WO2022234833A1 - 二酸化炭素処理剤及びその製造方法 - Google Patents

二酸化炭素処理剤及びその製造方法 Download PDF

Info

Publication number
WO2022234833A1
WO2022234833A1 PCT/JP2022/019433 JP2022019433W WO2022234833A1 WO 2022234833 A1 WO2022234833 A1 WO 2022234833A1 JP 2022019433 W JP2022019433 W JP 2022019433W WO 2022234833 A1 WO2022234833 A1 WO 2022234833A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
weight
zeolite
oxygen
magnetite
Prior art date
Application number
PCT/JP2022/019433
Other languages
English (en)
French (fr)
Inventor
義高 五島
英樹 青木
秀博 國分
善信 杉山
正弘 小島
Original Assignee
オードメルス株式会社
義高 五島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オードメルス株式会社, 義高 五島 filed Critical オードメルス株式会社
Priority to EP22798937.3A priority Critical patent/EP4335816A1/en
Priority to CN202280033351.5A priority patent/CN117279861A/zh
Publication of WO2022234833A1 publication Critical patent/WO2022234833A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide treatment agent and a method for producing the same.
  • Patent Document 1 Non-Patent Document 1
  • carbon dioxide can be decomposed into carbon by heating carbon dioxide in the presence of oxygen-deficient magnetite.
  • the method of decomposing carbon dioxide using oxygen-deficient magnetite can be performed in a relatively low-temperature environment, but requires thermal energy of 150°C or higher, preferably 250°C or higher.
  • the present invention has been made in view of the above matters, and its object is to provide a carbon dioxide treatment agent capable of fixing and decomposing carbon dioxide without heat treatment, and a heat treatment in a hydrogen gas atmosphere.
  • the carbon dioxide treatment agent according to the first aspect of the present invention is containing magnesium oxide, oxygen-deficient magnetite, and zeolite, It is characterized by
  • the content of the magnesium oxide in the total amount of the magnesium oxide, the oxygen-deficient magnetite, and the zeolite is 3 to 75% by weight, the content of the oxygen-deficient magnetite is 10 to 90% by weight, and the zeolite is contained.
  • the amount is between 0.1 and 20% by weight.
  • the content of the magnesium oxide in the total amount of the magnesium oxide, the oxygen-deficient magnetite, and the zeolite is 40 to 60% by weight, the content of the oxygen-deficient magnetite is 25 to 35% by weight, and the zeolite is contained. Preferably the amount is between 1 and 17% by weight.
  • the carbon dioxide treatment agent preferably contains 3 to 20% by weight of carbon powder.
  • the carbon dioxide treatment agent preferably contains 3 to 20% by weight of calcium compound powder.
  • the carbon dioxide treatment agent preferably contains 3 to 20% by weight of aluminum powder.
  • the carbon dioxide treatment agent preferably contains 3 to 20% by weight of silicon powder.
  • the carbon dioxide treatment agent contains an aluminum silicate, It is preferable that the weight ratio of the total amount of the magnesium oxide, the oxygen-deficient magnetite, and the zeolite to the aluminum silicate is 99.1:0.1 to 65:35.
  • the method for producing a carbon dioxide treatment agent according to the second aspect of the present invention includes: a step of mixing and stirring magnetite and zeolite to obtain a mixed powder in which the pores of the zeolite are filled with the magnetite; A step of obtaining a mixture by adding water to the mixed powder; A step of attaching fine powder of magnesium oxide to the mixture and drying it, It is characterized by
  • a carbon dioxide treating agent capable of fixing and decomposing carbon dioxide without heat treatment, and a carbon dioxide treating agent containing oxygen-deficient magnetite without requiring heat treatment in a hydrogen gas atmosphere are provided.
  • a method for producing a carbon dioxide treatment agent that can be produced can be provided.
  • the carbon dioxide treatment agent contains magnesium oxide, oxygen-deficient magnetite, and zeolite.
  • oxygen-deficient magnetite enters and binds to the pores of porous zeolite, and magnesium oxide adheres to it.
  • magnesium oxide efficiently adsorbs and traps carbon dioxide, and oxygen-deficient magnetite decomposes the trapped carbon dioxide to release oxygen. Since the carbon dioxide treating agent can decompose carbon dioxide to release oxygen even at room temperature, heat treatment is not necessary.
  • the content of magnesium oxide in magnesium oxide, oxygen-deficient magnetite, and zeolite is 3-75% by weight, preferably 20-60% by weight, more preferably 40-60% by weight. If the amount of magnesium oxide is too small, it becomes difficult to promote the adsorption and trapping of carbon dioxide. On the other hand, if the amount of magnesium oxide is too high, the content of oxygen-deficient magnetite will be relatively low, making it difficult for the decomposition of carbon dioxide to proceed.
  • the content of magnesium oxide, oxygen-deficient magnetite, and oxygen-deficient magnetite in zeolite is 10 to 90% by weight, preferably 25 to 70% by weight, more preferably 25 to 55% by weight.
  • the content of magnesium oxide, oxygen-deficient magnetite, and zeolite in zeolite is 0.1 to 20% by weight, preferably 1 to 17% by weight, more preferably 1 to 15% by weight.
  • the zeolite is not particularly limited, it may be LTA type, FAU type, or the like, but structurally, LTA type, which has an eight-membered ring at the entrance and small pores, is desirable.
  • LTA type which has an eight-membered ring at the entrance and small pores.
  • types there are amiticite, analcite, barrelite, etc., and hexagonal, orthogonal, cubic, and tetragonal crystal structures are desirable.
  • Specific examples of zeolites include analcite, champhalite, porinite, Berberchite, Eddingtonite, erionite, faujasite, gallonite, and the like.
  • the carbon dioxide treating agent may contain other components in addition to the above components.
  • carbon powder and calcium compound powder may be contained, and the content is, for example, 3 to 20% by weight, respectively.
  • the carbon dioxide treatment agent may contain aluminum powder, silicon powder, or the like.
  • the content of these components in the carbon dioxide treatment agent is preferably 0.1 to 20% by weight, more preferably 3 to 20% by weight, still more preferably 3 to 5% by weight, and most preferably is 4-5% by weight.
  • aluminum and silicon components it may be an amorphous aluminum silicate in which the ratio of aluminum to silicon is 0.7 to 1 silicon relative to 1 for aluminum.
  • Amorphous aluminum silicates are widely known as carbon dioxide adsorbents.
  • the weight ratio of the total amount of magnesium oxide, oxygen-deficient magnetite and zeolite to the aluminum silicate is preferably 99.1:0.1 to 65:35, preferably 97:3 to More preferably 75:25.
  • a carbon dioxide treatment agent can be produced, for example, as follows.
  • Step 1 The zeolite and magnetite are mixed and mechanical energy is applied to force the magnetite into the pores of the zeolite.
  • mechanical energy for example, zeolite and magnetite are mixed in a stirring container with a hemispherical base and a cylindrical body, and the rotating shaft in the container is multiaxial, that is, the rotating shaft rotates and further rotates. It is better to rotate the axis.
  • an apparatus such as a rotation-revolution mixer, a rotation-revolution mixer, a planetary stirrer, and a stirring deaerator.
  • Zeolite and magnetite are mixed by material convection and shear stress due to centrifugal force generated in these devices, and high mechanical energy is imparted. This causes the magnetite to enter the pores of the zeolite. Moreover, it is desirable to set the relative humidity in the container to around 50% ( ⁇ 5%).
  • Step 2 Add water to the mixed powder obtained in step 1. Dry zeolites absorb water and generate heat, but zeolites have a microstructure and produce large amounts of heat locally within their regions. Zeolites also generate hydrogen when immersed in water. The magnetite mixed in the zeolite is converted into oxygen-deficient magnetite by this heat generation and hydrogen generation mechanism. Water should be added in an amount of 40 to 60% by weight, preferably about 50% by weight, based on the mixed powder.
  • Step 3 Magnesium oxide is deposited on the mixture obtained in step 2. Any method can be used as long as magnesium oxide can be uniformly attached to the mixture. can be done by sprinkling
  • the magnesium oxide powder is preferably in the form of fine powder, and for example, has an average particle size of 20 ⁇ m or less, preferably 10 ⁇ m or less.
  • Step 4 Subsequently, the substrate is dried with the magnesium oxide attached. Drying may be carried out by heating, but air drying may also be carried out. A carbon dioxide treating agent can be produced as described above.
  • a carbon dioxide treatment agent containing oxygen-deficient magnetite can be produced even at room temperature, so that conventional heat treatment in a hydrogen gas atmosphere is not required. , the manufacturing cost is excellent.
  • the obtained carbon dioxide treatment agent may be crushed and used in the form of granules or powder.
  • the carbon dioxide treatment agent can be used as a single substance, or can be used by being mixed with or applied to a substrate or material.
  • base materials and materials include, but are not limited to, road materials such as asphalt, paints such as paints, coating materials, coloring agents, adhesives, cement, building materials, exterior materials, interior materials, and ceiling materials. not a thing
  • the magnesium oxide powder may be adhered and dried in step 3, and then added and mixed. Further, the blending amount of each component conforms to the blending amount of the carbon dioxide treating agent described above (the blending amount of the magnetite to be mixed is the blending amount of the oxygen-deficient magnetite).
  • Example 1 Magnesium oxide, magnetite, and zeolite were blended at the compounding ratios shown in Table 1 to produce each sample (Sample Nos. 1 to 23).
  • Each sample was manufactured as follows. Zeolite and magnetite were mixed in a stirring container having a hemispherical base and a cylindrical body. Then, the stirring container was set in a rotation-revolution stirrer and stirred. In addition, the relative humidity in the container was set to 50%. Water (50% by weight with respect to the mixed powder) was added to the obtained mixed powder and stirred to obtain a flattened mixture. Magnesium oxide was evenly placed in a rectangular parallelepiped container. Holes having a diameter of about 0.5 mm are formed at equal intervals in the bottom of this container, and an aluminum shielding plate is placed on the bottom. A container containing magnesium oxide was placed on top of the flattened mixture. Then, the shielding plate was removed, and while shuffling it horizontally in the front, back, left and right directions, the magnesium oxide powder was evenly sprinkled over the mixture. Each sample was manufactured by drying in this state after sprinkling magnesium oxide powder.
  • Verification experiments were conducted on the decomposition of carbon dioxide and the generation of oxygen for each of the manufactured samples. Experiments were conducted as follows. A sample (300 g) was placed in a test vat, and 300 mL of distilled water was added and stirred. After the test batt was placed in a bag and sealed, a certain amount of carbon monoxide and carbon dioxide were sequentially injected from the gas inlet. After gas injection, the carbon dioxide concentration, carbon monoxide concentration, and oxygen concentration in the bag were measured using an infrared absorption carbon monoxide concentration meter, a non-dispersive infrared absorption carbon monoxide concentration meter, and a zirconia oxygen concentration meter. .
  • the initial concentrations of carbon dioxide, oxygen and carbon monoxide in the bag were as follows. ⁇ Initial concentration of carbon dioxide: 21,400 ppm ⁇ Initial concentration of oxygen: 129,700 ppm ⁇ Initial concentration of carbon monoxide: 32 ppm Then, it was left as it is for 24 hours. After 24 hours, the carbon dioxide concentration, oxygen concentration, and carbon monoxide concentration in the bag were measured in the same manner as above. Table 1 shows the concentration of each gas in the bag after 24 hours.
  • sample No. At 5, 7, 12 to 16, 19, 20, 23, an increase in oxygen concentration was also observed. In particular, sample no. 12-16, 19 and 20 showed a large amount of increase.
  • carbon dioxide is decomposed and oxygen is generated in samples obtained with a compounding ratio of 40 to 60% by weight of magnesium oxide, 32 to 47% by weight of magnetite, and 1 to 13% by weight of zeolite. It is considered that the effect of making
  • Example 2 Aluminum silicate was added to a sample of 60% by weight magnesium oxide, 32% by weight magnetite, and 8% by weight zeolite (Sample No. 15 of Experiment 1) to verify its effect.
  • Sample No. 15 and an aluminum silicate were blended at the compounding ratios shown in Tables 2 and 3 to prepare respective samples (Sample Nos. 31 to 74).
  • Tables 2 and 3 show the concentration of each gas in the bag after 24 hours.
  • the initial concentrations of carbon dioxide, oxygen, and carbon monoxide in the bag were as follows. ⁇ Initial concentration of carbon dioxide: 21,400 ppm ⁇ Initial concentration of oxygen: 129,700 ppm ⁇ Initial concentration of carbon monoxide: 32 ppm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

熱処理を要さずに二酸化炭素を固定、分解可能な二酸化炭素処理剤、及び、水素ガス雰囲気下での熱処理を要さずとも酸素欠陥マグネタイトを含有する二酸化炭素処理剤を製造可能な二酸化炭素処理剤の製造方法を提供する。二酸化炭素処理剤は、酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライトを含有する。二酸化炭素処理剤の製造方法は、マグネタイトとゼオライトを混合、攪拌してゼオライトの細孔内にマグネタイトを充填した混合粉末を得る工程と、混合粉末に水を加えた混合体を得る工程と、混合体に酸化マグネシウムの微粉末を付着させ、乾燥させる工程と、を備える。

Description

二酸化炭素処理剤及びその製造方法
 本発明は、二酸化炭素処理剤及びその製造方法に関する。
 地球温暖化の要因として、発電所や工場、自動車など化石燃料を使用する施設から排出される二酸化炭素の放出量が増大したことが挙げられる。二酸化炭素の排出を削減するべく、自然エネルギーの利用が進められているものの、まだ化石燃料を使用せざるを得ない状況が続くとみられている。このため、排出された二酸化炭素の分解除去技術や固定化技術の開発が望まれている。
 二酸化炭素の分解除去技術や固定化技術として、半導体光触媒法、金属コロイド触媒、金属錯体、酵素等による光化学的還元法、電気化学的還元法、化学的固定変換方法など、これまで種々の方法が提案されている。そのほか、酸素欠陥マグネタイトを用いて二酸化炭素を分解する方法も提案されている(例えば、特許文献1、非特許文献1)。特許文献1、非特許文献1によれば、酸素欠陥マグネタイトの存在下で二酸化炭素を加熱することにより、二酸化炭素を炭素に分解することができる。
特開平05-163023号公報
玉浦 裕、"マグネタイトを利用したCO2の分解除去と燃料化"、紙パ技協誌、45(5)、540-547、1991
 特許文献1、非特許文献1のように、酸素欠陥マグネタイトを用いて二酸化炭素を分解する方法は、比較的低温環境下で行えるものの、150℃以上、好ましくは250℃以上の熱エネルギーを要する。
 また、酸素欠陥マグネタイトを得る必要があるが、マグネタイトから酸素欠陥マグネタイトを得るためには、水素ガス雰囲気下、マグネタイトを290℃以上で加熱処理する必要がある。
 本発明は、上記事項に鑑みてなされたものであり、その目的とするところは、熱処理を要さずに二酸化炭素を固定、分解可能な二酸化炭素処理剤、及び、水素ガス雰囲気下での熱処理を要さずとも酸素欠陥マグネタイトを含有する二酸化炭素処理剤を製造可能な二酸化炭素処理剤の製造方法を提供することにある。
 本発明の第1の観点に係る二酸化炭素処理剤は、
 酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライトを含有する、
 ことを特徴とする。
 また、前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量に占める前記酸化マグネシウムの含有量が3~75重量%、前記酸素欠陥マグネタイトの含有量が10~90重量%、前記ゼオライトの含有量が0.1~20重量%であることが好ましい。
 また、前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量に占める前記酸化マグネシウムの含有量が40~60重量%、前記酸素欠陥マグネタイトの含有量が25~35重量%、前記ゼオライトの含有量が1~17重量%であることが好ましい。
 また、二酸化炭素処理剤は、炭素粉末を3~20重量%含有することが好ましい。
 また、二酸化炭素処理剤は、カルシウム化合物粉末を3~20重量%含有することが好ましい。
 また、二酸化炭素処理剤は、アルミニウム粉末を3~20重量%含有することが好ましい。
 また、二酸化炭素処理剤は、ケイ素粉末を3~20重量%含有することが好ましい。
 また、二酸化炭素処理剤は、アルミニウムケイ酸塩を含有し、
 前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量と前記アルミニウムケイ酸塩との重量比が99.1:0.1~65:35であることが好ましい。
 本発明の第2の観点に係る二酸化炭素処理剤の製造方法は、
 マグネタイトとゼオライトを混合、攪拌して前記ゼオライトの細孔内に前記マグネタイトを充填した混合粉末を得る工程と、
 前記混合粉末に水を加えた混合体を得る工程と、
 前記混合体に酸化マグネシウムの微粉末を付着させ、乾燥させる工程と、を備える、
 ことを特徴とする。
 本発明によれば、熱処理を要さずに二酸化炭素を固定、分解可能な二酸化炭素処理剤、及び、水素ガス雰囲気下での熱処理を要さずとも酸素欠陥マグネタイトを含有する二酸化炭素処理剤を製造可能な二酸化炭素処理剤の製造方法を提供することができる。
(二酸化炭素処理剤)
 二酸化炭素処理剤は、酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライトを含有している。二酸化炭素処理剤は、多孔性であるゼオライトの細孔に酸素欠陥マグネタイトが入り込んで結合しているとともに、酸化マグネシウムが付着している。主として、酸化マグネシウムによって、効率的に二酸化炭素が吸着、捕捉され、捕捉された二酸化炭素を酸素欠陥マグネタイトが分解し、酸素を放出する。二酸化炭素処理剤は、常温においても、二酸化炭素を分解して酸素を放出することができるので、熱処理を行わなくてもよい。
 酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライト中に占める酸化マグネシウムの含有量は、3~75重量%、好ましくは20~60重量%、より好ましくは40~60重量%である。酸化マグネシウムが少なすぎると二酸化炭素の吸着、捕捉が促進され難くなる。一方、酸化マグネシウムが多すぎると相対的に酸素欠陥マグネタイトの含有量が少なくなるので、二酸化炭素の分解が進行し難くなる。
 酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライト中に占める酸素欠陥マグネタイトの含有量は、10~90重量%、好ましくは25~70重量%、より好ましくは25~55重量%である。
 酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライト中に占めるゼオライトの含有量は、0.1~20重量%、好ましくは1~17重量%、より好ましくは1~15重量%である。
 ゼオライトは、LTA型、FAU型など、特に制限されるものではないが、構造的には入り口が8員環で小細孔であるLTA型が望ましい。また、種類上は、アミチ沸石、方沸石、バレル沸石等があるが、結晶構造として六方、直方晶、立方晶、正方のものが望ましい。ゼオライトの具体例として、方沸石、シャンファ石、ポーリン沸石、ベルベルヒ沸石、エディントン沸石、エリオン沸石、フォージャス沸石、ガロン沸石などが挙げられる。
(その他の成分)
 二酸化炭素処理剤は、上記の成分の他、他の成分を含有していてもよい。例えば、炭素粉末、カルシウム化合物粉末を含有していてもよく、含有量は例えば、それぞれ3~20重量%である。
 また、二酸化炭素処理剤は、アルミニウム粉末、ケイ素粉末等を含有していてもよい。二酸化炭素処理剤中に占めるこれらの成分の含有量は、それぞれ、0.1~20重量%であることが好ましく、より好ましくは3~20重量%、更に好ましくは3~5重量%、最も好ましくは4~5重量%である。また、アルミニウムとケイ素の成分を含有する場合、アルミニウムとケイ素の比がアルミニウムを1としたとき、ケイ素が0.7~1の非晶質アルミニウムケイ酸塩であってもよい。非晶質アルミニウムケイ酸塩は二酸化炭素吸着材として広く知られている。アルミニウムケイ酸塩を含有する場合、酸化マグネシウム、酸素欠陥マグネタイト及びゼオライトの総量とアルミニウムケイ酸塩との重量比が99.1:0.1~65:35であることが好ましく、97:3~75:25であることがより好ましい。
(二酸化炭素処理剤の製造方法)
 二酸化炭素処理剤は、例えば、以下のようにして製造することができる。
(工程1)
 ゼオライトとマグネタイトとを混合し、機械的エネルギーを加えてゼオライトの微細孔にマグネタイトが入り込むようにする。機械的エネルギーを加えるには、例えば、底辺が半球、胴部が円筒状の撹拌容器内にゼオライトとマグネタイトを混入し、容器内の回転軸が多軸、すなわち回転軸が自転しつつ更にその回転軸を回転させるようにするとよい。具体的には、自転公転攪拌機、自転公転式ミキサー、遊星式攪拌機、攪拌脱泡機などの装置を用いて行うとよい。これらの装置にて発生する遠心力による材料対流とせん断応力によって、ゼオライトとマグネタイトとが混合され、高い機械的エネルギーが付与される。これにより、ゼオライトの細孔にマグネタイトが入り込むことになる。また、容器内の相対湿度を50%前後(±5%)にして行うことが望ましい。
(工程2)
 工程1で得られた混合粉末に水を加える。乾燥したゼオライトは、水を吸収して発熱するが、ゼオライトは微細構造を持ち、その領域内において部分的に大量の熱が発生する。また、ゼオライトは水に浸漬されると、水素を発生させる。この発熱、及び、水素発生のメカニズムによって、ゼオライトに混入されたマグネタイトが酸素欠陥マグネタイトに変換される。なお、水は混合粉末に対して40~60重量%、好ましくは50重量%程度加えるとよい。
(工程3)
 工程2で得られた混合体に酸化マグネシウムを付着させる。混合体に酸化マグネシウムを均質に付着させることができればどのような手法で行ってもよく、例えば、工程2において混合粉末に水を加えた後、平面状に引き延ばした混合体に、酸化マグネシウムの粉末を振りかけることで行い得る。酸化マグネシウムの粉末は微粉末状であることが好ましく、例えば、平均粒径が20μm以下、好ましくは10μm以下である。
(工程4)
 続いて、酸化マグネシウムを付着させた状態にて乾燥させる。乾燥は加温して乾燥させてもよいが、自然乾燥でも行い得る。以上のようにして、二酸化炭素処理剤を製造し得る。
 本実施の形態の二酸化炭素処理剤の製造方法では、常温でも酸素欠陥マグネタイトを含有する二酸化炭素処理剤を製造することができるので、従来のような水素ガス雰囲気下での加熱処理を要さず、製造コストに優れる。
 得られた二酸化炭素処理剤は、破砕して粒状、粉末状にして使用してもよい。二酸化炭素処理剤は、単体として使用するほか、基材や素材に混入させたり塗布したりして使用することもできる。基材や素材として、例えば、アスファルト等の道路材、ペンキ等の塗料、塗材、着色剤、接着剤、セメント、建材、外装材、内装材、天井材などが挙げられるがこれらに限定されるものではない。
 なお、上述した炭素やカルシウム化合物、アルミニウム、ケイ素、アルミニウムケイ酸塩等、他の成分を含有する二酸化炭素処理剤を得る場合、これらの粉末を上述の工程3において、酸化マグネシウム粉末とともに添加してもよく、工程3で酸化マグネシウム粉末を付着、乾燥させた後に添加、混合してもよい。また、各成分の配合量については、上述した二酸化炭素処理剤の配合量(混合するマグネタイトの配合量については、酸素欠陥マグネタイトの配合量)に準ずる。
(実験1)
 酸化マグネシウム、マグネタイト、ゼオライトを表1に示す配合比で配合し、各試料(試料No.1~23)を製造した。
 各試料は、それぞれ以下のようにして製造した。
 底辺が半球、胴部が円筒状の撹拌容器内にゼオライトとマグネタイトを混入した。そして、攪拌容器を自転公転攪拌機にセットして攪拌した。なお、容器内の相対湿度を50%にして行った。
 得られた混合粉末に水(混合粉末に対して重量比50%)を加えて攪拌し、平面状に引き伸ばした混合体を得た。
 直方体の容器内に酸化マグネシウムを均一に入れた。なお、この容器の底部には直径0.5mm程度の穴が等間隔に開けられており、この底部にアルミニウム製の遮蔽板を設置している。酸化マグネシウムを入れた容器を平面状に引き延ばした混合体の上に置いた。そして、遮蔽板を取り除き、これを水平方向に前後左右へシャッフルしつつ、酸化マグネシウムの粉末を混合体の上に均一に振りかけた。
 酸化マグネシウム粉末を振りかけた後、この状態で乾燥させることで、各試料を製造した。
 製造した各試料について、二酸化炭素の分解、酸素発生の検証実験を行った。実験は以下のようにして行った。
 試験用バットに試料(300g)を入れ、蒸留水300mLを入れて攪拌した。
 試験用バットを袋に入れて密閉した後、ガス注入口から順次、一酸化炭素、二酸化炭素を一定量注入した。ガス注入後、袋内の二酸化炭素濃度、一酸化炭素濃度、酸素濃度を赤外線吸収式二酸化炭素濃度計、非分散型赤外線吸収式一酸化炭素濃度計、ジルコニア式酸素濃度計を用いてそれぞれ測定した。
 袋内の二酸化炭素、酸素、及び、一酸化炭素の初期濃度は、それぞれ以下の通りであった。
・二酸化炭素の初期濃度: 21,400ppm
・酸素の初期濃度   :129,700ppm
・一酸化炭素の初期濃度:     32ppm
 そして、このまま24時間放置した。24時間後の袋内の二酸化炭素濃度、酸素濃度、一酸化炭素濃度を上記と同様の手法にてそれぞれ測定した。24時間後の袋内の各気体の濃度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 いずれの試料においても、二酸化炭素濃度の減少が見られた。特に、試料中の酸化マグネシウムの含有量が40重量%以上の試料(No.4,6,7,8,11~23)では、大幅な二酸化炭素濃度の減少が見られた。
 また、試料No.5,7,12~16,19,20,23では、酸素濃度の増加も見られた。特に、試料No.12~16,19,20で増加量が多かった。結果にばらつきは見られるものの、概ね、酸化マグネシウム40~60重量%、マグネタイト32~47重量%、ゼオライト1~13重量%の配合比で得られた試料において、二酸化炭素を分解し、酸素を発生させる効果が高いと考えられる。
 なお、いずれの試料においても一酸化炭素濃度は増加しておらず、二酸化炭素は一酸化炭素に分解されず、酸素が生成していることがわかる。
 このように、二酸化炭素と二酸化炭素処理剤とを常温環境下で介在させても、二酸化炭素を固定、分解し、酸素を発生させる二酸化炭素処理剤を提供できること、また、この二酸化炭素処理剤は、常温で製造していることから、水素ガス雰囲気下での加熱処理を要さずとも酸素欠陥マグネタイトを含有する二酸化炭素処理剤を製造できることを立証した。
(実験2)
 酸化マグネシウム60重量%、マグネタイト32重量%、ゼオライト8重量%の試料(実験1の試料No.15)に対し、アルミニウムケイ酸塩を添加し、その効果を検証した。
 試料No.15とアルミニウムケイ酸塩を表2、3に示す配合比で配合し、各試料(試料No.31~74)を調製した。
 そして、実験1と同様の手法にて、二酸化炭素の分解、酸素発生の検証実験を行った。24時間後の袋内の各気体の濃度を表2、3に示す。なお、袋内の二酸化炭素、酸素、及び、一酸化炭素の初期濃度は、それぞれ以下の通りであった。
・二酸化炭素の初期濃度: 21,400ppm
・酸素の初期濃度   :129,700ppm
・一酸化炭素の初期濃度:     32ppm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 全ての試料(試料No.31~74)で二酸化炭素濃度が大幅に減少し、酸素濃度が増加している。特に、概ね試料NO.42~58で酸素濃度の増加が大きく、アルミニウムケイ酸塩が3~25重量%であることが特に好ましいことがわかる。なお、いずれの試料においても一酸化炭素濃度は増加しておらず、二酸化炭素は一酸化炭素に分解されず、酸素が生成していることがわかる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本出願は、2021年5月7日に出願された日本国特許出願2021-079211号に基づく。本明細書中に、日本国特許出願2021-079211号の明細書、特許請求の範囲全体を参照として取り込むものとする。

Claims (9)

  1.  酸化マグネシウム、酸素欠陥マグネタイト、及び、ゼオライトを含有する、
     ことを特徴とする二酸化炭素処理剤。
  2.  前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量に占める前記酸化マグネシウムの含有量が3~75重量%、前記酸素欠陥マグネタイトの含有量が10~90重量%、前記ゼオライトの含有量が0.1~20重量%である、
     ことを特徴とする請求項1に記載の二酸化炭素処理剤。
  3.  前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量に占める前記酸化マグネシウムの含有量が40~60重量%、前記酸素欠陥マグネタイトの含有量が25~55重量%、前記ゼオライトの含有量が1~17重量%である、
     ことを特徴とする請求項2に記載の二酸化炭素処理剤。
  4.  炭素粉末を3~20重量%含有する、
     ことを特徴とする請求項1乃至3のいずれか一項に記載の二酸化炭素処理剤。
  5.  カルシウム化合物粉末を3~20重量%含有する、
     ことを特徴とする請求項1乃至4のいずれか一項に記載の二酸化炭素処理剤。
  6.  アルミニウム粉末を3~20重量%含有する、
     ことを特徴とする請求項1乃至5のいずれか一項に記載の二酸化炭素処理剤。
  7.  ケイ素粉末を3~20重量%含有する、
     ことを特徴とする請求項1乃至6のいずれか一項に記載の二酸化炭素処理剤。
  8.  アルミニウムケイ酸塩を含有し、
     前記酸化マグネシウム、前記酸素欠陥マグネタイト、及び、前記ゼオライトの総量と前記アルミニウムケイ酸塩との重量比が99.1:0.1~65:35である、
     ことを特徴とする請求項1乃至7のいずれか一項に記載の二酸化炭素処理剤。
  9.  マグネタイトとゼオライトを混合、攪拌して前記ゼオライトの細孔内に前記マグネタイトを充填した混合粉末を得る工程と、
     前記混合粉末に水を加えた混合体を得る工程と、
     前記混合体に酸化マグネシウムの微粉末を付着させ、乾燥させる工程と、を備える、
     ことを特徴とする二酸化炭素処理剤の製造方法。
PCT/JP2022/019433 2021-05-07 2022-04-28 二酸化炭素処理剤及びその製造方法 WO2022234833A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22798937.3A EP4335816A1 (en) 2021-05-07 2022-04-28 Carbon dioxide processing agent and method for producing same
CN202280033351.5A CN117279861A (zh) 2021-05-07 2022-04-28 二氧化碳处理剂及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079211 2021-05-07
JP2021079211A JP2022172881A (ja) 2021-05-07 2021-05-07 二酸化炭素処理剤及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022234833A1 true WO2022234833A1 (ja) 2022-11-10

Family

ID=83932753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019433 WO2022234833A1 (ja) 2021-05-07 2022-04-28 二酸化炭素処理剤及びその製造方法

Country Status (4)

Country Link
EP (1) EP4335816A1 (ja)
JP (1) JP2022172881A (ja)
CN (1) CN117279861A (ja)
WO (1) WO2022234833A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083159A (ja) * 2005-09-21 2007-04-05 Kinzo Ri 二酸化炭素固定化触媒および二酸化炭素固定化触媒製造方法
JP2013010653A (ja) * 2011-06-28 2013-01-17 Ihi Corp 酸素欠乏型マグネタイト製造装置
KR20140013293A (ko) * 2012-07-23 2014-02-05 충남대학교산학협력단 활성 마그네타이트의 제조방법
JP2016215181A (ja) * 2015-05-25 2016-12-22 門上 洋一 二酸化炭素を室温で分解する触媒、およびその製造法
JP2021079211A (ja) 2021-03-01 2021-05-27 株式会社三洋物産 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083159A (ja) * 2005-09-21 2007-04-05 Kinzo Ri 二酸化炭素固定化触媒および二酸化炭素固定化触媒製造方法
JP2013010653A (ja) * 2011-06-28 2013-01-17 Ihi Corp 酸素欠乏型マグネタイト製造装置
KR20140013293A (ko) * 2012-07-23 2014-02-05 충남대학교산학협력단 활성 마그네타이트의 제조방법
JP2016215181A (ja) * 2015-05-25 2016-12-22 門上 洋一 二酸化炭素を室温で分解する触媒、およびその製造法
JP2021079211A (ja) 2021-03-01 2021-05-27 株式会社三洋物産 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUTAKA TAMAURA: "Decomposition of CO2 and Methanation using Magnetite", JAPAN TAPPI JOURNAL, vol. 45, no. 5, 1991, pages 540 - 547

Also Published As

Publication number Publication date
JP2022172881A (ja) 2022-11-17
EP4335816A1 (en) 2024-03-13
CN117279861A (zh) 2023-12-22
TW202243724A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
CN107362788B (zh) 一种氧化石墨烯/二氧化钛-活性炭三维复合材料及其制备方法
CN107188188B (zh) 一种胺基改性二氧化硅气凝胶的制备方法及吸附应用
Zhao et al. CO2 adsorption behavior and kinetics on amine-functionalized composites silica with trimodal nanoporous structure
US20070071666A1 (en) Synthesis and use of nanocrystalline zeolites
An et al. Indoor formaldehyde removal over CMK-3
Klinthong et al. CO2 Capture by as-synthesized amine-functionalized mcm-41 prepared through direct synthesis under basic condition
Abhilash et al. Functionalized polysilsesquioxane-based hybrid silica solid amine sorbents for the regenerative removal of CO2 from air
Sitarz-Palczak et al. Comparative study on the characteristics of coal fly ash and biomass ash geopolymers
de Ávila et al. Incorporation of monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA) in mesoporous silica: An alternative to CO2 capture
WO2022234833A1 (ja) 二酸化炭素処理剤及びその製造方法
Giessler et al. Hydrophobicity of templated silica xerogels for molecular sieving applications
TWI840801B (zh) 二氧化碳處理劑及其製造方法
Zhang et al. Hydrothermal synthesis of amino-PVC/DE composite and its adsorption performance for formaldehyde
US20240226856A1 (en) Carbon dioxide processing agent and method for producing same
WO2009044965A1 (en) Lipophilic silicate functioning to remove foul smells and volatile organic compounds and method of preparing the same
JP2009233647A (ja) 硫酸基を付与したアンモニア吸着用の天然ゼオライトとその製造方法
Sedanova et al. Adsorption of organic dyes in mesoporous carbon sorbent modified with salicylic acid
JP2005230729A (ja) ホルムアルデヒド吸着剤及びそれらを含む住宅内装材
Štengl et al. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents
JP5403543B2 (ja) 光触媒、光触媒製造方法およびトリクロロエチレンの分解処理方法
TWI729963B (zh) 複合材料吸附劑、其製備方法及其用途
CN114700027B (zh) 一种负载型活性硫族复合物及其制备方法和应用
JP2014193432A (ja) ハイブリッド光触媒及びその製造方法
CA3122607C (fr) Materiau agglomere zeolithique, procede de preparation et utilisation pour la separation non-cryogenique de gaz
Viet Quang et al. Amine-Bridged Silsesquioxane with Dangling Amino Group for CO2 Capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033351.5

Country of ref document: CN

Ref document number: 18559307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022798937

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798937

Country of ref document: EP

Effective date: 20231207