RU2660739C2 - Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора - Google Patents

Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора Download PDF

Info

Publication number
RU2660739C2
RU2660739C2 RU2016114133A RU2016114133A RU2660739C2 RU 2660739 C2 RU2660739 C2 RU 2660739C2 RU 2016114133 A RU2016114133 A RU 2016114133A RU 2016114133 A RU2016114133 A RU 2016114133A RU 2660739 C2 RU2660739 C2 RU 2660739C2
Authority
RU
Russia
Prior art keywords
turbine engine
gas turbine
shaft
coking
level
Prior art date
Application number
RU2016114133A
Other languages
English (en)
Other versions
RU2016114133A3 (ru
RU2016114133A (ru
Inventor
Надир Кристиан ДЕББУ
Франсуа Ксавье Мари ФОПЕН
Фабиан ЛАМАЗЕР
Original Assignee
Сафран Хеликоптер Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Хеликоптер Энджинз filed Critical Сафран Хеликоптер Энджинз
Publication of RU2016114133A publication Critical patent/RU2016114133A/ru
Publication of RU2016114133A3 publication Critical patent/RU2016114133A3/ru
Application granted granted Critical
Publication of RU2660739C2 publication Critical patent/RU2660739C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/005Sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Объектом изобретения является способ контроля степени коксования на уровне динамических прокладок газотурбинного двигателя. Cпособ содержит этапы, на которых: во время фазы авторотации газотурбинного двигателя измеряют скорость вращения вала газогенератора и на основании изменения во времени измеряемой скорости вращения определяют cтепень коксования на уровне динамических прокладок. Объектами изобретения являются также система контроля состояния коксования на уровне динамических прокладок газотурбинного двигателя и газотурбинный двигатель, оснащенный системой контроля. Технический результат изобретений - оценивание степени коксования на уровне динамических прокладок газотурбинного двигателя и обнаружение критической стадии, предшествующей невозможности запуска газотурбинного двигателя. 3 н. и 6 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области контроля степени коксования на уровне динамических прокладок в газотурбинной силовой установке, и к области газотурбинных силовых установок, оснащенных системами, обеспечивающими такой контроль.
Уровень техники
Как показано на фиг. 1, некоторые газотурбинные силовые установки, такие как газотурбинные двигатели, содержат газогенератор 10, содержащий вращающийся вал 11, на котором установлено форсуночное кольцо 12, которое, таким образом, тоже является вращающимся.
Форсуночное кольцо содержит множество отверстий, которые выходят в камеру 30 сгорания. Таким образом, во время своего вращения форсуночное кольцо распыляет топливо в камере сгорания за счет центробежного эффекта.
Как показано на фиг. 1b, газотурбинный двигатель содержит также рампу 20 впрыска, которая является неподвижной кольцевой деталью, установленной вокруг вала 11 газогенератора 10.
Рампа впрыска доставляет топливо до форсуночного кольца. Топливо проходит во внутреннем канале 21 рампы впрыска и попадает сначала в полость 22, а затем в форсуночное кольцо.
Для обеспечения герметичности между форсуночным кольцом и рампой предусмотрено множество динамических прокладок, таких как лабиринтные прокладки 23.
Однако в пазах этих прокладок часто образуется кокс, что приводит к появлению трений между форсуночным кольцом и рампой впрыска. Трения могут усилиться и привести к полной блокировке вала газогенератора; в этом случае запуск двигателя становится невозможным.
В случае возникновения проблем запуска операторы осуществляют операции поиска неисправностей, описанные в инструкции по эксплуатации газотурбинного двигателя. Эти операции поиска, как правило, являются длительными и малоэффективными, так как иногда необходимо затратить много времени, чтобы обнаружить причину затрудненного запуска, в данном случае коксование на уровне динамических прокладок (действительно, причины могут быть самыми разными).
Кроме того, эти операции поиска предполагают непредвиденную остановку газотурбинного двигателя и, следовательно, летательного аппарата, на котором он установлен, что потребует аннулирования одного или нескольких запланированных полетов. Таким образом, эти операции являются очень затратными.
До сих пор не было предложено никакого альтернативного метода для предупреждения блокировки вала газогенератора по причине коксования на уровне динамических прокладок, который позволил бы избежать операций поиска неисправности.
Поэтому существует потребность в способе контроля степени коксования на уровне динамических прокладок.
Раскрытие изобретения
Настоящее изобретение призвано решить вышеупомянутую проблему и предложить способ контроля степени коксования на уровне динамических прокладок газотурбинного двигателя.
В связи с этим объектом изобретения является способ контроля степени коксования на уровне динамических прокладок газотурбинного двигателя, содержащего:
- газогенератор, содержащий вращающийся вал и установленное на указанном валу форсуночное кольцо, при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта,
- рампу впрыска, выполненную с возможностью доставки топлива до форсуночного кольца,
