WO2012006973A1 - Verfahren zur herstellung von kohlenstoff-schaumstoffen - Google Patents

Verfahren zur herstellung von kohlenstoff-schaumstoffen Download PDF

Info

Publication number
WO2012006973A1
WO2012006973A1 PCT/DE2010/001072 DE2010001072W WO2012006973A1 WO 2012006973 A1 WO2012006973 A1 WO 2012006973A1 DE 2010001072 W DE2010001072 W DE 2010001072W WO 2012006973 A1 WO2012006973 A1 WO 2012006973A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon foam
nitrogen
polycondensate
pyrolysis
carbon
Prior art date
Application number
PCT/DE2010/001072
Other languages
English (en)
French (fr)
Inventor
Ferdi SCHÜTH
Manfred Schwickardi
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to DE112010005730T priority Critical patent/DE112010005730A5/de
Priority to PCT/DE2010/001072 priority patent/WO2012006973A1/de
Publication of WO2012006973A1 publication Critical patent/WO2012006973A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Definitions

  • the present invention relates to a process for producing carbon foams as well as carbon foams obtainable by this process.
  • EP 0 994 912 discloses an open-celled organic carbon foam.
  • This foam can be prepared from an organic gel obtained from a reaction mixture of one or more hydroxylated benzene compounds, one or more aldehydes, catalysts and water, wherein the molar ratio of hydroxylated benzene compound to catalyst, R / C, is greater than 2000.
  • the reaction mixture is heated to form an organic gel, in a subsequent reaction step the water is removed from the gel formed and an open-pore organic foam of low density is obtained.
  • this foam may be subjected to pyrolysis conditions to obtain an open cell carbonized carbon foam. This foam was used as electrode material.
  • DE 102 43 240 discloses another carbon-based open-pore foam which has an average cell size of more than 20 ⁇ m, a porosity of between 35% and 99.5% and an open area of more than 90%, an internal surface area of more than 50 m 2 / g and cell webs which have a triangle in cross-section with inwardly curved sides and pores in the cell framework material with dimensions of 0.2 nm to 50 nm and an internal volume of 0.01 cm 3 / g to 0.8 cm 3 /G.
  • the disclosed foams are obtained from polymeric materials having a nitrogen content above 6% by weight, usually from urea-formaldehyde or polyurethane resins.
  • the present invention accordingly provides a process for producing carbon foams in which a) a polycondensate obtained from an aldehyde and an aromatic alcohol is pyrolyzed,
  • step b) the polycondensate or the product obtained from step a) is treated with water vapor, air, nitrogen, C0 2 , oxygen or a mixture of the foregoing.
  • Another object of the present invention is a carbon foam, which is obtainable by the process according to the invention.
  • the method according to the invention it is possible to obtain carbon foams in a simple and cost-saving manner.
  • polycondensates of an aldehyde and an aromatic alcohol are prepared for the first process step (a). If available, it is also possible to use commercially available polycondensates.
  • aromatic alcohols such as. As phenol, resorcinol, catechol, hydroquinone and phloroglucinol, and aldehydes, such as. As formaldehyde, glyoxal, glutaraldehyde or furfural, from.
  • aldehydes such as. As formaldehyde, glyoxal, glutaraldehyde or furfural, from.
  • a commonly used and preferred reaction mixture is resorcinol (1,3-dihydroxybenzene) and formaldehyde, which react with each other under alkaline conditions to form a gel-like polycondensate.
  • the polycondensation is usually carried out in an aqueous solution.
  • Suitable catalysts are salts which react alkaline in water, such as sodium carbonate, or else inorganic acids, such as trifluoroacetic acid.
  • the reaction solution can be heated.
  • the polycondenser tion reaction at a temperature above room temperature, preferably carried out between 40 ° C and 90 ° C.
  • the rate of the polycondensation reaction and the degree of crosslinking of the obtained gel can be influenced, for example, by adjusting the ratio of aromatic alcohol to catalyst.
  • the skilled person will use the components in appropriate proportions based on his expertise
  • the resulting polycondensate can be further processed without predrying. In one possible embodiment, it may also be predried, the solution water contained can be completely or partially removed. It has proven advantageous not to completely remove the solvent. Depending on the amount of the resulting polycondensate, it may be subjected to pyrolysis as such. In order to be able to produce granules with the desired particle size, it has proved to be advantageous if the polycondensate is comminuted before further processing.
  • the comminution of the polycondensate can be carried out by means of conventional mechanical comminution methods or rubbing, preference being given to such an apparatus with which the polycondensate is scraped, planed or cut. As a result, granules are obtained with a desired particle size distribution, the formation of powdery fractions can be largely avoided.
  • the optionally comminuted polycondensate is then subjected to pyrolysis.
  • Pyrolysis can also be referred to as carbonization.
  • the optionally comminuted polycondensate is heated to a temperature between 300 ° C and 1,500 ° C, preferably between 700 ° C and 1,000 ° C.
  • the pyrolysis treatment forms the porous carbon foam.
  • a plastic foam d. H. a porous material with low density.
  • the resulting foam is usually an open cell foam, although closed cells may also be included. It is preferred to obtain an open-celled foam, i. H. a foam in which the individual pores are not closed and are largely interconnected so that trapped gas or liquid can escape and re-enter.
  • the carbon foam obtained has micropores, mesopores and macropores.
  • Micropores are pores having a pore diameter of less than about 2 nm, mesopores usually have a pore diameter of about 2 to about 50 nm and macropores have a diameter of about 50 nm to about 100 nm.
  • the transitions in the size data may be fluent.
