RU2632700C1 - Способ получения регенерируемого поглотителя диоксида углерода - Google Patents
Способ получения регенерируемого поглотителя диоксида углерода Download PDFInfo
- Publication number
- RU2632700C1 RU2632700C1 RU2016148990A RU2016148990A RU2632700C1 RU 2632700 C1 RU2632700 C1 RU 2632700C1 RU 2016148990 A RU2016148990 A RU 2016148990A RU 2016148990 A RU2016148990 A RU 2016148990A RU 2632700 C1 RU2632700 C1 RU 2632700C1
- Authority
- RU
- Russia
- Prior art keywords
- absorber
- binder
- granules
- carbon dioxide
- acrylic
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0211—Compounds of Ti, Zr, Hf
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/024—Compounds of Zn, Cd, Hg
- B01J20/0244—Compounds of Zn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3042—Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония. Способ включает смешение карбоната циркония и оксида цинка при возможном добавлении в смесь карбоната аммония. Взаимодействие осуществляют при добавлении в смесь перекиси водорода. После сушки вводят связующее, в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот Ленткес АКФ М2. Связующее берут в количестве 5-18% вес. в расчете на сухие вещества. Полученные гранулы подвергают гидротермальной обработке. Изобретение позволяет повысить прочность и водостойкость гранул. 1 табл., 7 пр.
Description
Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода для очистки атмосферы от диоксида углерода герметичных объектов, для создания контролируемой газовой среды в плодоовощехранилищах, для очистки атмосферного воздуха в топливных элементах и других областях техники, где необходимо получение газов, свободных от диоксида углерода.
Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, основанный на взаимодействии соли циркония и вещества, образующего гидроксид циркония, в качестве соли циркония используют основной карбонат циркония, а в качестве вещества, образующего гидроксид циркония, используют оксид и/или гидроксид цинка (Патент РФ №2359751, МПК B01J 20/06, 2009 г.). Способ состоит в следующем.
Смешивают порошок основного карбоната циркония и порошок оксида или гидроксида цинка при мольном соотношении элементов цинка к цирконию от 1:0,33 до 1:2,5, предпочтительно от 1:1,0 до 1:2,0. Смешение осуществляют в любом пригодном для смешения порошкообразных материалов устройстве, например, в двухлопастном смесителе, в течение 1,0-1,5 часов.
В процессе смешения компоненты взаимодействуют друг с другом с образованием твердой фазы гидроксида циркония.
Для получения гранул порошок подвергают формованию с поливиниловым спиртом или поливинилацетатной эмульсией известными способами. Полученные гранулы сушат при температуре 20-110°С.
Недостатком этого способа является низкая динамическая активность получаемого регенерируемого поглотителя по диоксиду углерода.
Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония путем смешения и взаимодействия основного карбоната циркония и оксида цинка, добавления связующего с последующим формованием и сушкой (Патент РФ №2524607, МПК B01J 20/06, B01J 20/30, 2012).
Способ заключается во взаимодействии порошка основного карбоната циркония [ZrO2⋅(4÷7)H2O⋅(0,3÷0,9)CO2] с влажностью 20-24 моль/кг и порошка оксида цинка [ZnO] при мольном соотношении элементов цинка к цирконию (Zn/Zr) от 1:1,0 до 1:2,0. Смешение порошков осуществляют в смесителе с z-образными лопастями в течение 4,0-4,5 часов. В процессе смешения основной карбонат циркония и оксид цинка взаимодействуют друг с другом с образованием гидроксида циркония [ZrO(OH)2], который является целевым продуктом реакции. Затем полученную пастообразную смесь сушат для удаления избыточной влаги, которая затрудняет формование гранул поглотителя. Полученный продукт смешивают со связующим, в качестве которого применяют акриловый лак марки «Ticiana», в количестве 3-7% в расчете на сухие вещества.
Недостатком этого способа является невысокая динамическая активность по диоксиду углерода и низкая механическая прочность гранул получаемого регенерируемого поглотителя.