- динамические прокладки, выполненные с возможностью обеспечения герметичности между форсуночным кольцом и рампой впрыска,
при этом способ отличается тем, что содержит этапы, на которых:
- во время фазы авторотации газотурбинного двигателя измеряют скорость вращения вала газогенератора, и
- на основании изменения во времени измеряемой скорости вращения определяют степень коксования на уровне динамических прокладок.
Предпочтительно, но факультативно заявленный способ может иметь также по меньшей мере один из следующих отличительных признаков:
- этап определения степени коксования на уровне динамических прокладок включает в себя измерение замедления вала газогенератора между двумя скоростями вращения вала;
- измерение замедления осуществляют между первой скоростью вращения, составляющей от 1000 до 2500 оборотов в минуту, предпочтительно равной 1000 оборотов в минуту, и второй скоростью вращения, составляющей от 500 до 1000 оборотов в минуту, предпочтительно равной 700 оборотов в минуту;
- определение степени коксования на уровне динамических прокладок содержит один из следующих этапов:
сравнение замедления вала газогенератора с заранее определенным порогом;
определение разности между измеренным замедлением и первоначальным замедлением газотурбинного двигателя между одними и теми же скоростями вращения вала и сравнение разности с заранее определенным порогом;
определение, на основании предыдущих измерений замедления, скорости изменения указанного замедления в зависимости от использования газотурбинного двигателя и сравнение указанной скорости изменения с заранее определенным порогом;
- способ применяют в газотурбинном двигателе, содержащем также стартер, и осуществляют этапы, на которых:
во время фазы запуска вращения вала газогенератора стартером при запуске газотурбинного двигателя измеряют ток, проходящий через стартер, и напряжение на клеммах стартера;
на основании измеренных тока и напряжения определяют данную, характеризующую противодействующий момент вала газогенератора;
- этап определения степени коксования на уровне динамических прокладок осуществляют на основании изменения во времени скорости вращения вала газогенератора и значения или изменения данной, характеризующей противодействующий момент вала, в зависимости от использования газотурбинного двигателя.
Объектом изобретения является также система контроля состояния коксования на уровне динамических прокладок газотурбинного двигателя, содержащего:
- газогенератор, содержащий вращающийся вал и установленное на указанном валу форсуночное кольцо, при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта,
- рампу впрыска, выполненную с возможностью доставки топлива до форсуночного кольца, и
- динамические прокладки, выполненные с возможностью обеспечения герметичности между форсуночным кольцом и рампой впрыска,
при этом система контроля выполнена с возможностью осуществления вышеупомянутого способа и содержит:
- по меньшей мере один датчик скорости вращения вала газогенератора, выполненный с возможностью осуществления измерений на частоте, превышающей или равной 2 Гц, и
- блок обработки, содержащий запоминающее устройство и средства обработки, выполненные с возможностью обработки измерений скорости вращения для определения степени коксования на уровне динамических прокладок.
Заявленная система контроля, когда она установлена в газотурбинном двигателе, содержащем также стартер, может дополнительно содержать по меньшей мере одно устройство измерения напряжения на клеммах стартера и проходящего через него тока, при этом указанное устройство измерения выполнено с возможностью осуществления измерений напряжения и тока на частоте, превышающей или равной 10 Гц.
Объектом изобретения является также газотурбинный двигатель, содержащий:
- газогенератор, содержащий вращающийся вал и установленное на указанном валу форсуночное кольцо, при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта,
- рампу впрыска, выполненную с возможностью доставки топлива до форсуночного кольца, и
- динамические прокладки, выполненные с возможностью обеспечения герметичности между форсуночным кольцом и рампой впрыска,
при этом газотурбинный двигатель отличается тем, что дополнительно содержит вышеупомянутую систему контроля.
Предложенный способ контроля позволяет оценивать степень коксования на уровне динамических прокладок газотурбинного двигателя и обнаруживать критическую стадию, предшествующую невозможности запуска газотурбинного двигателя.
В случае необходимости, это позволяет планировать техническое обслуживание для очистки или замены динамических прокладок.
Краткое описание чертежей
Другие отличительные признаки, задачи и преимущества изобретения будут более очевидны из нижеследующего описания, представленного в качестве иллюстративного и не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:
Фиг. 1а и 1b (уже описаны) схематично иллюстрируют принцип работы газотурбинного двигателя, оснащенного форсуночным кольцом.
Фиг. 2а и 2b - основные этапы способа контроля согласно двум вариантам осуществления изобретения.
Фиг. 3а - продолжительность замедления вала газогенератора для разных степеней использования газотурбинного двигателя.
Фиг. 3b - изменение замедления вала газогенератора в зависимости от использования газотурбинного двигателя.
Фиг. 4 - изменение данной, характеризующей противодействующий момент вала газогенератора, в зависимости от использования газотурбинного двигателя.
Осуществление изобретения
На фиг. 2а и 2b представлены два варианта осуществления способа контроля коксования на уровне динамических прокладок газотурбинного двигателя.
Как показано на фиг. 1а, газотурбинная установка 1, которая может быть газотурбинным двигателем, содержит газогенератор 10, содержащий вращающийся вал 11, приводящий во вращение установленное на нем форсуночное кольцо 12.
Кроме того, газотурбинный двигатель содержит неподвижную рампу 20 впрыска, которая представляет собой тело вращения вокруг вала газогенератора. Рампа 20 впрыска содержит по меньшей мере один внутренний канал 21, который выходит в кольцевую полость 22.
Газотурбинный двигатель содержит также камеру 30 сгорания, в которой происходит воспламенение топлива для создания тяги летательного аппарата, на котором установлен газотурбинный двигатель.
Форсуночное кольцо 12 содержит два радиальных внутренних канала 13, которые сообщаются, с одной стороны, с кольцевой полостью 22 и, с другой стороны, с камерой 30 сгорания.
Топливо поступает через рампу впрыска в полость 22, где оно проходит в форсуночное кольцо 12 через сквозные отверстия выполненных в нем каналов 13. Затем топливо распыляется в камере сгорания за счет центробежного эффекта, возникающего в результате вращательного движения форсуночного кольца.
Для обеспечения герметичности между подвижным форсуночным кольцом 12 и неподвижной рампой 20 впрыска газотурбинный двигатель содержит множество динамических прокладок 23, предпочтительно типа лабиринтных прокладок.
Таким образом, топливо, присутствующее в полости 22, не проникает в другие сектора газотурбинного двигателя.
Газотурбинный двигатель содержит также стартер 40, который позволяет приводить во вращение вал газогенератора во время фазы запуска газотурбинного двигателя.
В частности, фаза запуска включает в себя первый период примерно около 4 секунд, в ходе которого камера сгорания не работает, и вал газогенератора приводится во вращение исключительно стартером. В дальнейшем эта фаза будет называться «фазой запуска вращения вала газогенератора».
Затем фаза запуска содержит второй период, в ходе которого происходит воспламенение в камере сгорания и вал газогенератора ускоряется под одновременным действием стартера и тепловой мощности газотурбинного двигателя.
Наконец, газотурбинный двигатель содержит систему 50 контроля степени коксования на уровне динамических прокладок.
Эта система содержит блок 51 обработки, который соединен с один или несколькими датчиками и выполнен с возможностью сбора измерений датчиков и их обработки, как будет описано ниже, для определения на их основании степени коксования на уровне динамических прокладок.
Блок 51 обработки может быть встроен в газотурбинный двигатель или в альтернативном варианте может быть установлен отдельно от него, например, в летательном аппарате или в наземном пункте контроля. В случае необходимости, передачу данных между датчиком или датчиками и блоком обработки можно осуществлять во время использования газотурбинного двигателя при помощи беспроводной связи или периодически во время фазы остановки газотурбинного двигателя, собирая данные от датчиков и загружая их в блок обработки.
Предпочтительно блок обработки содержит запоминающее устройство 52, позволяющее сохранять измерения, выполненные во время предыдущего использования газотурбинного двигателя, и средства обработки данных, такие как процессор 53.
Согласно первому варианту выполнения, соответствующему способу, представленному на фиг. 2а, система контроля содержит датчик 54 скорости вала газогенератора, выполненный с возможностью измерения указанной скорости на частоте, превышающей или равной 1 Гц, предпочтительно превышающей или равной 2 Гц.
Согласно второму варианту выполнения, соответствующему способу, представленному на фиг. 2b, система 50 контроля содержит устройство 55 измерения напряжения на клеммах стартера 40 и проходящего через него тока, которое выполнено с возможностью получения этих данных на частоте, превышающей или равной 2 Гц, предпочтительно превышающей или равной 10 Гц.
Оба показателя, используемые для контроля степени коксования на уровне прокладок, можно комбинировать для подтверждения результатов, при этом система контроля предпочтительно содержит одновременно датчик 54 скорости вращения вала и устройство 55 измерения напряжения на клеммах стартера и проходящего через него тока.
Система контроля может также содержать другие датчики, позволяющие направлять дополнительную информацию в блок обработки, чтобы на ее основании более точно определять степень коксования на уровне прокладок.
Контроль степени коксования на уровне динамических прокладок при помощи скорости вращения вала газогенератора.
Далее со ссылками на фиг. 2а следует описание первого варианта осуществления способа 1000 контроля коксования на уровне динамических прокладок газотурбинного двигателя 1.
