RU2658288C2 - Способ синхронизации синхронной реактивной электрической машины - Google Patents
Способ синхронизации синхронной реактивной электрической машины Download PDFInfo
- Publication number
- RU2658288C2 RU2658288C2 RU2015127659A RU2015127659A RU2658288C2 RU 2658288 C2 RU2658288 C2 RU 2658288C2 RU 2015127659 A RU2015127659 A RU 2015127659A RU 2015127659 A RU2015127659 A RU 2015127659A RU 2658288 C2 RU2658288 C2 RU 2658288C2
- Authority
- RU
- Russia
- Prior art keywords
- angle
- rotation
- electric machine
- sinc
- control voltage
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000001228 spectrum Methods 0.000 claims abstract description 8
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 5
- 230000005534 acoustic noise Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 claims description 2
- 230000035764 nutrition Effects 0.000 claims 1
- 235000016709 nutrition Nutrition 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 238000004870 electrical engineering Methods 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000004590 computer program Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
- H02P1/46—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/02—Details of starting control
- H02P1/029—Restarting, e.g. after power failure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
- H02P1/46—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
- H02P1/50—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by changing over from asynchronous to synchronous operation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
- H02P21/32—Determining the initial rotor position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/14—Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Изобретение относится к области электротехники и может быть использовано в устройствах управления электрическими машинами. Техническим результатом является повышение надежности при одновременном уменьшении шумового излучения в звуковом диапазоне и повышение к.п.д. Способ синхронизации синхронной реактивной электрической машины, в котором указанная машина не имеет датчиков скорости и/или напряжения от остаточного намагничивания и содержит клеммы питания и вращающиеся массы, частота механического вращения которых (fM) подвергается воздействию быстрых переходных процессов, вызываемых условиями отключения питания. Способ содержит по меньшей мере один шаг а) подачи управляющего напряжения (VC) с заданными амплитудой (vC) и продолжительностью (ТС) на клеммы после переходных процессов и один шаг b) определения электрического тока (Ii), индуцированного управляющим напряжением (VC), при этом ток (Ii), индуцированный напряжением (VC), имеет гармонический спектр (S), изменяющийся в соответствии с разностью частот между частотой (fC) управляющего напряжения (VC) и частотой (fM) механического вращения вращающихся масс, для восстановления управления мощностью и синхронным вращением машины (Е). 7 з.п. ф-лы, 3 ил.
Description
Область техники, к которой относится изобретение
[0001] Настоящее изобретение в целом находит применение в области устройств управления электрическими машинами и, в частности, относится к способу управления синхронной реактивной электрической машиной, вращающиеся массы которой подвержены воздействию быстрых переходных процессов.
[0002] Кроме того, изобретение относится к компьютерному программному продукту для реализации вышеупомянутого способа, а также к инвертору с загруженным в него компьютерным программным продуктом.
Уровень техники
[0003] Известны устройства, используемые для управления работой электрических вращающихся машин, применяемых в качестве электрогенераторов и/или электродвигателей.
[0004] Конкретно, эти устройства управления, обычно называемые инверторами, могут управлять работой электрической машины путем регулирования электрических параметров сигналов мощности, когда последние непрерывно подаются на электрическую машину.
[0005] Тем не менее, необходимость в таких устройствах особенно ощущается в области управления работой электрической машины, когда ее вращающиеся массы подвергаются воздействию быстрых переходных процессов.
[0006] Эти переходные процессы возникают после физического прерывания распределительной электрической сети или после временного снижения напряжения или, возможно, после нежелательного или ожидаемого отключения питания, подаваемого на инвертор.
[0007] Вследствие этих переходных процессов особенно трудно восстановить синхронизм между инвертором и вращающимися массами.
[0008] Конкретно, во время переходных процессов изменения скорости машины могут либо уменьшаться вследствие внутреннего трения или сопротивления нагрузки, либо поддерживаться или еще больше усиливаться вследствие наличия внешних устройств, способных передавать крутящий момент к валу электрической машины.
[0009] Управление машиной, как правило, восстанавливают за счет внешней стабилизации машины и/или отключающего воздействия, что требует относительно длительного времени.
[0010] Поэтому такие способы особенно неблагоприятно сказываются на стоимости работ по восстановлению в случае установок и устройств, использующих электрические машины, подверженные воздействию переходных процессов.
[0011] Чтобы устранить этот недостаток, были предложены оптимизированные способы управления для конкретного типа вращающейся электрической машины, управляемой инвертором.
[0012] Если машина представляет собой электрическую машину асинхронного типа, скорость вращения вращающихся масс можно определить, прикладывая подходящее напряжение с частотой, уменьшающейся в пределах рабочего диапазона электрической машины, и регистрируя затем знак результирующего индуцированного тока.
