information retrieval from tipping-bucket rain gauge measurements
RU2636794C2 (ru) Способ контроля параметров сыпучих или жидких материалов в резервуарах
JPS5847219A (ja) 粉粒体貯蔵用サイロの貯蔵物計測装置
KR101421137B1 (ko) 초음파 수위 측정 장치
US4287470A (en) Digital humidimeter
Lewis Sr Technology Review Level Measurement of Bulk Solids in Bins, Silos and Hoppers
US4448071A (en) Method of measuring and indicating fluid levels
CA1130441A (en) Liquid storage tank contents gauge
SU451940A1 (ru) Способ определени угла естественного откоса порошкообразных материалов
JPS6282313A (ja) 傾斜測定器
JPS5942416A (ja) 粉粒体貯槽内の粉面を連続的に計測管理する方法とその装置
Barzegar et al. Ultrasonic measurement of fill volume of bulk solids in discharge vessels
Choi et al. Experimental investigation of the flow with a free surface in an impulsively rotating cylinder
US11761870B2 (en) Miniature wireless concentration meter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200517