Этот способ использует первый показатель, которым является замедление вращения вала газогенератора во время фазы авторотации вала. Авторотация происходит во время фазы остановки газотурбинного двигателя, когда вал газогенератора продолжает свое вращение только за счет своей инерции и не приводится во вращение другим элементом.
Во время этого этапа скорость вращения вала газогенератора снижается, но замедление может быть более или менее значительным в зависимости от степени коксования на уровне динамических прокладок. Действительно, чем больше «закоксованы» динамические прокладки, тем сильнее трения между рампой впрыска и форсуночным кольцом, которые тормозят относительное вращательное движение между этими двумя элементами.
Следовательно, в случае сильного коксования замедление будет более сильным.
Кроме того, это влияние трений на торможение является пропорционально более значительным в режиме малого газа, чем другие факторы, влияющие на торможение, такие как аэродинамические трения, которые зависят от скорости вращения и, следовательно, являются пропорционально менее значительными в режиме малого газа.
Следовательно, изучение замедления вала 11 в режиме малого газа позволяет сделать вывод о степени коксования на уровне динамических прокладок.
Таким образом, способ содержит этап 1100 измерения скорости вращения вала газогенератора газотурбинного двигателя при помощи датчика 54 во время фазы авторотации вала.
На фиг. 3 показано замедление вала газогенератора между скоростью вращения 3000 об/мин и скоростью вращения 600 об/мин для разных использований газотурбинного двигателя, при этом первое измерение и последнее измерение разделены промежутком примерно в 250 использований.
Крутизна кривой скорости вращения больше по абсолютной величине для последнего использования, при котором количество кокса в динамических прокладках больше.
Затем, как показано на фиг. 2а, способ содержит этап 1200 определения, на основании изменения во времени измеряемой скорости вращения, степени коксования на уровне динамических прокладок.
Действительно, поскольку скорость вращения была измерена на частоте, превышающей 1 или 2 Гц во время фазы замедления вала, можно определить крутизну ее снижения, то есть замедление вала между двумя определенными значениями скорости.
Как было указано выше, явления трения, появляющиеся в результате коксования, больше проявляются в режиме малого газа. Следовательно, значения скоростей, между которыми вычисляют замедление, включают в себя первую скорость, составляющую от 1000 до 25000 оборотов в минуту, предпочтительно равную 1000 оборотов в минуту, и вторую скорость вращения, составляющую от 500 до 1000 оборотов в минуту, предпочтительно равную 700 оборотов в минуту.
Таким образом, блок обработки вычисляет крутизну между этими двумя скоростями во время этапа 1210. Затем во время этапа 1220 он может определить степень коксования на уровне динамических прокладок разными способами.
Согласно первому варианту осуществления, во время этапа 1221 блок обработки сравнивает крутизну кривой скорости вращения с одним или несколькими заранее определенными порогами, соответствующими одной или нескольким определенным степеням коксования: например, степень коксования может соответствовать числу использований газотурбинного двигателя до того, как газогенератор будет заблокирован.
Порог можно установить в зависимости от большого числа параметров, зависящих от газотурбинного двигателя и от условий его использования.
Согласно второму варианту осуществления, во время этапа 1222 блок обработки сравнивает значение крутизны с первоначальным значением, определенным точно так же во время первого использования или первого ввода в эксплуатацию газотурбинного двигателя. Блок обработки может вычислить разность между двумя значениям крутизны и сравнить эту разность с заранее определенным порогом, чтобы вывести на ее основании, как и в предыдущем варианте, степень коксования на уровне прокладок.
Наконец, согласно третьему варианту осуществления, во время этапа 1223 блок обработки использует данные замедления, вычисленные в идентичных условиях и сохраненные в запоминающем устройстве 52, и определяет скорость изменения указанного замедления в зависимости от использования газотурбинного двигателя, например, в зависимости от числа использований газотурбинного двигателя (от числа запусков).
На фиг. 3b показано изменение, в зависимости от использования газотурбинного двигателя, среднего значения замедления между 3000 и 1000 об/мин. Отмечается, что крутизна кривой этого изменения тоже стремится к увеличению, то есть замедление увеличивается все больше по мере увеличения степени коксования на уровне прокладок.
Следовательно, этап 1223 включает в себя измерение скорости изменения вычисляемого замедления в зависимости от использования газотурбинного двигателя и сравнение этой скорости изменения с заранее определенным порогом.
Контроль степени коксования на уровне динамических прокладок при помощи тока, потребляемого стартером, и напряжения на его клеммах
На фиг. 2b представлен другой вариант осуществления способа 1000 контроля степени коксования на уровне динамических прокладок.
В этом варианте осуществления первый этап 1500 включает в себя измерение тока, потребляемого стартером, и напряжения на его клеммах во время фазы начала вращения вала газогенератора при запуске стартером газотурбинного двигателя.