[0013] Однако если машина представляет собой электрическую машину синхронного типа, скорость вращения вращающихся масс можно определить по очень высоким наложенным напряжениям и токам, генерирующим высокий акустический шум при низких частотах. Это недостаток становится особенно серьезным, если в одном и том же производственном окружении установлено много электрических машин, которые могут подвергаться воздействию быстрых переходных процессов, вызывающих излучение акустического шума высокого уровня.
[0014] Кроме того, в бездатчиковых электрических машинах для синхронизации вращающихся масс требуются очень длительные периоды времени, как правило, продолжительностью несколько секунд.
[0015] Альтернативно, когда электрическая машина представляет собой машину с постоянными магнитами (магнитоэлектрическую машину) или синхронную реактивную электрическую машину, угловое положение или скорость вращения вращающихся масс определяют с помощью соответствующих внешних датчиков, закрепленных на приводном валу машины или встроенных в инвертор.
[0016] Первый недостаток этого решения состоит в том, что наличие внешних датчиков уменьшает надежность синхронных реактивных электрических машин.
[0017] В этих датчиках имеются изнашиваемые механические детали, вызывающие частые отказы или требующие периодической замены.
[0018] Еще один недостаток этого решения состоит в том, что использование датчиков повышает общие затраты на техническое обслуживание и ремонт электрической машины.
[0019] Кроме того, замена датчиков требует временного отключения электрической машины и тем самым значительно снижает ее общий к.п.д.
[0020] Использование датчиков может также привести к усложнению конструкции инвертора и увеличению габаритных размеров электрической машины.
Сущность изобретения
[0021] Целью настоящего изобретения является устранение указанных выше недостатков путем предложения высокоэффективного и относительно низкозатратного способа управления синхронной реактивной электрической машиной после переходных процессов, связанных с отключением питания.
[0022] Одной из конкретных целей настоящего изобретения является предложение способа управления синхронной реактивной электрической машиной после переходных процессов, позволяющего повысить надежность машины при одновременном уменьшении шумового излучения в звуковом диапазоне.
[0023] Еще одной целью настоящего изобретения является предложение способа управления синхронной реактивной электрической машиной после переходных процессов, позволяющего уменьшить стоимость изготовления и затраты на техническое обслуживание и ремонт электрической машины.
[0024] Еще одной целью настоящего изобретения является предложение способа управления синхронной реактивной электрической машиной после переходных процессов, позволяющего повысить общий к.п.д. электрической машины.
[0025] Другой важной целью настоящего изобретения является предложение способа управления синхронной реактивной электрической машиной после переходных процессов, позволяющего обеспечить изготовление относительно компактных машин и уменьшить сложность инверторов.
[0026] Эти и другие цели, как подробнее объясняется ниже, реализуются при помощи способа управления синхронной реактивной электрической машиной по п. 1.
[0027] Этот конкретный способ обеспечивает бездатчиковое управление синхронной реактивной электрической машиной, т.е. управление без применения датчиков, в условиях нормальной подачи питания и во время переходных процессов.
[0028] Предпочтительные варианты осуществления настоящего изобретения определены в соответствии с зависимыми пунктами формулы изобретения.
Краткое описание чертежей
[0029] Другие признаки и преимущества изобретения станут понятнее после прочтения подробного описания предпочтительного неисключительного варианта осуществления способа согласно настоящему изобретению, описанного в виде не ограничивающего примера с помощью прилагаемых чертежей, где
на фиг. 1 представлена блок-схема способа управления синхронной реактивной электрической машиной, подверженной воздействию быстрых переходных процессов.
на фиг. 2 показана схема последовательности операций способа, представленного на фиг. 1.
на фиг. 3 показана схема электрических соединений синхронной реактивной электрической машиной, управляемой инвертором.
Подробное раскрытие предпочтительного варианта изобретения
[0030] На фиг. 1 представлена блок-схема управления синхронной реактивной электрической машиной, схематически показанной на фиг. 3 и обозначенной в целом позицией Е, содержащей клеммы Т питания и вращающиеся массы М, подключенные к нагрузке или внешнему приводу, не показанным на чертежах.
[0031] В частности, синхронная реактивная электрическая машина может представлять собой электрогенератор для вырабатывания электроэнергии, подаваемой в удаленную и/или локальную распределительную электрическую сеть, или электродвигатель с возможностью обеспечения крутящего момента для приводного вала и/или внешней точки использования.
[0032] Как правило, вращающиеся массы М синхронной реактивной электрической машины могут подвергаться воздействию быстрых переходных процессов, вызываемых временным пропаданием питающего напряжения и порождаемых, например, отключением питания в распределительной электрической сети.
[0033] Кроме того, вращающиеся массы М могут также подвергаться воздействию быстрых переходных процессов, вызываемых внешними динамическими напряжениями на нагрузке, связанной с приводным валом, когда электрическая машина выключена.
[0034] Например, эти переходные процессы могут быть вызваны крутящим моментом, генерируемым вследствие порыва ветра на лопастях ветровых турбин или вследствие воздушного потока на вентиляторе вентиляционного канала.
[0035] Кроме того, электрическая машина Е и/или подключенный к ней инвертор С, если таковой имеется, относятся к бездатчиковому типу, обычно применяемому для определения скорости мгновенного вращения вращающихся масс или для измерения напряжения от остаточного намагничивания на обмотках машины.
[0036] Согласно отличительному признаку настоящего изобретения способ, в своей основе, содержит шаг а) подачи управляющего напряжения VC с заданными амплитудой (vC) и продолжительностью (ТС) на клеммы после переходных процессов, причем напряжение индуцирует в машине Е электрический ток Ii, имеющий гармонический спектр S, который изменяется в соответствии с разностью частот между частотой fC управляющего напряжения VC и частотой fM механического вращения вращающихся масс М.
[0037] За этим шагом следует шаг b) определения индуцированного тока Ii для восстановления управления мощностью и синхронным вращением машины Е.
[0038] Этот способ позволит восстановить управление работой электрической машины Е, когда, вследствие быстрых переходных процессов, мгновенные параметры вращения вращающихся масс М неизвестны.
[0039] Удобно, чтобы управляющее напряжение VC имело очень короткую продолжительность ТС. Предпочтительно, чтобы продолжительность периода ТС управляющего напряжения VC могла находиться в пределах диапазона меньше 2 с, а также могла быть меньше одной секунды.
[0040] Управляющее напряжение VC может представлять собой напряжение постоянного тока или переменного тока с заданной частотой fC.
[0041] Кроме того, амплитуда vC и частота fC управляющего напряжения VC могут быть постоянными или регулируемыми в процессе приложения напряжения.
[0042] Предпочтительно, чтобы как частота fC, так и амплитуда vC управляющего напряжения VC могли регулироваться в течение периода ТС приложения напряжения.
[0043] Амплитуда vC и/или частота fC управляющего напряжения VC могут автоматически регулироваться инвертором электрической машины Е.
[0044] В качестве альтернативного варианта, управляющее напряжение VC может вручную регулироваться оператором.
[0045] Конкретно, эквивалентный импеданс Xeq электрической машины Е будет изменяться в соответствии с частотой fC управляющего напряжения VC.
[0046] Согласно предпочтительному не ограничивающему примеру осуществления настоящего изобретения, управляющее напряжение VC может представлять собой синусоидальное напряжение с амплитудой vC, изменяющейся в соответствии с эквивалентным импедансом Xeq электрической машины Е и значением требуемого индуцированного тока Ii.
[0047] Удобно, чтобы управляющее напряжение VC могло создавать заданный дополнительный крутящий момент на вращающихся массах М для поддержания скорости инерционного вращения вращающихся масс М практически неизменной.
[0048] В частности, управляющее напряжение VC может иметь такую амплитуду, чтобы создавать дополнительный крутящий момент, составляющий меньше 5% номинального крутящего момента электрической машины Е.
[0049] Кроме того, дополнительный крутящий момент может представлять собой тормозящий или ускоряющий момент в соответствии с мгновенными характеристиками магнитного потока, генерируемого в электрической машине Е вследствие приложения управляющего напряжения VC.
[0050] Предпочтительно, чтобы управляющее напряжение имело возможность формирования индуцированного тока Ii, гармонический спектр которого содержит по существу нулевые гармонические составляющие в частотном диапазоне человеческого слуха.
[0051] Конкретно, индуцированный ток может иметь гармонический спектр S, содержащий по существу нулевое или очень низкое среднее значение в области высокой чувствительности диапазона звуковых частот.
[0052] Например, гармонический спектр S может иметь по существу нулевое или очень низкое среднее значение в частотном диапазоне от 400 Гц до 2 кГц и зависеть от разностного значения (fC-fM).
[0053] Таким образом, при приложении управляющего напряжения VC электрическая машина Е будет излучать нулевой или очень слабый акустический шум.
[0054] Это позволит управлять множеством синхронных реактивных электрических машин, установленных в одном и том же производственном окружении и подвергающихся воздействию быстрых переходных процессов, без излучения акустического шума высокого уровня.
[0055] Удобно, как лучше всего показано на фиг. 2, чтобы способ содержал шаг с) разложения индуцированного электрического тока Ii на пару токов Id, Iq в комплексной (векторной) форме, смещенных, по существу, на 90°.
[0056] В частности, это разложение индуцированного электрического тока Ii может начинаться с угла ϕVC, связанного с управляющим напряжением VC, подаваемым на клеммы электрической машины Е.
[0057] Кроме того, при разложении индуцированного тока Ii на пару составляющих Id, Iq вектора, основная гармоника тока, генерируемая вследствие приложения управляющего напряжения VC к клеммам, может быть удалена.
[0058] Удобно, чтобы способ содержал шаг d) фильтрации пары комплексных токов Id, Iq с помощью фильтра верхних частот (HPF) для исключения постоянного тока и получения отфильтрованных составляющих I'd, I'q комплексного тока с электрическими параметрами Р, изменяющимися в соответствии с мгновенной скоростью вращения вращающихся масс М.
[0059] Фильтр верхних частот (HPF) может иметь заданный математический вес с возможностью устранения любого постоянного дифференциального тока в комплексных токах Id, Iq.
[0060] Отфильтрованные комплексные токи, полученные на шаге d) фильтрации, могут представлять собой, по существу, синусоидальные токи равной амплитуды, смещенные на 90°.
[0061] Удобно, как лучше всего показано на фиг. 2, чтобы способ содержал шаг е) установки угла мгновенного вращения вращающихся масс электрической машины на начальное значение θin.
[0062] Кроме того, за шагом е) установки значения угла может следовать шаг f) регулирования угла θist мгновенного вращения для определения угла θsinc синхронного вращения (синхронизации), по существу, совпадающего по фазе с углом θМ механического вращения вращающихся масс М.
[0063] Способ может также содержать шаг g) подачи на электрическую машину Е комплексного тока Ial, имеющего угол θal вращения, вычисляемый как функция угла θsinc синхронизации, и составляющую Ial_torque момента, возрастающую от нуля до номинального значения в течение заданного интервала времени.
[0064] Постепенное возрастание составляющей Ial_torque момента питающего напряжения Ial от нуля до номинального значения обеспечит возможность восстановления управления электрической машиной Е без необходимости заставлять ее вращающиеся массы подвергаться резким изменениям скорости.
[0065] В особенно предпочтительном аспекте настоящего изобретения угол θsinc синхронного вращения, получаемый на шаге f) регулирования, может иметь угловую погрешность εθ, не превышающую заданный порог ε'θ, относительно угла θМ механического вращения вращающихся масс М.
[0066] В частности, пороговое значение угловой погрешности ее может быть нулевым.
[0067] Удобно, как лучше всего показано на фиг. 2, чтобы шаг f) регулирования угла θist мгновенного вращения содержал дополнительный шаг h) итеративной минимизации угловой погрешности εθ относительно первоначально установленного угла θin вращения.
[0068] В частности, итерационный шаг может выполняться таким образом, чтобы угол вращения, равный нулевому θin, использовался только на первом цикле.
[0069] На итерационный процесс минимизации угловой погрешности ее можно воздействовать, сравнивая на каждом цикле угол θist мгновенного вращения, сформированный в предыдущем цикле, с углом θ'ist мгновенного вращения, вычисляемым в текущем цикле.
[0070] Угол θ'ist мгновенного вращения можно определить в соответствии с мгновенным смещением пары отфильтрованных комплексных токов I'd, I'q относительно угла θist мгновенного вращения, сформированного в предыдущем цикле.
[0071] Процесс итерации заканчивается, когда разность между двумя углами (θ'ist-θist) такова, что угловая погрешность становится равной или меньшей порогового значения ε'θ.
[0072] Выполнение этого условия позволяет установить значение угла θsinc синхронного вращения равным углу θ'ist мгновенного вращения, вычисленному в последнем цикле итерации.
[0073] Удобно, чтобы шаг h) итерационного процесса минимизации был реализован с помощью первого алгоритма PLL1 фазовой автоподстройки частоты с целью формирования угла θsinc синхронного вращения в качестве результата его работы.
[0074] Алгоритм PLL1 может быть рассчитан на прием в качестве входных данных пары отфильтрованных комплексных токов I'd, I'q, получаемых с помощью шага d) фильтрации.
[0075] Кроме того, шаг g) подачи питания на электрическую машину Е может содержать шаг i) модификации угла θsinc синхронного вращения, формируемого с помощью первого алгоритма PLL1 фазовой автоподстройки частоты, в зависимости от числа полюсов электрической машины Е.
[0076] Например, если синхронная электрическая машина Е имеет четыре или шесть полюсов, на шаге i) модификации происходит деление угла θsinc синхронного вращения на два или три соответственно.
[0077] Удобно, чтобы шаг g) подачи питания содержал дополнительный шаг k) точной регулировки угла θsinc синхронного вращения по углу вращения вращающихся масс М, реализуемый с помощью второго алгоритма PLL2 фазовой автоподстройки частоты.
[0078] В качестве результата работы этого алгоритма PLL2 формируется угол точно синхронного вращения, начальное значение которого выражается следующей формулой:
[0079] где Δθsinc представляет собой инкремент угла θsinc синхронного вращения, полученного в качестве результата работы первого алгоритма PLL1, n - число пар полюсов электрической машины Е, a Δθvc - инкремент угла управляющего напряжения VC в единицу времени.
[0080] Конкретно, этот шаг k) регулировки содержит начальный переходный процесс, в котором комплексный ток Ial питания имеет по существу нулевую составляющую Ial_torque момента и составляющую Ial_flux потока, имеющую заданное значение, с целью генерирования магнитного потока, меньшего, чем номинальный поток электрической машины Е.
[0081] Таким образом, шаг k) точной регулировки угла θsinc синхронизации для синхронизации с углом θМ механического вращения вращающихся масс М можно выполнить при работе электрической машины в условиях уменьшенного магнитного потока.
[0082] В этих условиях значение магнитного потока можно успешно регулировать так, чтобы оно никогда не превышало пределов шкалы, обусловленных конкретным методом управления, используемым для синхронной реактивной электрической машины Е, что обеспечит исключительно точную регулировку угла θsinc синхронизации для синхронизации с углом θМ механического вращения вращающихся масс М.
[0083] Следует также отметить, что шаги с) - k) можно выполнить в течение времени ТС приложения управляющего напряжения VC.
[0084] Таким образом, по окончании времени приложения управляющего напряжения VC, на электрическую машину Е может подаваться комплексный ток Ial питания для восстановления номинальных скоростей вращающихся масс.
[0085] Таким образом, инвертор V, подключенный к машине Е, может управлять работой вращающихся масс, используя известные методы управления.
[0086] Удобно, чтобы описанный выше способ был преобразован в компьютерный программный продукт, содержащий рабочие команды для управления электрической машиной Е с помощью шагов раскрытого выше способа.
[0087] Этот компьютерный программный продукт может храниться на носителе информации программируемого блока U управления инвертора V, связанного с электрической машиной Е, для управления одним или несколькими электронными устройствами цифровой обработки данных (не показаны), выполненными с возможностью исполнения программы, и управляющей электроаппаратурой для генерирования и обработки электрических сигналов.
[0088] Таким образом, управление синхронной реактивной электрической машиной Е можно осуществлять с помощью инвертора V как при нормальной скорости, так и после неожиданных событий, допускающих возникновение быстрых переходных процессов, связанных с вращающимися массами М машины.
[0089] Приведенное выше описание ясно показывает, что способ согласно настоящему изобретению реализует намеченные цели и, в частности, отвечает требованию об обеспечении возможности управления синхронной реактивной электрической машиной, когда вращающиеся массы подвержены воздействию быстрых переходных процессов, без установки датчиков на машине или ее инверторе.
[0090] Способ настоящего изобретения может подвергаться различным изменениям и модификациям в рамках идеи изобретения, раскрытой в прилагаемой формуле изобретения. Все его детали могут быть заменены другими, технически эквивалентными частями, при этом материалы можно изменять в зависимости от различных потребностей без отступления от объема настоящего изобретения.
[0091] Хотя способ был раскрыт с конкретными ссылками на прилагаемые чертежи, позиционные обозначения, на которые имеются ссылки в описании и формуле изобретения, используются лишь в целях лучшего понимания изобретения и не ограничивают заявленный объем каким-либо образом.
Claims (16)
1. Способ синхронизации синхронной реактивной электрической машины, причем указанная машина (Е) не имеет датчиков скорости и/или напряжения от остаточного намагничивания и содержит клеммы питания (Т) и вращающиеся массы (М), частота механического вращения которых (fM) подвержена воздействию быстрых переходных процессов, вызываемых условиями отключения питания, содержащий, по меньшей мере, следующие шаги:
шаг а) подачи управляющего напряжения (VC) с заданными амплитудой (vC) и продолжительностью (ТC) на клеммы после переходных процессов для индуцирования электрического тока (Ii), имеющего гармонический спектр (S), представляющий собой функцию разности частот между частотой (fC) указанного управляющего напряжения (VC) и частотой (fM) механического вращения вращающихся масс;
шаг b) определения указанного индуцированного электрического тока (Ii) для восстановления управления мощностью и синхронным вращением машины (Е), при этом указанный гармонический спектр (S) указанного индуцированного тока (Ii) имеет, по существу, нулевые или пренебрежимо малые гармонические составляющие в звуковом диапазоне в результате приложения указанного управляющего напряжения (VC) к клеммам (Т);
шаг с) разложения указанного индуцированного электрического тока (Ii) на пару комплексных токов (Id, Iq), смещенных, по существу, на 90°;
шаг d) фильтрации с использованием фильтра верхних частот (HPF) для отфильтровывания постоянной составляющей тока и получения соответствующих отфильтрованных составляющих (I'd, I'q) комплексного тока в зависимости от скорости мгновенного вращения вращающихся масс (М);
шаг е) установки начального значения (θin) угла (θist) мгновенного вращения вращающихся масс (М) электрической машины (Е);
шаг f) регулирования указанного угла (θist) мгновенного вращения для определения угла (θsinc) синхронизированного вращения, по существу, совпадающего по фазе с углом (θM) механического вращения вращающихся масс (М), причем указанный угол (θsinc) синхронного вращения имеет угловую погрешность (εθ) относительно угла (θM) механического вращения;
шаг g) подачи на электрическую машину (Е) комплексного тока (Ial), имеющего электрический угол (θal) вращения, являющийся функцией указанного угла (θsinc) синхронного вращения, и составляющую (Ial_torque) момента, возрастающую от нуля до номинального значения в течение заданного интервала времени;
причем указанный шаг f) регулирования указанного угла (θist) мгновенного вращения содержит шаг h) итеративной минимизации указанной угловой погрешности (εθ) относительно указанного первоначального значения угла вращения (θin).
2. Способ по п. 1, в котором указанный гармонический спектр (S) имеет, по существу, нулевое среднее значение в частотном диапазоне от 400 Гц до 2 кГц, вследствие чего в электрической машине (Е) генерируют, по существу, нулевой акустический шум.
3. Способ по п. 1, в котором указанное управляющее напряжение (VC) представляет собой напряжение постоянного тока или переменного тока и имеет постоянную или регулируемую амплитуду (vC) в течение указанного периода (ТC).
4. Способ по п. 1, в котором указанное управляющее напряжение (VC) калибруют для создания такого минимального крутящего момента на вращающихся массах, чтобы поддерживать скорость мгновенного вращения на указанных вращающихся массах (М) практически неизменной.
5. Способ по п. 1, в котором указанный угол (θsinc) синхронного вращения имеет угловую погрешность (εθ) относительно угла (θм) механического вращения, меньшую или равную заданному пороговому значению (ε'θ).
6. Способ по п. 1, отличающийся тем, что указанный шаг итерационного процесса минимизации реализуют с помощью первого алгоритма (PLL1) фазовой автоподстройки частоты с целью формирования указанного угла (θsinc) синхронного вращения в качестве выходного результата, причем алгоритм (PLL1) рассчитан на прием в качестве входных данных пары отфильтрованных комплексных токов I'd, I'q, получаемых с помощью шага d) фильтрации.
7. Способ по п. 6, в котором указанный шаг g) подачи питания содержит шаг i) модификации указанного угла (θsinc) синхронного вращения, формируемого с помощью первого алгоритма (PLL1) фазовой автоподстройки частоты, в зависимости от числа полюсов электрической машины (Е).
8. Способ по п. 7, в котором указанный шаг g) подачи питания содержит шаг k) точной регулировки указанного угла (θsinc) синхронного вращения, реализуемый с помощью второго алгоритма (PLL2) фазовой автоподстройки частоты, и включает в себя начальный переходный процесс, в котором указанный комплексный ток (Ial) питания имеет по существу нулевую составляющую (Ial_torque) момента и составляющую (Ial_flux) потока, имеющую заданное значение, с целью генерирования магнитного потока, меньшего, чем номинальный поток электрической машины (Е), причем указанный угол (θsinc) синхронного вращения имеет начальное значение, выраженное следующей формулой: PLL_main.integ = PLL_main.output = (Δθsinc/n)-Δθvc, где Δθsinc представляет собой инкремент угла θsinc синхронного вращения, полученного в качестве результата работы первого алгоритма PLL1, n - число пар полюсов электрической машины Е, a Δθvc - инкремент угла управляющего напряжения VC в единицу времени.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000331A ITVI20120331A1 (it) | 2012-12-10 | 2012-12-10 | Metodo per la sincronizzazione di una macchina elettrica sincrona a riluttanza |
ITVI2012A000331 | 2012-12-10 | ||
PCT/IB2013/060776 WO2014091405A1 (en) | 2012-12-10 | 2013-12-10 | Method for synchronizing a synchronous reluctance electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015127659A RU2015127659A (ru) | 2017-01-16 |
RU2658288C2 true RU2658288C2 (ru) | 2018-06-20 |
Family
ID=47633496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015127659A RU2658288C2 (ru) | 2012-12-10 | 2013-12-10 | Способ синхронизации синхронной реактивной электрической машины |
Country Status (11)
Country | Link |
---|---|
US (1) | US9871474B2 (ru) |
EP (1) | EP2929625B1 (ru) |
JP (1) | JP6401181B2 (ru) |
CN (1) | CN105144564B (ru) |
BR (1) | BR112015013566B1 (ru) |
DK (1) | DK2929625T3 (ru) |
ES (1) | ES2730925T3 (ru) |
IT (1) | ITVI20120331A1 (ru) |
RU (1) | RU2658288C2 (ru) |
TR (1) | TR201908952T4 (ru) |
WO (1) | WO2014091405A1 (ru) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2064219C1 (ru) * | 1992-04-13 | 1996-07-20 | Донецкий политехнический институт | Способ пуска и ресинхронизации синхронной машины |
RU2141719C1 (ru) * | 1998-03-25 | 1999-11-20 | Мищенко Владислав Алексеевич | Способ векторного управления синхронным электродвигателем с постоянными магнитами на роторе и электропривод для осуществления этого способа |
RU2276448C1 (ru) * | 2004-11-29 | 2006-05-10 | Федеральное государственное образовательное учреждение высшего профессионального образования Кубанский государственный аграрный университет | Способ и устройство синхронизации электродвигателя |
US20060097688A1 (en) * | 2004-11-09 | 2006-05-11 | Patel Nitinkumar R | Start-up and restart of interior permanent magnet machines |
CN101478277A (zh) * | 2009-01-23 | 2009-07-08 | 广州三业科技有限公司 | 双动力拖动的同步电机的启动与投励方法及装置 |
US20100045218A1 (en) * | 2008-08-20 | 2010-02-25 | Sanyo Electric Co., Ltd. | Motor Control Device |
JP2011244655A (ja) * | 2010-05-20 | 2011-12-01 | Toshiba Corp | 回転センサレス制御装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3622666B2 (ja) * | 2000-11-06 | 2005-02-23 | ダイキン工業株式会社 | 同期モータ制御方法およびその装置 |
US8217605B2 (en) * | 2000-11-10 | 2012-07-10 | Freescale Semiconductor, Inc. | Motor controller for determining a position of a rotor of an AC motor, AC motor system, and method of determining a position of a rotor of an AC motor |
JP3625291B2 (ja) * | 2002-11-12 | 2005-03-02 | 株式会社日立製作所 | 同期電動機の磁極位置推定方法および電動機制御装置および電気車 |
JP2004282873A (ja) * | 2003-03-14 | 2004-10-07 | Meidensha Corp | 同期電動機のセンサレス計測方法、および同期電動機のセンサレス可変速装置 |
GB0415166D0 (en) * | 2004-07-06 | 2004-08-11 | Switched Reluctance Drives Ltd | Rotor position detection in an electrical machine |
US7652441B2 (en) * | 2005-07-01 | 2010-01-26 | International Rectifier Corporation | Method and system for starting a sensorless motor |
FR2903538B1 (fr) * | 2006-07-07 | 2008-09-26 | Schneider Toshiba Inverter Eur Sas | Procede et dispositif d'estimation de la vitesse d'un moteur electrique |
EP2149981B1 (en) * | 2007-05-18 | 2019-06-05 | Mitsubishi Heavy Industries, Ltd. | Apparatus and method for controlling permanent magnet synchronous motor, and program |
US7786687B2 (en) * | 2008-04-25 | 2010-08-31 | Gm Global Technology Operations, Inc. | Apparatus and method for control of an active front steering (AFS) system |
JP5178335B2 (ja) * | 2008-06-17 | 2013-04-10 | 株式会社日立製作所 | 交流電動機の制御装置 |
GB2465379A (en) * | 2008-11-17 | 2010-05-19 | Technelec Ltd | Controller for electrical machines |
CN102362425B (zh) | 2009-03-25 | 2014-06-04 | 三菱电机株式会社 | 旋转电机的控制装置 |
JP5397023B2 (ja) * | 2009-06-01 | 2014-01-22 | 株式会社安川電機 | 交流モータの制御装置 |
KR101470025B1 (ko) * | 2009-07-06 | 2014-12-15 | 현대자동차주식회사 | 비상 운전용 고효율 영구자석 동기모터의 각도위치 센서리스 제어 방법 |
JP5321614B2 (ja) * | 2011-02-28 | 2013-10-23 | 株式会社デンソー | 回転機の制御装置 |
-
2012
- 2012-12-10 IT IT000331A patent/ITVI20120331A1/it unknown
-
2013
- 2013-12-10 CN CN201380072575.8A patent/CN105144564B/zh active Active
- 2013-12-10 ES ES13824374T patent/ES2730925T3/es active Active
- 2013-12-10 DK DK13824374.6T patent/DK2929625T3/da active
- 2013-12-10 EP EP13824374.6A patent/EP2929625B1/en active Active
- 2013-12-10 JP JP2015547231A patent/JP6401181B2/ja active Active
- 2013-12-10 RU RU2015127659A patent/RU2658288C2/ru active
- 2013-12-10 WO PCT/IB2013/060776 patent/WO2014091405A1/en active Application Filing
- 2013-12-10 BR BR112015013566-8A patent/BR112015013566B1/pt active IP Right Grant
- 2013-12-10 TR TR2019/08952T patent/TR201908952T4/tr unknown
- 2013-12-10 US US14/650,843 patent/US9871474B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2064219C1 (ru) * | 1992-04-13 | 1996-07-20 | Донецкий политехнический институт | Способ пуска и ресинхронизации синхронной машины |
RU2141719C1 (ru) * | 1998-03-25 | 1999-11-20 | Мищенко Владислав Алексеевич | Способ векторного управления синхронным электродвигателем с постоянными магнитами на роторе и электропривод для осуществления этого способа |
US20060097688A1 (en) * | 2004-11-09 | 2006-05-11 | Patel Nitinkumar R | Start-up and restart of interior permanent magnet machines |
RU2276448C1 (ru) * | 2004-11-29 | 2006-05-10 | Федеральное государственное образовательное учреждение высшего профессионального образования Кубанский государственный аграрный университет | Способ и устройство синхронизации электродвигателя |
US20100045218A1 (en) * | 2008-08-20 | 2010-02-25 | Sanyo Electric Co., Ltd. | Motor Control Device |
CN101478277A (zh) * | 2009-01-23 | 2009-07-08 | 广州三业科技有限公司 | 双动力拖动的同步电机的启动与投励方法及装置 |
JP2011244655A (ja) * | 2010-05-20 | 2011-12-01 | Toshiba Corp | 回転センサレス制御装置 |
Also Published As
Publication number | Publication date |
---|---|
BR112015013566B1 (pt) | 2021-06-15 |
ITVI20120331A1 (it) | 2014-06-11 |
ES2730925T3 (es) | 2019-11-13 |
EP2929625A1 (en) | 2015-10-14 |
US20150340971A1 (en) | 2015-11-26 |
EP2929625B1 (en) | 2019-03-20 |
RU2015127659A (ru) | 2017-01-16 |
TR201908952T4 (tr) | 2019-07-22 |
JP2015537504A (ja) | 2015-12-24 |
BR112015013566A2 (pt) | 2017-07-11 |
DK2929625T3 (da) | 2019-07-01 |
WO2014091405A1 (en) | 2014-06-19 |
CN105144564B (zh) | 2018-04-20 |
US9871474B2 (en) | 2018-01-16 |
CN105144564A (zh) | 2015-12-09 |
JP6401181B2 (ja) | 2018-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106050565B (zh) | 用于风力涡轮机的噪声控制的装置和方法 | |
EP2543133B1 (en) | Current sensor error compensation | |
US7397216B2 (en) | Circuit for monitoring harmonic distortion in the power supply of a synchronous electrical machine with permanent magnet excitation | |
EP3014759B1 (en) | Using static excitation system to reduce the amplitude of torsional oscillations due to fluctuating industrial loads | |
Abdelrahem et al. | Implementation and experimental investigation of a sensorless field-oriented control scheme for permanent-magnet synchronous generators | |
KR20180111896A (ko) | 각도 결정 방법, 장치 및 제어 장치 | |
Salah et al. | Stator current analysis of a squirrel cage motor running under mechanical unbalance condition | |
Cho et al. | Optimal current trajectory control of IPMSM for minimized torque ripple | |
EP2477324A1 (en) | Controller device for controlling a power converter device | |
RU2658288C2 (ru) | Способ синхронизации синхронной реактивной электрической машины | |
JP6222834B2 (ja) | モータ制御装置 | |
CA2737325C (en) | An asynchronous power generator for a wind turbine | |
EP2651028B1 (en) | Estimation of cogging torque | |
Dao et al. | Speed sensorless control based on stator currents for PMSG wind energy conversion systems | |
Kutija et al. | Rotor flux estimation method for cage induction generators used in wind power applications | |
CN111894805B (zh) | 针对发电机的位置和速度计算 | |
US10840839B1 (en) | Method and system for independent-speed-variable-frequency-generator-based power system voltage regulation | |
WO2024149497A1 (en) | Fractional order harmonic control | |
Bradshaw et al. | A complete Bit-Stream control system for Doubly Fed Induction Generator applications | |
WO2000025415A1 (en) | Method and apparatus for reducing torque vibrations in a synchronous machine |