Известен также способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония путем смешения и взаимодействия основного карбоната циркония и оксида цинка, добавления связующего с последующим формованием и сушкой, причем перед взаимодействием основного карбоната циркония и оксида цинка в систему вводят карбонат аммония при мольном соотношении ионов циркония к карбонату аммония, равном 1:(0,2-1,0), затем добавляют раствор перекиси водорода и ведут процесс в коллоидном состоянии, при этом мольное соотношение ионов циркония к перекиси водорода составляет 1:(0,2-0,8), а в качестве связующего используют смесь поливинилового спирта с акриловым лаком в массовом соотношении 1:1 в количестве 5±0,5% маc. в расчете на сухие вещества (Патент РФ №2575655, МПК B01J 20/06, B01J 20/30, 2016). Способ осуществляется следующим образом.
Смешивают порошок основного карбоната циркония с карбонатом аммония, при постоянном перемешивании добавляют оксид цинка. Смешение осуществляется в любом пригодном аппарате для смешения сыпучих материалов с повышенной связностью частиц, в смесителе с z-образными лопастями, в течение 30-60 минут. Затем, не прекращая перемешивания, приливают 50% перекись водорода. Смешение продолжают еще в течение 15±5 минут до образования пасты. Полученную пасту сушат при температуре 80±5°С.
В процессе смешения основной карбонат циркония и оксид цинка взаимодействуют друг с другом с образованием гидроксида циркония и карбоната цинка. Гидроксид циркония является целевым продуктом реакции и активным веществом по отношению к адсорбции диоксида углерода. Образующийся карбонат цинка является высокодисперсным, нерастворимым в воде веществом, который оказывает структурирующее действие и улучшает кинетические характеристики поглотителя и повышает стабильность работы поглотителя в циклических условиях. Побочные летучие продукты в виде карбоната аммония, перекиси водорода и образовавшихся перкарбонатов удаляются в процессе сушки при 80±5°С.
Полученный продукт смешивают со связующим, в качестве которого используют смесь поливинилового спирта с акриловым лаком в соотношении 1:1, в количестве 5±0,5% масс. в расчете на сухие вещества.
Недостатком этого способа является низкая прочность получаемого регенерируемого поглотителя и, как следствие, частичное разрушение гранул в процессе эксплуатации с образованием пыли, которая, в свою очередь, приводит к снижению динамической активности и оказывает негативное влияние на работоспособность системы очистки воздуха от CO2 в целом. А также, ввиду того, что регенерация поглотителя проходит в среде водяного пара, важным фактором является водостойкость поглотителя.
Задачей изобретения является улучшение эксплуатационных характеристик регенерируемого поглотителя диоксида углерода на основе гидроксида циркония.
Техническим результатом изобретения является увеличение прочности и водостойкости гранул поглотителя с сохранением высокой динамической активности поглотителя по диоксиду углерода.
Технический результат достигается способом получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, путем смешения основного карбоната циркония и оксида цинка, с добавлением или без добавления карбоната аммония, добавления перекиси водорода и связующего вещества с последующим формованием и сушкой, в качестве связующего используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот Ленткес АКФ М2 в количестве 5-18% вес. в расчете на сухие вещества, после сушки гранулы подвергают гидротермальной обработке при 130°С в течение 3 часов.
Использование в качестве связующего вещества водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот Ленткес АКФ М2 позволяет повысить механическую прочность формованных гранул регенерируемого поглотителя. Это происходит за счет того, что в сополимере эфиров акриловой и метакриловой кислот имеются дополнительные метальные группы, которые не позволяют свободно двигаться макромолекулам полимера и скользить относительно друг друга, придавая жесткость и твердость образующейся пленке полимерного связующего, при этом пленка не является сплошной, что обеспечивает проникновение молекул СО2 во внутрь гранул поглотителя на стадии сорбции.
Было установлено оптимальное содержание связующего по отношению к гидроксиду циркония в интервале от 5 до 18% вес. в расчете на сухое вещество. Это обусловлено тем, что при содержании связующего ниже 5% вес. происходит образование редкой пространственной сетки, сформированной молекулами связующего вещества и частиц адсорбента. Что ведет к частичному разрушению гранул в циклических условиях и тем самым снижению динамических свойств поглотителя.
При содержании связующего выше 18% вес. происходит изменение пористой структуры поглотителя, что приводит к увеличению числа мелких пор, недоступных для молекулы CO2, и, как следствие, снижение динамических свойств поглотителя.
Гидротермальная обработка при 130°С нагрева гранулированного продукта приводит к удалению избыточной влаги и упорядочиванию структуры. Гранулы равномерно сжимаются с образованием высокой плотности упаковки практически без разрыва скелета геля из-за отсутствия сил капиллярного сжатия. Также во время гидротермальной обработки происходит окончательная полимеризация карбоксилированного сополимера эфиров акриловой и метакриловой кислот, что приводит к увеличению механической прочности гранул.
Способ осуществляется следующим образом.
Смешивают порошок основного карбоната циркония с оксидом цинка с добавлением или без добавления карбоната аммония. Смешение осуществляется в любом пригодном аппарате для смешения сыпучих материалов, в смесителе с z-образными лопастями, в течение 30-60 минут. Затем, не прекращая перемешивания, добавляют раствор перекиси водорода. Смешение продолжают еще в течение 15±5 минут до образования пасты. Полученную пасту сушат при температуре 80±5°С. Полученный продукт смешивают со связующим, в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот Ленткес АКФ М2.
Затем осуществляют формование гранул любым известным способом (например, таблетированием, шнекованием), полученные гранулы рассеивают и подвергают сушке при температуре 20-60°С.
Затем просушенные гранулы загружают в автоклав и выдерживают над слоем дистиллированной воды в течение трех часов при 130°С.
Дополнительные Примеры, представленные ниже, осуществлены с целью исследования оптимального количества связующего вещества.
Пример 1
300 г основного карбоната циркония с влажностью 26 моль/кг, содержащего 0,87 моль циркония (Zr), смешивают с 62 г карбоната аммония, содержащего 0,64 моль (NH4)2CO3 (мольное соотношение Zr /(NH4)2СО3=1/0,74), тщательно перемешивают, добавляют 44 г оксида цинка, содержащего 0,53 моля ZnO (мольное соотношение Zn/Zr=1/1,6), перемешивают в течение 40 минут, добавляют 22 мл перекиси водорода (H2O2), содержащую 0,38 моль H2O2 (мольное соотношение Zr/H2O2=1/0,44), перемешивают 15 минут, сушат полученную гелеобразную смесь при температуре 80°С в течение 5 часов, затем в поглотитель добавляют 25 г связующего (5,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2», перемешивают и формуют гранулы путем продавливания через фильеры диаметром 2,5 мм, гранулы сушат при температуре 50°С, рассеивают на ситах. Просушенные гранулы загружают в автоклав и выдерживают над слоем дистиллированной воды в количестве 150 мл при 130°С в течение 3 часов. Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 0,98 г/см3.
Пример 2
300 г основного карбоната циркония с влажностью 26 моль/кг, содержащего 0,87 моль циркония (Zr), смешивают с 44 г оксида цинка, содержащего 0,53 моля ZnO (мольное соотношение Zn/Zr=1/1,6), перемешивают в течение 40 минут, добавляют 22 мл перекиси водорода (H2O2), содержащую 0,38 моль H2O2 (мольное соотношение Zr/H2O2=1/0,44), перемешивают 15 минут, сушат полученную гелеобразную смесь при температуре 80°С в течение 5 часов, затем в поглотитель добавляют 25 г связующего (5,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2», перемешивают и формуют гранулы путем продавливания через фильеры диаметром 2,5 мм, гранулы сушат при температуре 50°С, рассеивают на ситах. Просушенные гранулы загружают в автоклав и выдерживают над слоем дистиллированной воды в количестве 150 мл при 130°С в течение 3 часов. Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,13 г/см3.
Пример 3
Все, как по примеру 2, за исключением того, что в поглотитель добавляют 36 г связующего (7,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и меч акриловой кислот «Ленткес АКФ М2».
Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,16 г/см3.
Пример 4
Все, как по примеру 2, за исключением того, что в поглотитель добавляют 47 г связующего (9,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2».
Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,14 г/см3.
Пример 5
Все, как по примеру 2, за исключением того, что в поглотитель добавляют 71 г связующего (13,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2».
Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,10 г/см3.
Пример 6
Все, как по примеру 2, за исключением того, что в поглотитель добавляют 83 г связующего (15,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2».
Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,08 г/см3.
Пример 7
Все, как по примеру 2, за исключением того, что в поглотитель добавляют 5 г связующего (18,0% вес. в расчете на сухие вещества), в качестве которого используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот «Ленткес АКФ М2».
Полученный продукт представляет собой гранулы фракцией 2,0-2,5 мм и насыпной плотностью 1,09 г/см3.
Испытания полученного заявляемым способом регенерируемого поглотителя диоксида углерода проводили на установке, имитирующей условия работы поглотителя для очистки воздуха герметичного объекта, регенерация поглотителя осуществлялась продувкой водяным паром.
Условия проведения испытаний:
- объем навески поглотителя 150 см3;
- расход воздуха через слой поглотителя (16±1) л/мин;
- объемная доля диоксида углерода в газовоздушной среде (0,35±0,05)%;
- температура газовоздушной среды (20-65)°С;
- относительная влажность воздуха (30-80)%.
Испытания проводились в циклах сорбция-десорбция.
Динамическая активность полученного поглотителя представлена средняя за 5 последних циклов из 10 циклов и рассчитана по формуле:
где аср - средняя динамическая активность поглотителя по СО2, л/л;
а6 - динамическая активность поглотителя по СО2 за шестой цикл, л/л;
а7 - динамическая активность поглотителя по CO2 за седьмой цикл, л/л;
а8 - динамическая активность поглотителя по СО2 за восьмой цикл, л/л;
а9 - динамическая активность поглотителя по CO2 за девятый цикл, л/л;
а10 - динамическая активность поглотителя по СО2 за десятый цикл, л/л.
Механическая прочность гранул поглотителя определялась обычным методом на раздавливание (г/гранулу).
Водостойкость гранул поглотителя определялась путем кипячения навески поглотителя в колбе с дистиллированной водой и обратным холодильником в течение 2 часов с последующим определением потери массы образцов после их высушивания.
Водостойкость рассчитана по формуле:
где W - водостойкость образца, %;
m1 - масса навески до кипячения, г;
m2 - масса навески после кипячения, г.
Для проведения сравнительных испытаний был изготовлен регенерируемый поглотитель диоксида углерода по способу, описанному в примере 5 Патента РФ №2575655, МПК B01J 20/06, B01J 20/30, 2016.
Результаты испытаний поглотителя представлены в таблице.
Как видно из представленных данных, изобретение позволяет повысить прочность гранул регенерируемого поглотителя диоксида углерода более чем в 2-4 раза, при этом использование в качестве связующего водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот способствует получению наиболее пористых образцов, которые имеют преимущественно высокие значения динамической активности по сравнению с прототипом.
Claims (1)
- Способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, включающий смешение и взаимодействие основного карбоната циркония и оксида цинка с добавлением или без добавления карбоната аммония, добавление перекиси водорода и связующего с последующим формованием и сушкой, отличающийся тем, что в качестве связующего используют водную дисперсию карбоксилированного сополимера эфиров акриловой и метакриловой кислот Ленткес АКФ М2 в количестве 5-18% вес. в расчете на сухие вещества, при этом после сушки гранулы подвергают гидротермальной обработке при 130°C в течение 3 часов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016148990A RU2632700C1 (ru) | 2016-12-13 | 2016-12-13 | Способ получения регенерируемого поглотителя диоксида углерода |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016148990A RU2632700C1 (ru) | 2016-12-13 | 2016-12-13 | Способ получения регенерируемого поглотителя диоксида углерода |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2632700C1 true RU2632700C1 (ru) | 2017-10-09 |
Family
ID=60040855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016148990A RU2632700C1 (ru) | 2016-12-13 | 2016-12-13 | Способ получения регенерируемого поглотителя диоксида углерода |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2632700C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2755541C1 (ru) * | 2020-08-13 | 2021-09-17 | АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И КОНСТРУКТОРСКИЙ ИНСТИТУТ ХИМИЧЕСКОГО МАШИНОСТРОЕНИЯ" (АО «НИИхиммаш») | Способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278883C2 (ru) * | 2000-06-13 | 2006-06-27 | Акцо Нобель Н.В. | Композиция связующего на водной основе |
RU2575655C1 (ru) * | 2014-09-15 | 2016-02-20 | Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") | Способ получения регенерируемого поглотителя диоксида углерода |
-
2016
- 2016-12-13 RU RU2016148990A patent/RU2632700C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2278883C2 (ru) * | 2000-06-13 | 2006-06-27 | Акцо Нобель Н.В. | Композиция связующего на водной основе |
RU2575655C1 (ru) * | 2014-09-15 | 2016-02-20 | Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") | Способ получения регенерируемого поглотителя диоксида углерода |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2755541C1 (ru) * | 2020-08-13 | 2021-09-17 | АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И КОНСТРУКТОРСКИЙ ИНСТИТУТ ХИМИЧЕСКОГО МАШИНОСТРОЕНИЯ" (АО «НИИхиммаш») | Способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100585401B1 (ko) | 제올라이트의 성형체, 그의 제조방법 및 그의 용도 | |
US9919287B2 (en) | Articles of manufacture formed of amine-support particles and methods of making thereof | |
Uehara et al. | CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties | |
CA2690051A1 (fr) | Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse | |
Panploo et al. | Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration | |
KR102323901B1 (ko) | 중수소수 및 삼중수소수 흡착용 다공성 하이드로겔, 이의 제조방법, 및 상기 다공성 하이드로겔을 이용한 중수소수 및 삼중수소수의 흡착 방법 | |
RU2632700C1 (ru) | Способ получения регенерируемого поглотителя диоксида углерода | |
RU2446876C1 (ru) | Способ получения формованного сорбента | |
Nasiman et al. | CO2 Capture by a K2CO3–Carbon Composite Under Moist Conditions | |
JP2017056404A (ja) | 吸湿性ミリビーズ並びに吸湿性ミリビーズを用いた除湿ユニットおよび除湿装置 | |
AU2021326002C1 (en) | Microporous aerogel | |
JP2013512090A (ja) | アミノ酸塩物品およびその作製および使用方法 | |
RU2618071C1 (ru) | Способ получения регенерируемого поглотителя диоксида углерода | |
RU2481154C1 (ru) | Способ получения гибких композиционных сорбционно-активных материалов | |
CN109174036B (zh) | 一种高分子聚合物吸附剂及其制备方法与应用 | |
CN117049538A (zh) | 一种提升多种有机气体吸附净化量的高效改性活性炭 | |
CN115591529B (zh) | 一种高吸附性壳聚糖/竹质活性炭复合气凝胶的制备方法 | |
CN114210307B (zh) | 一种碳硅材料的制备方法及应用 | |
RU2543167C2 (ru) | Способ получения гибких композиционных сорбционно-активных материалов | |
RU2524607C2 (ru) | Способ получения регенерируемого поглотителя диоксида углерода | |
CN112058035B (zh) | 一种除湿剂及其制备方法 | |
RU2656490C1 (ru) | Способ получения регенерируемого поглотителя диоксида углерода | |
RU2575655C1 (ru) | Способ получения регенерируемого поглотителя диоксида углерода | |
CN107999020A (zh) | 一种多孔氧化铝脱醇剂的制备方法 | |
US3579464A (en) | Nondecrepitating silica gel and method for its preparation |