Действительно, во время этого этапа стартер можно рассматривать как двигатель постоянного тока и можно считать, что крутящий момент электрического двигателя пропорционален току, потребляемому двигателем, и что скорость вращения электрического двигателя пропорциональна напряжению двигателя.
Таким образом, получаем следующие уравнения:
Figure 00000001
Figure 00000002
где
- Tqm - крутящий момент электрического двигателя,
- K1 - константа,
- Im - ток, потребляемый электрическим двигателем,
- ωs - скорость вращения стартера.
Крутящий момент электрического двигателя компенсирует противодействующий момент вала газогенератора, увеличивая при этом скорость его вращения.
Figure 00000003
где
- Tqr является противодействующим моментом вала газогенератора на валу стартера,
- J - инерция нагрузки на валу стартера, и
-
Figure 00000004
- временная производная ωs, то есть ускорение вала стартера.
Увеличение противодействующего момента можно рассматривать через изменение тока и напряжения на клеммах электрического двигателя, то есть стартера.
Figure 00000005
Данную, характеризующую противодействующий момент вала газогенератора, который является однородным при одном токе, можно вычислить следующим образом:
Figure 00000006
где
- imageTqr - данная, характеризующая противодействующий момент вала газогенератора, полученная на основании тока Im, потребляемого стартером, и напряжения Vm на его клеммах,
- Im - среднее значение тока, потребляемого электрическим двигателем во время фазы запуска стартером вращения вала газогенератора,
- а - константа, определенная таким образом, что imageTqr = offset для первой точки измерения, то есть первоначальный противодействующий момент можно считать ничтожным,
- offset является константой, используемой для получения всегда положительного значения крутящего момента, несмотря на разброс.
Таким образом, за этапом измерения тока и напряжения на клеммах стартера следует этап 1600 определения, на основании этих измерений, степени коксования на уровне динамических прокладок с вычислением при помощи вышеуказанных уравнений данной imageTqr, характеризующей противодействующий момент вала газогенератора.
Измерения тока и напряжения осуществляют при помощи измерительного устройства 55, частота измерения которого предпочтительно превышает 10 Гц.
Вывод о состоянии коксования на уровне динамических прокладок 1620 можно получать разными способами.
Согласно первому варианту осуществления 1621, значение данной imageTqr, которое, в случае необходимости, может быть ее средним значением за период начала вращения, можно сравнить с одним или несколькими заранее определенными порогами, соответствующими одной или нескольким определенным степеням коксования; например, степень коксования может соответствовать числу использований газотурбинного двигателя до того, как газогенератор будет заблокирован.
Согласно альтернативному варианту осуществления 1622, блок обработки сравнивает значение данной, характеризующей момент, с первоначальным значением, определенным во время первого использования или во время первого ввода в эксплуатацию газотурбинного двигателя. Блок обработки может вычислить разность между двумя значениями и сравнить эту разность с заранее определенным порогом, чтобы вывести на ее основании, как в предыдущем случае, степень коксования на уровне прокладок.
Наконец, согласно третьему варианту осуществления, во время этапа 1623 блок обработки собирает данные imageTqr, регулярно вычисляемые в идентичных условиях и сохраняемые в запоминающем устройстве 52, и определяет скорость изменения указанной данной в зависимости от числа использований газотурбинного двигателя.
На фиг. 4 показано изменение, в зависимости от использования газотурбинного двигателя, значения характеристики imageTqr противодействующего момента вала газогенератора. Отмечается, что крутизна кривой этого изменения тоже стремится к увеличению, то есть противодействующий момент вала увеличивается все больше по мере увеличения степени коксования на уровне прокладок.
Следовательно, этап 1623 включает в себя измерение скорости изменения характеристики imageTqr в зависимости от использования газотурбинного двигателя и сравнение этой скорости изменения с заранее определенным порогом.
Использование нескольких показателей для контроля коксования
Оба вышеуказанных показателя можно использовать одновременно для подтверждения или уточнения информации о степени коксования на уровне динамических прокладок.
Поскольку показатель замедления вала газогенератора измеряют во время фазы остановки газотурбинного двигателя, тогда как показатель противодействующего момента вала измеряют во время фазы запуска, то предпочтительно полученные результаты сравнивают после остановки газотурбинного двигателя.
При этом блок обработки сравнивает полученные результаты и выдает конечное указание о степени коксования на уровне прокладок.
Кроме того, в зависимости от степени коксования, определенной при помощи одного из вышеуказанных способов, может срабатывать тревожная сигнализация для предупреждения о необходимости технического обслуживания газотурбинного двигателя.

Claims (30)

1. Способ (1000) контроля степени коксования на уровне динамических прокладок газотурбинного двигателя, содержащего:
- газогенератор (10), содержащий вращающийся вал (11) и установленное на указанном валу форсуночное кольцо (12), при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта, и
- рампу (20) впрыска, выполненную с возможностью доставки топлива до форсуночного кольца (12),
- динамические прокладки (23), выполненные с возможностью обеспечения герметичности между форсуночным кольцом (12) и рампой (20) впрыска,
при этом способ отличается тем, что содержит этапы, на которых:
- во время фазы авторотации газотурбинного двигателя измеряют (1100) скорость вращения вала газогенератора, и
- на основании изменения во времени измеряемой скорости вращения определяют (1200) степень коксования на уровне динамических прокладок.
2. Способ (1000) контроля по п. 1, в котором этап (1200) определения степени коксования на уровне динамических прокладок включает в себя измерение (1210) замедления вала газогенератора между двумя скоростями вращения вала.
3. Способ контроля по п. 2, в котором измерение (1210) замедления осуществляют между первой скоростью вращения, составляющей от 1000 до 2500 оборотов в минуту, предпочтительно равной 1000 оборотов в минуту, и второй скоростью вращения, составляющей от 500 до 1000 оборотов в минуту, предпочтительно равной 700 оборотов в минуту.
4. Способ контроля по п. 2, в котором определение (1200) степени коксования на уровне динамических прокладок содержит один из следующих этапов:
- сравнение (1221) замедления вала газогенератора с заранее определенным порогом,
- определение разности между измеренным замедлением и первоначальным замедлением газотурбинного двигателя между одними и теми же скоростями вращения вала и сравнение (1222) разности с заранее определенным порогом, и
- определение, на основании предыдущих измерений замедления, скорости изменения указанного замедления в зависимости от использования газотурбинного двигателя и сравнение (1223) указанной скорости изменения с заранее определенным порогом.
5. Способ (1000) контроля по п. 1, применяемый в газотурбинном двигателе (1), содержащем также стартер (40), при этом способ дополнительно содержит этапы, на которых:
- во время фазы запуска вращения вала газогенератора стартером при запуске газотурбинного двигателя измеряют (1500) ток, проходящий через стартер, и напряжение на клеммах стартера,
- на основании измеренных тока и напряжения определяют (1610) данную, характеризующую противодействующий момент вала газогенератора.
6. Способ контроля по п. 5, в котором этап определения (1200, 1600) степени коксования на уровне динамических прокладок осуществляют на основании изменения во времени скорости вращения вала газогенератора и значения или изменения данной, характеризующей противодействующий момент вала, в зависимости от использования газотурбинного двигателя.
7. Система (50) контроля состояния коксования на уровне динамических прокладок газотурбинного двигателя, содержащего:
- газогенератор (10), содержащий вращающийся вал (11) и установленное на указанному валу форсуночное кольцо (12), при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта,
- рампу (20) впрыска, выполненную с возможностью доставки топлива до форсуночного кольца (12), и
- динамические прокладки (23), выполненные с возможностью обеспечения герметичности между форсуночным кольцом (12) и рампой (20) впрыска,
при этом система (50) контроля выполнена с возможностью осуществления способа по п. 1 и содержит:
- по меньшей мере один датчик (54) скорости вращения вала газогенератора, выполненный с возможностью осуществления измерений на частоте, превышающей или равной 2 Гц, и
- блок (51) обработки, содержащий запоминающее устройство (52) и средства (53) обработки, выполненные с возможностью обработки измерений скорости вращения для определения степени коксования на уровне динамических прокладок.
8. Система (50) контроля по п. 7, в газотурбинном двигателе, содержащем также стартер (40), при этом система контроля дополнительно содержит по меньшей мере одно устройство (55) измерения напряжения на клеммах стартера и проходящего через него тока, при этом указанное устройство (55) измерения выполнено с возможностью осуществления измерений напряжения и тока на частоте, превышающей или равной 10 Гц.
9. Газотурбинный двигатель (1), содержащий:
- газогенератор (10), содержащий вращающийся вал (11) и установленное на указанном валу форсуночное кольцо (12), при этом форсуночное кольцо выполнено с возможностью распыления топлива за счет центробежного эффекта,
- рампу (20) впрыска, выполненную с возможностью доставки топлива до форсуночного кольца, и
- динамические прокладки (23), выполненные с возможностью обеспечения герметичности между форсуночным кольцом (12) и рампой (20) впрыска,
при этом газотурбинный двигатель отличается тем, что дополнительно содержит систему (50) контроля по п. 7.
RU2016114133A 2013-09-13 2014-09-11 Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора RU2660739C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1358860A FR3010738B1 (fr) 2013-09-13 2013-09-13 Procede de surveillance d'un degre de cokefaction au niveau de joints par un arbre de generateur de gaz
FR1358860 2013-09-13
PCT/FR2014/052253 WO2015036703A1 (fr) 2013-09-13 2014-09-11 Procede de surveillance d'un degre de cokefaction au niveau de joints par un arbre de generateur de gaz