  • foams can be produced which have a BET surface area above 2000 m 2 / g.
  • the inner surface of the carbon foam produced according to the invention is preferably from 500 m 2 / g to 2500 m / g.
  • the total pore volume of the foams obtained is preferably from 1 cm / g to 4 cm 3 / g.
  • the possible fields of use of the carbon foam obtained in accordance with the invention are the filtering and absorption of gaseous, liquid and solid substances.
  • the absorbency of the carbon foams of the invention may u. a. are determined by the ratio of micropore volume to mesopore volume. This ratio is preferably between 1: 1 and 1: 8, preferably between 1: 1 and 1: 6, determined from nitrogen physisorption measurements.
  • One possibility for influencing the properties, such as the pore volume and / or the surface and / or pore radius distribution, of the carbon foam produced according to the invention is to pass the polycondensate before or during the pyrolysis or the product obtained from the pyrolysis with steam, air, C0 2 , oxygen or a gas mixture, which may be diluted with nitrogen or other inert gas, if necessary.
  • the pyrolysis is carried out in the presence of said gases or gas mixtures, and it has proven particularly preferable to use a mixture of nitrogen and water vapor.
  • the polycondensate obtained before further processing with a volatile organic solvent such as acetone, or a gas such as supercritical C0 2 treated to remove the pore water from the polycondensation reaction is recommended to stabilize the mesopores.
  • the mesopores remain even after activation, which shortens the process and thus it is cheaper.
  • the carbon foams according to the invention are suitable as materials for the purification of gaseous substances, such as air and as support materials in heterogeneous catalysis and for chromatography, as electrode materials and for thermal insulation.
  • Another object of the present invention relates to according to the use of the carbon foams obtained according to the invention as a filter material and to remove harmful substances from gaseous substances, such as from the air, for example in masks and equipment for respiratory protection, for the purification of exhaust gases from industrial plants and for cleaning the air indoors.
  • gaseous substances such as from the air
  • solid, liquid and gaseous substances can be removed.
  • house dust, tobacco smoke and / or exhaust gases and pathogens can be removed. These occur indoors, for example, by evaporation of building materials including sealants, paints, wood preservatives, cladding, etc., house dust, detergents and heating exhaust gases and pollutants that may leak in the use of household appliances and electronic devices such as computers, TVs and office equipment.
  • the present invention therefore also relates to the use of the carbon foams according to the invention as filter materials.
  • Another object of the present invention relates to the use of carbon foams as support materials for heterogeneous catalysis.
  • the catalytically active substances for example inorganic compounds, including metals and / or organic substances, can be applied to the porous foam materials.
  • Yet another object of the present invention relates to the use of the carbon foams of the present invention as support materials in chromatography, i. as a stationary phase, which may possibly be acted upon by other substances.
  • a further subject relates to the use of the carbon foams according to the invention as electrode material, for example in enzyme electrodes.
  • the present invention relates to the use of the carbon foams according to the invention for thermal insulation.
  • the bottle was capped and placed in a beaker (600 ml), then placed in a convection oven heated to 90 ° C and stored for 16 hours. The bottle was then removed from the oven and, after cooling to room temperature, the red-brown polycondensate contained therein was removed.
  • the soft product was crushed with a spatula into coarse pieces, placed in a flat aluminum pot (diameter 16 cm) and pre-dried in a convection oven with high air flow at 50 ° C for 4 hours.
  • the cooled material was ground to a red-brown granules (particle size 3 mm max.) Using a drum grinder.
  • the quartz tube was purged with nitrogen and heated from room temperature to 250 ° C in a constant stream of N 2 at a heating rate of 4 K / min and kept at this temperature for 1 h. The mixture was then heated at 4 K / min to 800 ° C and turned on the temperature of the turning mechanism of the furnace.
  • the quartz tube was agitated for 30 minutes at 800 ° C in a stream of nitrogen.
  • the quartz tube was purged with nitrogen and heated from room temperature to 880 ° C in a constant N 2 flow at a rate of 4 K / min. Upon reaching this temperature, the rotary mechanism of the furnace was turned on. The nitrogen blanketing gas was now passed through low boiling water before entering the furnace tube. The gas inlet area of the quartz stovepipe was heated to prevent water from condensing there.
  • the quartz tube was agitated for 15 minutes at 880 ° C with introduction of wet nitrogen (1, 51 / min).
  • Pore volume (Single Point Total Pore Volume): 1, 65 cm 3 / g
  • Example 1 b The procedure was analogous to Example 1 b, but here was 30 min (instead of 15 min) activated at 880 ° C with humid nitrogen.
  • Pore volume (single point total pore volume): 2.53 cm 3 / g
  • Pore volume (single point total pore volume): 3.23 cm 3 / g
  • the bottle was closed and placed in a beaker, then placed in a convection oven heated to 90 ° C and stored for 16 hours. The bottle was then removed from the oven and, after cooling to room temperature, the red-brown polycondensate contained therein was removed.
  • the soft product was crushed with a spatula into coarse pieces, placed in a flat aluminum pot (diameter 16 cm) and pre-dried in a convection oven with high air flow at 50 ° C for 4 hours.
  • the cooled material was ground to a red-brown granules (particle size 3 mm max.) Using a drum grinder.
  • the quartz tube was purged with nitrogen and heated from room temperature to 880 ° C in a constant N 2 flow at a rate of 4 K / min. Upon reaching this temperature, the rotary mechanism of the furnace was turned on. The nitrogen blanketing gas was now passed through low boiling water before entering the furnace tube. The gas inlet area of the quartz stovepipe was heated to prevent water from condensing there.
  • the quartz tube was agitated for 60 minutes at 880 ° C with the introduction of wet nitrogen (1, 5l / min).
  • Pore volume (single point total pore volume): 2.72 cm 3 / g
  • the bottle was closed and placed in a beaker, then placed in a convection oven heated to 90 ° C and stored for 16 hours. The bottle was then removed from the oven and, after cooling to room temperature, the red-brown polycondensate contained therein was removed.
  • the solid glassy block was crushed with a hammer and cut into pieces, placed in a flat aluminum pot (diameter 16 cm) and pre-dried in a convection oven with high air flow at 50 ° C for 4 hours.
  • the cooled material was ground to a red-brown granules (particle size 3 mm max.) Using a drum grinder.
  • the quartz tube was purged with nitrogen and heated from room temperature to 880 ° C in a constant N 2 flow at a rate of 4 K / min. Upon reaching this temperature, the rotary mechanism of the furnace was turned on. The nitrogen blanketing gas was now passed through low boiling water before entering the furnace tube. The gas inlet area of the quartz stovepipe was heated to prevent water from condensing there.
  • the quartz tube was agitated for 60 minutes at 880 ° C with the introduction of wet nitrogen (1, 5l / min).
  • Pore volume (single point total pore volume): 1, 56 cm 3 / g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen, in welchen a) ein Polykondensat erhalten aus einem Aldehyd und einem aromatischen Alkohol pyrolisiert wird, b) das Produkt während oder nach der Pyrolyse mit Wasserdampf, Stickstoff, CO2, Luft, Sauerstoff oder einem Gemisch der voranstehenden behandelt wird.

Description

Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Kohlenstoff- Schaumstoffen sowie Kohlenstoff- Schaumstoffe, die nach diesem Verfahren erhältlich sind.
In der EP 0 994 912 wird ein offenzelliger organischer Kohlenstoffschaum offenbart. Dieser Schaum kann aus einem organischen Gel hergestellt werden, welches erhalten wird aus einem Reaktionsgemisch aus einer oder mehrerer hydroxylierter Benzolverbindungen, einem oder mehrerer Aldehyde, Katalysatoren und Wasser, wobei das Molverhältnis von hydroxylierter Benzolverbindung zu Katalysator, R/C, größer als 2000 ist. Das Reaktionsgemisch wird unter Bildung eines organischen Gels erhitzt, in einem nachfolgenden Reaktionsschritt wird das Wasser aus dem gebildeten Gel entfernt und ein offenporiger organischer Schaum mit geringer Dichte erhalten. In einem Nachbehandlungsschritt kann dieser Schaum Pyrolyse-Bedingungen unterworfen, wobei ein offenporiger karbonisierter Kohlenstoffschaum erhalten wurde. Dieser Schaum wurde als Elektrodenmaterial eingesetzt. In der DE 102 43 240 wird ein weiterer offenporiger Schaumstoff auf Kohlenstoffbasis offenbart, welcher eine mittlere Zellgröße über 20 Mm, einer auf diese Zellgröße bezogene Porosität zwischen 35 Prozent und 99,5 Prozent sowie eine Offenzeiligkeit über 90 Prozent, eine innere Oberfläche über 50 m2/g aufweist sowie Zellstege, die im Querschnitt ein Dreieck mit nach innen gekrümmten Seiten aufweisen und Poren im Zellgerüstmaterial mit Abmessungen von 0,2 nm bis 50 nm und einem inneren Volumen von 0,01 cm3/g bis 0,8 cm3/g. Die offenbarten Schaumstoffe werden aus Polymermaterialien mit einem Stickstoffgehalt über 6 Masse% erhalten, üblicherweise aus Harnstoff-Formaldehyd oder Polyurethanharzen. In US 7,419,649 werden weitere poröse Kunststoffmaterialien offenbart, die Mikroporen, Mesoporen und auch Makroporen aufweisen. Zur Herstellung dieser Kohlenstoffschäume werden Phenol-Formaldehydkondensate eingesetzt, die bei Temperaturen über 1 000 °C pyrolisiert werden. Die offenbarten Materialien werden u. a. in Anlagen zur Energiespeicherung, in der Regel als Kondensatoren eingesetzt.
BESTÄTIGUNGSKOPIE Die im Stand der Technik offenbarten Materialien zeigen aufgrund ihrer großen Oberfläche und des geringen spezifischen Gewichts vielfältige Einsatzmöglichkeiten. Nachteilig ist, dass der Herstellungsweg relativ aufwendig und somit kostenintensiv ist. Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, ein Verfahren zur Herstellung von Kohlenstoffschäumen zur Verfügung zu stellen, das eine vereinfachte Herstellungsweise ermöglicht und Materialien liefert, die weiterverbesserte Eigenschaften aufweisen.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen, in welchem a) ein Polykondensat, erhalten aus einem Aldehyd und einem aromatischen Alkohol, pyrolysiert wird,
b) das Polykondensat oder das aus Schritt a) erhaltene Produkt mit Wasserdampf, Luft, Stickstoff, C02, Sauerstoff oder einem Gemisch der Voranstehenden behandelt wird.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kohlenstoff-Schaumstoff, welches nach dem erfindungsgemäßen Verfahren erhältlich ist. Durch das erfindungsgemäße Verfahren ist es möglich, auf einfache und kostensparende Weise Kohlenstoff- Schaumstoffe zu erhalten.
Zur Herstellung der erfindungsgemäßen Kohlenstoff- Schaumstoffe werden für den ersten Verfahrensschritt (a) Polykondensate aus einem Aldehyd und einem aromatischen Alkohol hergestellt. Sofern erhältlich, können auch kommerziell erhältliche Polykondensate eingesetzt werden.
Zur Herstellung der Polykondensate geht man von aromatischen Alkoholen, wie z. B. Phenol, Resorcinol, Katechin, Hydrochinon und Phloroglucinol, und Aldehyden, wie z. B. Formaldehyd, Glyoxal, Glutaraldehyd oder Furfural, aus. Ein häufig eingesetztes und auch bevorzugtes Reaktionsgemisch sind Resorcinol (1 ,3-dihydroxybenzol), und Formaldehyd, die unter alkalischen Bedingungen unter Bildung eines gelartigen Polykondensats miteinander reagieren. Die Polykondensation wird üblicherweise in einer wässrigen Lösung durchgeführt. Geeignete Katalysatoren sind in Wasser alkalisch reagierende Salze, wie Natriumkarbonat, oder auch anorganische Säuren, wie Trifluoressigsäure. Zur Herstellung des Polykondensats kann die Reaktionslösung erwärmt werden. Üblicherweise wird die Polykonden- sationsreaktion bei einer Temperatur oberhalb von Raumtemperatur, vorzugsweise zwischen 40 °C und 90 °C durchgeführt.
Die Geschwindigkeit der Polykondensationsreaktion sowie der Vernetzungsgrad des erhaltenen Gels kann beispielsweise durch Einstellung des Verhältnisses von aromatischem Alkohol zu Katalysator beeinflusst werden. Der Fachmann wird auf Grund seines Fachwissens die Komponenten in geeigneten Mengenverhältnissen einsetzen
Das erhaltene Polykondensat kann ohne Vortrocknung weiter verarbeitet werden. In einer möglichen Ausführungsform kann es auch vorgetrocknet werden, das enthaltene Lösungswasser kann ganz oder teilweise entfernt werden. Es hat sich als vorteilhaft erwiesen, das Lösungsmittel nicht vollständig zu entfernen. In Abhängigkeit von der Menge des erhaltenen Polykondensats kann dieses als solches der Pyrolyse unterworfen werden. Um ein Granulat mit gewünschter Korngröße herstellen zu können, hat es sich als vorteilhaft erwiesen, wenn das Polykondensat vor der weiteren Verarbeitung zerkleinert wird. Die Zerkleinerung des Polykondensats kann mit üblichen mechanischen Zerkleinerugnsverfahren oder Reiben durchgeführt werden, wobei eine solche Vorrichtung bevorzugt ist, mit welcher das Polykondensat abgespant, gehobelt oder geschnitten wird. Dadurch werden Granulate mit einer gewünschten Teilchengrößenverteiltung erhalten, die Bildung von pulverförmigen Anteilen kann weitgehend vermieden werden.
Das, ggf. zerkleinerte, Polykondensat wird anschließend der Pyrolyse unterworfen. Die Pyrolyse kann auch als Karbonisierung bezeichnet werden. Zur Durchführung der Pyrolyse wird das ggf. zerkleinerte Polykondensat auf eine Temperatur zwischen 300°C und 1.500°C, vorzugsweise zwischen 700°C und 1.000°C, erhitzt. Durch die Pyrolysebehandlung bildet sich der poröse Kohlenstoffschaum.
Es wird ein Kunststoffschaum erhalten, d. h. ein poröses Material mit geringer Dichte. Der erhaltene Schaum ist üblicherweise ein offenzelliger Schaum, wobei auch geschlossene Zellen enthalten sein können. Bevorzugt ist es, einen offenzelligen Schaum zu erhalten, d. h. einen Schaum, in welchem die einzelnen Poren nicht abgeschlossen und zum großen Teil miteinander verbunden sind, sodass eingeschlossenes Gas bzw. Flüssigkeit entweichen und wieder eintreten kann.
Der erhaltene Kohlenstoffschaum weist Mikroporen, Mesoporen und Makroporen auf. Mikroporen sind Poren mit einem Porendurchmesser von kleiner als etwa 2 nm, Mesoporen haben in der Regel einen Porendurchmesser von etwa 2 bis etwa 50 nm und Makroporen einen Durchmesser von etwa 50 nm bis etwa 100 nm. Die Übergänge bei den Größenangaben können jedoch fließend sein. Mit dem erfindungsgemäßen Verfahren können Schäume hergestellt werden, die eine BET-Oberfläche über 2000m2/g aufweisen. Die innere Oberfläche des erfindungsgemäß hergestellten Kohlenstoffschaums beträgt vorzugsweise von 500 m2/g bis 2500 m /g. Das Gesamtporenvolumen der erhaltenen Schäume beträgt vorzugsweise von 1 cm /g bis 4 cm3/g.
Die möglichen Einsatzgebiete des erfindungsgemäß erhaltenen Kohlenstoffschaums liegen in der Filterung und Absorption von gasförmigen, flüssigen und festen Substanzen. Das Absorptionsvermögen der erfindungsgemäßen Kohlenstoffschäume kann u. a. durch das Verhältnis von Mikroporenvolumen zu Mesoporenvolumen bestimmt werden. Dieses Verhältnis liegt vorzugsweise zwischen 1 : 1 und 1 : 8, vorzugsweise zwischen 1 : 1 und 1 : 6, bestimmt aus Stickstoff-Physisorptionsmessungen.
Eine Möglichkeit, die Eigenschaften, wie das Porenvolumen und/oder die Oberflächen- und/oder Porenradienverteilung, des erfindungsgemäß hergestellten Kohlenstoffschaums zu beeinflussen, besteht darin, das Polykondensat vor oder während der Pyrolyse oder das aus der Pyrolyse erhaltene Produkt mit Wasserdampf, Luft, C02, Sauerstoff oder einem Gasgemisch, die ggf. mit Stickstoff oder einem anderen Inertgas verdünnt werden können, zu behandeln. In einer möglichen Ausführungsform wird die Pyrolyse in Gegenwart der genannten Gase oder bzw. Gasgemische durchgeführt, wobei es sich als besonders bevorzugt erwiesen hat, ein Gemisch aus Stickstoff und Wasserdampf zu verwenden. Beispielsweise ist es möglich, das zur Aktivierung verwendete Stickstoffgas vor der Einleitung in die Reaktionsapparatur durch Wasser oder Wasserdampf hindurchzuleiten.
In einer möglichen Ausführungsform wird das erhaltene Polykondensat vor der Weiterverarbeitung mit einem leicht flüchtigen organischen Lösungsmittel, wie Aceton, oder einem Gas, wie überkritischem C02 behandelt, um das Porenwasser aus der Polykondensationsreaktion zu entfernen. In Verfahren aus dem Stand der Technik wird dieser Schritt empfohlen, um die Mesoporen zu stabilisieren. Im erfindungsgemäßen Verfahren kann auf diesen Schritt verzichtet werden, die Mesoporen bleiben auch nach einer Aktivierung erhalten, was das Verfahren verkürzt und es somit kostengünstiger wird. Die erfindungsgemäßen Kohlenstoff-Schaumstoffe eignen sich als Materialien zur Reinigung von gasförmigen Stoffen, wie Luft und als Trägermaterialien in der heterogenen Katalyse und für die Chromatographie, als Elektrodenmaterialien und zur Thermoisolation. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft den gemäß die Verwendung der erfindungsgemäß erhaltenen Kohlenstoff-Schaumstoffe als Filtermaterial und zum Entfernen von schädlichen Substanzen aus gasförmigen Stoffen, wie aus der Luft, beispielsweise in Masken und Geräten für den Atemschutz, zur Reinigung von Abgasen aus industriellen Anlagen und zum Reinigen der Luft in Innenräumen. Bei der Reinigung von Luft können feste, flüssige und gasförmige Stoffe entfernt werden. Bei der Reinigung von Luft können insbesondere Schadstoffe, Hausstaub, Tabakrauch und/oder Abgase und auch Krankheitserreger entfernt werden. Diese entstehen in Innenräumen beispielsweise durch Ausdünstungen von Baumaterialien einschließlich von Dichtungsmassen, Farben, Holzschutzmitteln, Verkleidungen etc., Hausstaub, Reinigungsmitteln und Heizungsabgasen sowie auch Schadstoffen, die bei dem Einsatz von Hausgeräten und elektronischen Geräten wie Computer, Fernseher und Bürogeräten austreten können.
Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Kohlenstoff-Schaumstoffe als Filtermaterialien.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung der Kohlenstoff- Schaumstoffe als Trägermaterialien für die heterogenen Katalyse. In der heterogenen Katalyse können die katalytisch wirkenden Substanzen, beispielsweise anorganische Verbindungen einschließlich Metalle und/oder organische Substanzen auf die porösen Schaumstoffmaterialien aufgebracht werden.
Noch ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Kohlenstoff-Schaumstoffe als Trägermaterialien in der Chromatographie, d.h. als stationäre Phase, die ggf. mit weiteren Substanzen beaufschlagt werden können.
Ein weiterer Gegenstand betrifft die Verwendung der erfindungsgemäßen Kohlenstoff- Schaumstoffe als Elektrodenmaterial, beispielsweise in Enzymelektroden.
Ferner betrifft die vorliegende Erfindung betrifft die Verwendung der erfindungsgemäßen Kohlenstoff-Schaumstoffe zur Thermoisolation. Beispiele
Beispiel 1 :
Vereinfachte und kostengünstige Herstellung von Resorcin-Formaldehyd-Polykondensat
60,0 g Resorcin, puriss. 98,5-100,5% (Riedel-de Haen, Katalog-Nr.: RdH 16101-1 KG) = 545 mmol wurden in einer Polyethylen-Flasche (500 ml) mit 275 g deionisiertem Wasser, 88,45 g Formalin-Lösung 37% (Fluka) = 1090 mmol und 83 mg wasserfreiem Natriumcarbonat (Fluka) = 0,78 mmol versetzt und zu einer klaren Lösung aufgelöst.
Die Flasche wurde verschlossen und in ein Becherglas (600 ml) gestellt, anschließend in einen auf 90°C temperierten Umluftofen eingebracht und 16 Stunden darin aufbewahrt. Daraufhin wurde die Flasche aus dem Ofen entfernt und nach Abkühlung auf Raumtemperatur das darin befindliche rotbraune Polykondensat entnommen.
Das weiche Produkt wurde mit einem Spatel in grobe Stücke zerstoßen, in einen flachen Aluminiumtopf (Durchmesser 16 cm) gefüllt und in einem Umluftofen mit hohem Luftdurchsatz bei 50°C 4 Stunden vorgetrocknet.
Auswage: 267,9 g noch feuchtes, aber bereits sprödes Material
Das abgekühlte Material wurde mit einer Trommelreibe zu rotbraunem Granulat (Partikelgröße max. 3 mm) zerrieben.
Beispiel 1a:
Herstellung eines Kohlenstoff- Schaumstoffs (Carbonisierung ohne Aktivierung) 12,4 g des granulierten Resorcin-Formaldehyd-Polykondensats aus Beispiel 1 wurden in ein Quarzrohr gefüllt und dieses in einen Labor-Drehrohrofen eingesetzt. Das Rohr wurde in der Aufheizphase zunächst nicht bewegt.
Das Quarzrohr wurde mit Stickstoff gespült und in einem ständigen N2-Strom mit einer Aufheizrate von 4 K/min von Raumtemperatur auf 250 °C erhitzt und 1 h bei dieser Temperatur gehalten. Dann wurde mit 4 K/min auf 800°C erhitzt und beim Erreichen der Temperatur die Drehmechanik des Ofens eingeschaltet.
Das Quarzrohr wurde 30 min bei 800°C im Stickstoffstrom bewegt.
Anschließend wurde unter Schutzgas auf Raumtemperatur abgekühlt und der erhaltene Kohlenstoff- Schaumstoff an der Luft abgefüllt.
Ausbeute: 1 ,88 g ( Umrechnung: 1 Kg Resorcin liefert 677 g Kohlenstoff- Schaumstoff) N?-Phvsisorptionsanalvsen:
BET-Oberfläche: 659 m2/g
Porenvolumen (Single Point Total Pore Volume): 1 , 19 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 4,89
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 32 nm
Beispiel 1b:
Herstellung eines Kohlenstoff- Schaumstoffs mit hoher spezifischer Oberfläche (Carbonisierung und Wasserdampf-Aktivierung 15 min bei 880°C)
47,24 g des granulierten Resorcin-Formaldehyd-Polykondensats aus Beispiel 1 wurden in ein Quarzrohr gefüllt und dieses in einen Labor-Drehrohrofen eingesetzt. Das Rohr wurde in der Aufheizphase zunächst nicht bewegt.
Das Quarzrohr wurde mit Stickstoff gespült und in einem ständigen N2-Strom mit einer Aufheizrate von 4 K/min von Raumtemperatur auf 880 °C erhitzt. Beim Erreichen dieser Temperatur wurde die Drehmechanik des Ofens eingeschaltet. Das Stickstoff-Schutzgas wurde nun durch schwach siedendes Wasser geleitet, bevor es in das Ofenrohr gelangte. Die Gaseinleitbereich des Quarz-Ofenrohres wurde beheizt, um zu verhindern, dass dort Wasser kondensiert.
Das Quarzrohr wurde 15 min bei 880°C unter Einleitung von feuchtem Stickstoff (1 ,51/min) bewegt.
Anschließend wurde unter trockenem Stickstoff auf Raumtemperatur abgekühlt und der erhaltene Kohlenstoff- Schaumstoff an der Luft abgefüllt.
Zeitaufwand (vom Ansetzen der Polymerlösung bis zum Erhalt der aktivierten Kohle):
1 1/2 Tage Ausbeute: 5,73 g ( Umrechnung: 1 Kg Resorcin liefert 542 g Kohlenstoff- Schaumstoff) Ny-Phvsisorptionsanalvsen:
BET-Oberfläche: 992 m2/g
Porenvolumen (Single Point Total Pore Volume): 1 ,65 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 3,80
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 33 nm Beispiel 1c:
Herstellung eines Kohlenstoff-Schaumstoffs mit hoher spezifischer Oberfläche (Carbonisierung und Wasserdampf-Aktivierung 30 min bei 880°C)
Die Durchführung erfolgte analog Beispiel 1 b, jedoch wurde hier 30 min (anstelle 15 min) bei 880°C mit feuchtem Stickstoff aktiviert.
Einsatz Resorcin-Formaldehyd-Polykondensat aus Beispiel 1 : 51 ,1 g
Ausbeute: 5,38 g Kohle ( Umrechnung: 1 Kg Resorcin liefert 470 g Kohlenstoff- Schaumstoff)
N?-Physisorptionsanalvsen:
BET-Oberfläche: 1254 m2/g
Porenvolumen (Single Point Total Pore Volume): 1 ,93 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 3,55
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 33 nm
Beispiel 1d:
Herstellung eines Kohlenstoff-Schaumstoffs mit hoher spezifischer Oberfläche ( Carbonisierung und Wasserdampf-Aktivierung 60 min bei 880°C)
Die Durchführung erfolgte analog Beispiel 1 b, jedoch wurde hier 60 min (anstelle 15 min) bei 880°C mit feuchtem Stickstoff aktiviert.
Einsatz Resorcin-Formaldehyd-Polykondensat aus Beispiel 1 : 51 ,04 g
Ausbeute: 3,62 g Kohle ( Umrechnung: 1 Kg Resorcin liefert 317 g Kohlenstoff- Schaumstoff)
N?-Phvsisorptionsanalysen:
BET-Oberfläche: 1720 m2/g
Porenvolumen (Single Point Total Pore Volume): 2,53 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 3,49
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 24 nm
Beispiel 1e:
Herstellung eines Kohlenstoff- Schaumstoffs mit hoher spezifischer Oberfläche ( Carbonisierung und Wasserdampf-Aktivierung 105 min bei 880°C) Die Durchführung erfolgte analog Beispiel 1 b, jedoch wurde hier 105 min (anstelle 15 min) bei 880°C mit feuchtem Stickstoff aktiviert.
Ausbeute: 2,11 g Kohle ( Umrechnung: 1 Kg Resorcin liefert 180 g Kohlenstoff- Schaumstoff)
N?-Phvsisorptionsanalvsen:
BET-Oberfläche: 2254 m2/g
Porenvolumen (Single Point Total Pore Volume): 3,23 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 4,19
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 25 nm
Isotherm Plot N?-Phvsisorptionsanalyse
Volume Adsorbed
[cm3/g]
Beispiel 1e 2254 m2/g
Beispiel 1d 1720 m2/g
Beispiel 1c 1254 m2/g
Beispiel 1b 992 m2/g
Beispiel 1a 659 m2/g
Figure imgf000010_0001
0 0,2 0,4 0,6 0,8 1
P/Po
Beispiel 2:
Herstellung eines Kohlenstoff-Schaumstoffs aus kostengünstigem Resorcin geringer Reinheit
25,85 g Resorcin (Reinheitsgrad 98%) = 230 mmol wurden in einer Polyethylen-Flasche (250 ml) mit 118,5 g deionisiertem Wasser, 37,40 g Formalin-Lösung 37% (Fluka) = 461 mmol und 36 mg wasserfreiem Natriumcarbonat (Fluka) = 0,34 mmol versetzt und zu einer klaren Lösung aufgelöst.
Die Flasche wurde verschlossen und in ein Becherglas gestellt, anschließend in einen auf 90°C temperierten Umluftofen eingebracht und 16 Stunden darin aufbewahrt. Daraufhin wurde die Flasche aus dem Ofen entfernt und nach Abkühlung auf Raumtemperatur das darin befindliche rotbraune Polykondensat entnommen.
Das weiche Produkt wurde mit einem Spatel in grobe Stücke zerstoßen, in einen flachen Aluminiumtopf (Durchmesser 16 cm) gefüllt und in einem Umluftofen mit hohem Luftdurchsatz bei 50°C 4 Stunden vorgetrocknet.
Auswage: 99,4 g
Das abgekühlte Material wurde mit einer Trommelreibe zu rotbraunem Granulat (Partikelgröße max. 3 mm) zerrieben.
39,05 g des granulierten Resorcin-Formaldehyd-Polykondensats wurden in ein Quarzrohr gefüllt und dieses in einen Labor-Drehrohrofen eingesetzt. Das Rohr wurde in der Aufheizphase zunächst nicht bewegt.
Das Quarzrohr wurde mit Stickstoff gespült und in einem ständigen N2-Strom mit einer Aufheizrate von 4 K/min von Raumtemperatur auf 880 °C erhitzt. Beim Erreichen dieser Temperatur wurde die Drehmechanik des Ofens eingeschaltet. Das Stickstoff-Schutzgas wurde nun durch schwach siedendes Wasser geleitet, bevor es in das Ofenrohr gelangte. Die Gaseinleitbereich des Quarz-Ofenrohres wurde beheizt, um zu verhindern, dass dort Wasser kondensiert.
Das Quarzrohr wurde 60 min bei 880°C unter Einleitung von feuchtem Stickstoff (1 ,5l/min) bewegt.
Anschließend wurde unter trockenem Stickstoff auf Raumtemperatur abgekühlt und der erhaltene Kohlenstoff-Schaumstoff an der Luft abgefüllt.
Ausbeute: 3, 12 g schwarzes Granulat
Ny-Phvsisorptionsanalvsen:
BET-Oberfläche: 1843 m2/g
Porenvolumen (Single Point Total Pore Volume): 2,72 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 3,64
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 24 nm Beispiel 3:
Vereinfachte und kostengünstige Herstellung eines Kohlenstoff-Schaumstoff mit kleineren Mesoporen (vgl. Beispiel 1d)
35,0 g Resorcin, puriss. (Riedel-de Haen, Katalog-Nr.: RdH 16101) = 318 mmol wurden in einer Polyethylen-Flasche (250 ml) mit 24,5 g deionisiertem Wasser, 51 ,65 g Formalin- Lösung 37% (Fluka) = 636 mmol und 66,5 mg wasserfreiem Natriumcarbonat (Fluka) = 0,63 mmol versetzt und zu einer klaren Lösung aufgelöst.
Die Flasche wurde verschlossen und in ein Becherglas gestellt, anschließend in einen auf 90°C temperierten Umluftofen eingebracht und 16 Stunden darin aufbewahrt. Daraufhin wurde die Flasche aus dem Ofen entfernt und nach Abkühlung auf Raumtemperatur das darin befindliche rotbraune Polykondensat entnommen.
Der feste glasartige Block wurde mit einem Hammer zerstoßen und in grobe Stücke zerteilt, in einen flachen Aluminiumtopf (Durchmesser 16 cm) gefüllt und in einem Umluftofen mit hohem Luftdurchsatz bei 50°C 4 Stunden vorgetrocknet.
Auswage: 59,23 g
Das abgekühlte Material wurde mit einer Trommelreibe zu rotbraunem Granulat (Partikelgröße max. 3 mm) zerrieben.
18,54 g des granulierten Resorcin-Formaldehyd-Polykondensats wurden in ein Quarzrohr gefüllt und dieses in einen Labor-Drehrohrofen eingesetzt. Das Rohr wurde in der Aufheizphase zunächst nicht bewegt.
Das Quarzrohr wurde mit Stickstoff gespült und in einem ständigen N2-Strom mit einer Aufheizrate von 4 K/min von Raumtemperatur auf 880 °C erhitzt. Beim Erreichen dieser Temperatur wurde die Drehmechanik des Ofens eingeschaltet. Das Stickstoff-Schutzgas wurde nun durch schwach siedendes Wasser geleitet, bevor es in das Ofenrohr gelangte. Die Gaseinleitbereich des Quarz-Ofenrohres wurde beheizt, um zu verhindern, dass dort Wasser kondensiert.
Das Quarzrohr wurde 60 min bei 880°C unter Einleitung von feuchtem Stickstoff (1 ,5l/min) bewegt.
Anschließend wurde unter trockenem Stickstoff auf Raumtemperatur abgekühlt und der erhaltene Kohlenstoff- Schaumstoff an der Luft abgefüllt.
Ausbeute: 3,62 g schwarzes Granulat
( Umrechnung: 1 Kg Resorcin liefert 330 g Kohlenstoff-Schaumstoff ) Nr-Physisorptionsanalysen:
BET-Oberfläche: 1628 m2/g
Porenvolumen (Single Point Total Pore Volume): 1 ,56 cm3/g
Verhältnis Mikroporenvolumen : Mesoporenvolumen
(ermittelt aus Stickstoff-Physiosorptionsmessungen: 1 : 1 ,83
Mesoporendurchmesser (aus BJH-Desorptionsmessung): Maximum bei 8

Claims

Patentansprüche
1. Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen, in welchen
a) ein Polykondensat erhalten aus einem Aldehyd und einem aromatischen Alkohol pyrolisiert wird,
b) das Produkt während oder nach der Pyrolyse mit Wasserdampf, Stickstoff, C02, Luft, Sauerstoff oder einem Gemisch der voranstehenden behandelt wird.
2. Verfahren nach nach Anspruch 1 , dadurch gekennzeichnet, dass das aus der
Pyrolyse erhaltene Produkt zerkleinert, vorzugsweise durch Spanen, Schneiden oder Hobeln wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polykondensat erhalten wurde aus Formaldehyd und Resorcin.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Pyrolyse bei einer Temperatur zwischen 300°C und 1500°C, vorzgwesie von 700°C bis 1.500°C.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polykondensat aus einer wässrigen Lösung der Ausgangsprodukte erhalten wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Pyrolyse in Gegenwart von Stickstoff oder in Gegenwart von mit Wasserdampf versetztem Stickstoff durchgeführt wird.
7. Kohlenstoff-Schaumstoff erhältlich nach einem Verfahren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine BET-Oberfläche zwischen 500 und 2 500 m2/g aufweist.
8. Kohlenstoff-Schaumstoff nach Anspruch 7, dadurch gekennzeichnet, dass das Gesamtporenvolumen zwischen 0,5 und 4 cm3/g, vorzugsweise zwischen 1 ,5 und 3,0 liegt.
9. Kohlenstoff-Schaumstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Schaumstoff Mikroporen mit einer Porengröße unter 2 nm aufweist und Mesoporen mit einer Porengrößen zwischen 2 nm und 50 nm im Durchmesser, wobei das Verhältnis von Mikroporenvolumen zu Mesoporenvolumen von 1 : 1 bis 1 : 8, vorzugsweise von 1 : 1 bis 1 : 6, beträgt.
10. Verwendung des Kohlenstoff-Schaumstoffs nach einem der Ansprüche 7 bis 9 als Filtermaterial.
11. Verwendung eines Kohlenstoff-Schaumstoffs nach einem der Ansprüche 7 bis 9 zur Reinigung von gasförmigen Stoffen, wie Luft.
12. Verwendung nach Anspruch 11 , zur Reinigung von Raumluft und zur Verwendung in Atemschutzmasken und -geraten.
13. Verwendung des Kohlenstoff-Schaumstoffs nach einem der Ansprüche 7 bis 9 als Trägermaterial in der heterogenen Katalyse und in der Chromatographie.
14. Verwendung des Kohlenstoff-Schaumstoffs nach einem der Ansprüche 7 bis 9 als Elektrodenmaterial, beispielsweise in Enzymelektroden.
15. Verwendung des Kohlenstoff-Schaumstoffs nach einem der Ansprüche 7 bis 9 als Material zur Thermoisolation.
PCT/DE2010/001072 2010-07-13 2010-07-13 Verfahren zur herstellung von kohlenstoff-schaumstoffen WO2012006973A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010005730T DE112010005730A5 (de) 2010-07-13 2010-07-13 Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen
PCT/DE2010/001072 WO2012006973A1 (de) 2010-07-13 2010-07-13 Verfahren zur herstellung von kohlenstoff-schaumstoffen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2010/001072 WO2012006973A1 (de) 2010-07-13 2010-07-13 Verfahren zur herstellung von kohlenstoff-schaumstoffen

Publications (1)

Publication Number Publication Date
WO2012006973A1 true WO2012006973A1 (de) 2012-01-19

Family

ID=44059012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/001072 WO2012006973A1 (de) 2010-07-13 2010-07-13 Verfahren zur herstellung von kohlenstoff-schaumstoffen

Country Status (2)

Country Link
DE (1) DE112010005730A5 (de)
WO (1) WO2012006973A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921468A1 (de) * 2014-03-20 2015-09-23 CIC Energigune Verfahren zur Herstellung von flexiblen meso- oder makroporösen Kohlenstoffschaumstoffen
EP3059011A1 (de) * 2015-02-19 2016-08-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Poröser Kohlenstoffkörper, Herstellungsverfahren dafür und ammoniakabsorbierendes Material
US20170297923A1 (en) * 2014-07-03 2017-10-19 National University Of Singapore Highly dense nano-carbon foam with controlled porosity synthesized from hollow carbon nanoparticles
US10008338B2 (en) 2016-01-13 2018-06-26 Lawrence Livermore National Security, Llc High temperature oxygen treated carbon aerogels
EP3476476A4 (de) * 2016-07-22 2020-04-29 China Petroleum & