RU2656490C1 - Способ получения регенерируемого поглотителя диоксида углерода - Google Patents

Способ получения регенерируемого поглотителя диоксида углерода Download PDF

Info

Publication number
RU2656490C1
RU2656490C1 RU2017121491A RU2017121491A RU2656490C1 RU 2656490 C1 RU2656490 C1 RU 2656490C1 RU 2017121491 A RU2017121491 A RU 2017121491A RU 2017121491 A RU2017121491 A RU 2017121491A RU 2656490 C1 RU2656490 C1 RU 2656490C1
Authority
RU
Russia
Prior art keywords
absorber
solvent
binder
carbon dioxide
polymer binder
Prior art date
Application number
RU2017121491A
Other languages
English (en)
Inventor
Любовь Алексеевна Яркина
Николай Анатольевич Булаев
Юрий Анатольевич Ферапонтов
Николай Владимирович Постернак
Original Assignee
Открытое Акционерное Общество "Корпорация "Росхимзащита"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Корпорация "Росхимзащита" filed Critical Открытое Акционерное Общество "Корпорация "Росхимзащита"
Priority to RU2017121491A priority Critical patent/RU2656490C1/ru
Application granted granted Critical
Publication of RU2656490C1 publication Critical patent/RU2656490C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода. Гидроксид циркония смешивают с полимерным связующим и подвергают формованию экструзией. В качестве связующего используют полимеры из ряда полисульфонов в растворителе тетрагидрофуране. После формования полученные гранулы сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре от 65 до 85°С до полного удаления растворителя. Изобретение позволяет повысить водостойкость и прочность гранул поглотителя при длительной эксплуатации с сохранением высоких показателей динамической активности по диоксиду углерода. 1 ил., 1 табл., 7 пр.

Description

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано для очистки атмосферы герметичных объектов в областях техники, где необходимо создание контролируемой газовой среды при длительной эксплуатации поглотителя.
Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония (Патент РФ №2524607, МПК B01J 20/06, 2012). Способ состоит в следующем. Смешивают порошок основного карбоната циркония [ZrO2(4÷7)H2O (0,3÷0,9)CO2] с влажностью 20-24 моль/кг и порошок оксида цинка [ZnO] при мольном соотношении элементов цинка к цирконию (Zn/Zr) от 1:1,0 до 1:2,0. Порошки перемешивают в течение 4,0-4,5 часов. В процессе смешения основной карбонат циркония и оксид цинка взаимодействуют друг с другом с образованием гидроксида циркония [ZrO(OH)2], который является целевым продуктом реакции. Затем полученную пастообразную смесь сушат для удаления избыточной влаги, которая затрудняет формование гранул поглотителя. Полученный продукт смешивают со связующим, в качестве которого применяют акриловый лак в количестве 3-7% в расчете на сухие вещества. После чего осуществляют формование полученной композиции любым известным способом (шнекование, таблетирование, закатка), полученные гранулы подвергают сушке при температуре 50°С.
Недостатком этого способа является низкая прочность и водостойкость получаемого регенерируемого поглотителя при длительной эксплуатации, и как следствие, разрушение гранул поглотителя с образованием значительного количества пыли (фракция менее 1 мм), что, в свою очередь, приводит к снижению динамической активности поглотителя в процессе длительной эксплуатации и негативно влияет на коммуникации и запорную арматуру установок для очистки атмосферы от СО2.
Задачей изобретения является улучшение эксплуатационных характеристик регенерируемого поглотителя диоксида углерода на основе гидроксида циркония.
Техническим результатом изобретения является увеличение прочности гранул поглотителя и его водостойкости при сохранении высоких значений динамической активности поглотителя по диоксиду углерода в процессе длительной эксплуатации.
Технический результат достигается тем, что в способе получения регенерируемого поглотителя диоксида углерода, включающем смешение порошка хемосорбента, в качестве которого используют гидроксид циркония, с полимерным связующим, формование полученной композиции и сушку гранул, в качестве полимерного связующего используют полимеры из ряда полисульфонов при соотношении порошок хемосорбента/ полимерное связующее, равном 87-95/13-5% весовых. При этом полимерное связующее сначала смешивают с растворителем, в качестве которого используют тетрагидрофуран в количестве 4-5 г на 1 г полимерного связующего, после чего раствор полимерного связующего постепенно смешивают с порошком гидроксида циркония.
Сушку полученных гранул поглотителя проводят в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре от 65 до 85°С до полного удаления растворителя.
Полученный согласно заявляемому методу регенерируемый поглотитель обладает перед прототипом рядом эксплуатационных преимуществ:
- более высокая водостойкость;
- более высокая прочность;
- отсутствие пылеобразования в процессе длительной эксплуатации в циклах сорбции-десорбции;
- стабильно высокие показатели динамической активности в процессе длительной эксплуатации.
Заявляемое изобретение позволяет улучшить эксплуатационные характеристики регенерируемого поглотителя диоксида углерода по следующим обстоятельствам.
Использование для получения регенерируемого поглотителя диоксида углерода в качестве связующего полисульфонов позволяет увеличить его водостойкость за счет создания сквозной полимерной матрицы как на поверхности, так и в объеме гранул поглотителя. При этом пленка полимерного связующего не является сплошной, что обеспечивает доступ молекул CO2 внутрь гранул поглотителя на стадии сорбции, а также активное его выделение на стадии регенерации. За счет увеличения количества точечных контактов между хемосорбентом и связующим пары воды при регенерации поглотителя практически не оказывают негативного влияния на его механические свойства, т.к. не происходит растворения связующего и вымывания порошка гидроксида циркония из объема гранул поглотителя в процессе паровой регенерации.
Было установлено оптимальное содержание связующего по отношению к гидроксиду циркония в интервале от 5 до 13% весовых, что обусловлено следующими обстоятельствами. При содержании связующего ниже 5% весовых происходит формирование редкой пространственной сетки, образованной молекулами полимерного связующего, с недостаточным количеством точечных контактов между хемосорбентом и связующим. При этом размеры «ячеек» сетки превышают размер частиц хемосорбента, Это ведет к вымыванию порошка гидроксида циркония из объема гранул поглотителя на стадии регенерации, что приводит к повышению пылеобразования, снижению динамической активности поглотителя и сокращению срока его эксплуатации. При содержании связующего выше 13% весовых происходит образование слишком частой пространственной сетки полимерного связующего, что ведет к сокращению числа транспортных пор в объеме гранул поглотителя, что негативно сказывается на динамических свойствах поглотителя, за счет ухудшения диффузии молекул CO2 внутрь гранул поглотителя. Кроме того, увеличение содержания связующего выше 13% снижает емкость поглотителя по диоксиду углерода на единицу массы.
Порядок смешения исходных компонентов при формовании смеси был выбран таким образом, что сначала готовят раствор полимерного связующего, который затем при постоянном перемешивании смешивают с порошком гидроксида циркония. Данный порядок смешения позволяет получить лучшее распределение полимерного связующего в объеме гранул поглотителя, что определяет высокие прочностные показатели гранул готового продукта, а также позволяет контролировать консистенцию смеси, определяющую ее реологические свойства и гомогенность.
Содержание растворителя в смесевой композиции из порошка гидроксида циркония и полимерного связующего при указанном соотношении исходных компонентов определяет не только реологические свойства смеси, влияющие на продолжительность и интенсивность перемешивания для гомогенизации, условия ее формования, но и на устойчивость системы в гомогенном состоянии. Последнее важно для получения однородных по составу гранул поглотителя, снижает их дефектность при формовании, что непосредственно влияет на механические свойства готового продукта, определяемые показателем прочности (табл. 1).
Кроме того, растворитель является дополнительным порообразователем на стадии формовании гранул и дальнейшей сушки. При его удалении на данных стадиях образуется множество сквозных пор, определяющих стабильно высокие показатели динамической активности поглотителя по диоксиду углерода в циклах сорбции-десорбции (фиг. 1).
Сушка продукта в интервале температур 65-85°С обусловлена следующими факторами. При температуре ниже 65°С не происходит полного удаления растворителя, что негативно влияет на экологичность готового продукта. Сушка выше 85°С не целесообразна, т.к. при температуре выше 85°С происходит переход [Zr+2] в неактивную форму по отношению к CO2, что резко ухудшает динамическую активность поглотителя.
Способ осуществляется следующим образом.
Готовят исходную композицию, для чего к навеске полимерного связующего, выбранного из ряда полисульфонов, например полисульфон марки ПСФФ-30, добавляют соответствующий растворитель (например, тетрагид-рофуран) в количестве 4-5 г на 1 г связующего и перемешивают до полного растворения полимерного связующего. После этого раствор полимерного связующего при постоянном перемешивании смешивают с порошком гидроксида циркония, после чего полученную композицию вновь перемешивают любым известным способом до получения гомогенной смеси. Далее осуществляют формование композиции любым подходящим способом, например экструзионным методом, шнекованием и др. После формования проводят сушку гранул полупродукта в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре от 65 до 85°С до полного удаления растворителя. После этого регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Изобретение иллюстрируется приведенными ниже примерами.
Пример 1
Готовят исходную композицию, для чего 14 г порошкообразного полисульфона (полимерное связующее) смешивают с 56 г растворителя (из расчета 4 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 186 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 93/7% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 65°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 2
Готовят исходную композицию, для чего 20 г порошкообразного полисульфона (полимерное связующее) смешивают с 100 г растворителя (из расчета 5 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 180 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 90/10% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. В процессе формования происходит частичное удаление растворителя. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм.рт.ст. и температуре 65°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 3
Готовят исходную композицию, для чего 26 г порошкообразного полисульфона (полимерное связующее) смешивают с 104 г растворителя (из расчета 4 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 174 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 87/13% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют шнекованием. В процессе формования происходит частичное удаление растворителя. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 70°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 4
Готовят исходную композицию, для чего 10 г порошкообразного полисульфона (полимерное связующее) смешивают с 50 г растворителя (из расчета 5 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 190 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 95/5% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. В процессе формования происходит частичное удаление растворителя. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 65°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 5
Готовят исходную композицию, для чего 14 г порошкообразного полисульфона (полимерное связующее) смешивают с 56 г растворителя (из расчета 4 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 186 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 93/7% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 75°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 6
Готовят исходную композицию, для чего 20 г порошкообразного полисульфона (полимерное связующее) смешивают с 80 г растворителя (из расчета 4 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 180 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 90/10% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 85°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации.
Пример 7
Готовят исходную композицию, для чего 20 г порошкообразного полисульфона (полимерное связующее) смешивают с 80 г растворителя (из расчета 4 г растворителя на 1 г полимерного связующего) до полного растворения связующего. После чего раствор полисульфона при постоянном перемешивании смешивают с 180 г порошка гидроксида циркония. Соотношение порошок гидроксида циркония/ полимерное связующее равно 90/10% весовых. После чего полученную смесь вновь перемешивают до получения однородной массы и формуют экструзионным методом. После формования гранулы полупродукта сушат в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 95°С до полного удаления растворителя. После чего регенерируемый поглотитель диоксида углерода готов к эксплуатации
Полученные по примерам 1-7 регенерируемые поглотители диоксида углерода были исследованы в динамических условиях стандартными методами с целью определения показателя динамической активности по диоксиду углерода при длительной эксплуатации поглотителя в сравнении с образцом, изготовленным по примеру 1 патента РФ №2524607. В ходе испытания образцы поглотителей, полученные по примерам 1-7, а также образец, изготовленный по примеру 1 патента РФ №2524607, были помещены в условия, имитирующие длительную эксплуатацию поглотителя, а именно было проведено 300 циклов сорбция- регенерация, после чего сравнили показатели динамической активности образцов, изготовленных по примерам 1-7, с образцом, изготовленным по примеру 1 патента РФ №2524607. Регенерация поглотителей осуществлялась нагретым до температуры 107°С водяным паром. Результаты представлены на фиг.1. Кривая 2 характеризует изменение динамической активности образца поглотителя, полученного по патенту РФ №2524607. Поскольку для всех образцов поглотителей, полученных по примерам 1-7, изменение динамической активности не превышает 8% от среднего значения, на фиг. 1 представлено изменение среднего значения этого параметра (кривая 1).
Также были оценены показатели водостойкости образцов, изготовленных по примерам 1-7, и проведено их сравнение с аналогичным показателем образца, изготовленного по примеру 1 патента РФ №2524607. Водостойкость образцов определялась кипячением навески поглотителя в дистиллированной воде в течение 2 часов с последующим определением потери массы образцом после его высушивания.
Также был оценен показатель механической прочности на раздавливание гранул поглотителя образцов, полученных по примерам 1-7, и проведено сравнение данного показателя с аналогичным показателем для образца, изготовленного по примеру 1 патента РФ №2524607.
Результаты испытаний представлены в Таблице 1.
Figure 00000001
Из представленных в таблице данных следует, что использование в качестве связующего полисульфона и описанных выше технологических приемов позволяет повысить прочность гранул регенерируемого поглотителя диоксида углерода более чем в 3 раза по сравнению с аналогичным показателем поглотителя, полученного по патенту РФ №2524607. Динамическая активность полученных поглотителей сохраняет стабильно высокие значения после длительной эксплуатации поглотителя (после 300 циклов сорбция-десорбция), поскольку структура гранул поглотителя в процессе эксплуатации остается неизменной (отсутствует вымывание гидроксида циркония из объема гранул поглотителя, а следовательно, отсутствует пылеобразование).
Предложенный способ обеспечивает получение регенерируемого поглотителя диоксида углерода, обладающего повышенной прочностью и влагостойкостью в процессе длительной эксплуатации.

Claims (1)

  1. Способ получения регенерируемого поглотителя диоксида углерода, включающий смешение порошка хемосорбента, в качестве которого используют гидроксид циркония с полимерным связующим, формование полученной композиции с последующей сушкой гранул поглотителя, отличающийся тем, что в качестве полимерного связующего используют полимеры из ряда полисульфонов при соотношении порошок хемосорбента/полимерное связующее, равном 87-95/13-5 вес.%, причем полимерное связующее сначала смешивают с растворителем, в качестве которого используют тетрагидрофуран в количестве 4-5 г на 1 г полимерного связующего, затем полученный раствор смешивают с хемосорбентом, а сушку гранул поглотителя осуществляют в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре от 65 до 85°С до полного удаления растворителя.
RU2017121491A 2017-06-19 2017-06-19 Способ получения регенерируемого поглотителя диоксида углерода RU2656490C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121491A RU2656490C1 (ru) 2017-06-19 2017-06-19 Способ получения регенерируемого поглотителя диоксида углерода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121491A RU2656490C1 (ru) 2017-06-19 2017-06-19 Способ получения регенерируемого поглотителя диоксида углерода

Publications (1)

Publication Number Publication Date
RU2656490C1 true RU2656490C1 (ru) 2018-06-05

Family

ID=62560327

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121491A RU2656490C1 (ru) 2017-06-19 2017-06-19 Способ получения регенерируемого поглотителя диоксида углерода

Country Status (1)

Country Link
RU (1) RU2656490C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316391C1 (ru) * 2006-09-05 2008-02-10 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2359751C1 (ru) * 2008-02-12 2009-06-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
WO2013052637A2 (en) * 2011-10-06 2013-04-11 Basf Corporation Methods of applying a sorbent coating on a substrate, a support, and/or a substrate coated with a support
RU2524607C2 (ru) * 2012-10-25 2014-07-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2575655C1 (ru) * 2014-09-15 2016-02-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2618071C1 (ru) * 2016-02-01 2017-05-02 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316391C1 (ru) * 2006-09-05 2008-02-10 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2359751C1 (ru) * 2008-02-12 2009-06-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
WO2013052637A2 (en) * 2011-10-06 2013-04-11 Basf Corporation Methods of applying a sorbent coating on a substrate, a support, and/or a substrate coated with a support
RU2524607C2 (ru) * 2012-10-25 2014-07-27 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2575655C1 (ru) * 2014-09-15 2016-02-20 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода
RU2618071C1 (ru) * 2016-02-01 2017-05-02 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения регенерируемого поглотителя диоксида углерода

Similar Documents

Publication Publication Date Title
US10195583B2 (en) Carbon-based compositions with highly efficient volumetric gas sorption
Meng et al. Synthesis and swelling property of superabsorbent starch grafted with acrylic acid/2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid
Ross et al. Influence of cation on the pyrolysis and oxidation of alginates
CN101824118B (zh) 一种多孔聚合物纳米颗粒及其制备方法
CN109603780B (zh) 一种海绵复合型有机溶剂吸收剂及其制备方法
CN108722341A (zh) 锂吸附剂复合颗粒及其制备方法
US20130077207A1 (en) Porous carbon with high volumetric capacity, for double-layer capacitors, and production method
CN108483421A (zh) 一种氮掺杂有序介孔碳材料及其制备和应用
Chen et al. Preparation of a solid amine microspherical adsorbent with high CO2 adsorption capacity
RU2446876C1 (ru) Способ получения формованного сорбента
RU2656490C1 (ru) Способ получения регенерируемого поглотителя диоксида углерода
CN118217954A (zh) 一种粒状锂吸附剂及其制备方法和应用
Guo et al. Supermacroporous polydivinylbenzene cryogels with high surface area: Synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline
EP3366748B1 (en) A composite material for thermochemical storage and a method for forming a composite material
JP2014004561A (ja) セルロース系バインダー成形固体酸及びその製造方法
WO2012006973A1 (de) Verfahren zur herstellung von kohlenstoff-schaumstoffen
RU2632700C1 (ru) Способ получения регенерируемого поглотителя диоксида углерода
CN112058035B (zh) 一种除湿剂及其制备方法
JP7101162B2 (ja) 気体吸着剤担持体およびその製造方法
JP4051399B2 (ja) 乾燥剤原料およびその製造方法
CN108409352A (zh) 一种酸碱协同催化碳纤维掺杂碳气凝胶及其制备方法
RU2481154C1 (ru) Способ получения гибких композиционных сорбционно-активных материалов
RU2618071C1 (ru) Способ получения регенерируемого поглотителя диоксида углерода
US3174881A (en) Method for making porous contact masses
JP2006272047A (ja) アルデヒドガス吸着剤及びその製造方法