Publications (3)

Publication Number Publication Date
RU2016114133A RU2016114133A (ru) 2017-10-18
RU2016114133A3 RU2016114133A3 (ru) 2018-06-20
RU2660739C2 true RU2660739C2 (ru) 2018-07-09

Family

ID=49620148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114133A RU2660739C2 (ru) 2013-09-13 2014-09-11 Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора

Country Status (11)

Country Link
US (1) US10107133B2 (ru)
EP (1) EP3044435B1 (ru)
JP (1) JP6423886B2 (ru)
KR (1) KR102207427B1 (ru)
CN (1) CN105531462B (ru)
CA (1) CA2923481C (ru)
ES (1) ES2649483T3 (ru)
FR (1) FR3010738B1 (ru)
PL (1) PL3044435T3 (ru)
RU (1) RU2660739C2 (ru)
WO (1) WO2015036703A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196988B2 (en) * 2015-06-05 2019-02-05 Rolls-Royce Corporation Fuel system coking sensor
CN109990987B (zh) * 2017-12-28 2024-04-09 江苏核电有限公司 一种发电机密封瓦试验装置及试验方法
FR3103521B1 (fr) * 2019-11-22 2021-12-10 Safran Helicopter Engines Ensemble pour une turbomachine
FR3114866B1 (fr) * 2020-10-01 2022-08-19 Safran Helicopter Engines Système d’injection de carburant dans une chambre de combustion centrifuge
FR3134842A1 (fr) 2022-04-21 2023-10-27 Safran Helicopter Engines Dispositif de refroidissement magnétothermique d’une turbomachine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1424457A (fr) * 1964-11-30 1966-01-14 Perfectionnements apportés aux chambres de combustion des moteurs à turbine à gaz
RU2105177C1 (ru) * 1994-07-12 1998-02-20 Акционерное общество открытого типа "Самарский научно-технический комплекс "Двигатели НК" Способ предотвращения коксования масла в опоре турбины газотурбинного двигателя, работающего в составе газоперекачивающего агрегата, либо энергоустановки для привода электрогенератора
EP1605148A1 (fr) * 2004-06-10 2005-12-14 Snecma Procédé et système de protection des injecteurs de carburant de turbine à gaz
EP1840470A2 (en) * 2006-03-29 2007-10-03 Honeywell, Inc. Counterbalanced fuel slinger in a gas turbine engine
RU2392465C2 (ru) * 2008-05-12 2010-06-20 Михаил Юрьевич Воробьев Способ охлаждения газотурбинных двигателей при аварийном (внезапном) выключении энергетических установок
FR2942001A1 (fr) * 2009-02-11 2010-08-13 Snecma Systeme de surveillance de l'etat de sante des equipements intervenant dans la capacite de demarrage d'un turboreacteur

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136234U (ru) * 1987-02-27 1988-09-07
JPH01127933A (ja) * 1987-11-13 1989-05-19 Hino Motors Ltd エンジンの異常検出装置
US5050451A (en) * 1990-10-01 1991-09-24 Eaton Corporation Transmission lubricant temperature/viscosity determination method/apparatus
JP3066380B2 (ja) * 1995-05-18 2000-07-17 防衛庁技術研究本部長 過給機構付き燃焼器
JP2001082243A (ja) * 1999-09-13 2001-03-27 Nissan Motor Co Ltd 車両のフリクション検出装置
DE19945813A1 (de) * 1999-09-24 2001-03-29 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
JP3972536B2 (ja) * 1999-09-30 2007-09-05 日産自動車株式会社 エンジンのフリクション推定装置およびエンジンの燃料消費診断装置
JP2003004234A (ja) * 2001-06-21 2003-01-08 Mitsubishi Heavy Ind Ltd 燃焼器支持装置
US7448220B2 (en) * 2005-10-19 2008-11-11 Hamilton Sundstrand Corporation Torque control for starting system
US8880276B2 (en) * 2011-05-26 2014-11-04 Continental Automotive Systems, Inc. Engine friction based oil viscosity monitor
CN105209796B (zh) * 2013-04-12 2017-12-12 德纳有限公司 用于确定润滑剂的剩余使用寿命的监测和预测系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1424457A (fr) * 1964-11-30 1966-01-14 Perfectionnements apportés aux chambres de combustion des moteurs à turbine à gaz
RU2105177C1 (ru) * 1994-07-12 1998-02-20 Акционерное общество открытого типа "Самарский научно-технический комплекс "Двигатели НК" Способ предотвращения коксования масла в опоре турбины газотурбинного двигателя, работающего в составе газоперекачивающего агрегата, либо энергоустановки для привода электрогенератора
EP1605148A1 (fr) * 2004-06-10 2005-12-14 Snecma Procédé et système de protection des injecteurs de carburant de turbine à gaz
EP1840470A2 (en) * 2006-03-29 2007-10-03 Honeywell, Inc. Counterbalanced fuel slinger in a gas turbine engine
RU2392465C2 (ru) * 2008-05-12 2010-06-20 Михаил Юрьевич Воробьев Способ охлаждения газотурбинных двигателей при аварийном (внезапном) выключении энергетических установок
FR2942001A1 (fr) * 2009-02-11 2010-08-13 Snecma Systeme de surveillance de l'etat de sante des equipements intervenant dans la capacite de demarrage d'un turboreacteur

Also Published As

Publication number Publication date
PL3044435T3 (pl) 2018-02-28
CN105531462B (zh) 2017-07-25
KR20160057437A (ko) 2016-05-23
ES2649483T3 (es) 2018-01-12
US20160222819A1 (en) 2016-08-04
RU2016114133A3 (ru) 2018-06-20
WO2015036703A1 (fr) 2015-03-19
FR3010738B1 (fr) 2015-09-11
JP2016536524A (ja) 2016-11-24
RU2016114133A (ru) 2017-10-18
KR102207427B1 (ko) 2021-01-25
EP3044435B1 (fr) 2017-11-01
JP6423886B2 (ja) 2018-11-14
EP3044435A1 (fr) 2016-07-20
US10107133B2 (en) 2018-10-23
FR3010738A1 (fr) 2015-03-20
CA2923481C (fr) 2021-05-25
CA2923481A1 (fr) 2015-03-19
CN105531462A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
RU2660739C2 (ru) Способ контроля степени коксования на уровне прокладок при помощи вала газогенератора
CN105051327B (zh) 对涡轮发动机的起动喷射器的阻塞程度进行监视的方法
US20130152600A1 (en) Shaft break detection
EP3546914A1 (en) Method and system for detecting shear of a rotating shaft
CN105314117A (zh) 用于检测涡轮轴引擎的进气口处的结冰的方法和设备
US9896958B2 (en) Method for monitoring an ignition sequence of a turbomachine engine
RU2660989C2 (ru) Контроль степени коксования на динамических уплотнениях посредством стартера
CN106536896B (zh) 检测涡轮轴发动机中的阀的故障的方法
EP3803083B1 (fr) Procédé de surveillance des bougies d'allumage d'un turbomoteur exploitant une mesure vibratoire
CN107210694B (zh) 用于监测发电设施的运行的方法和设备
CN103998750B (zh) 检测燃气轮机装置的燃烧室中故障的方法和燃气轮机装置

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant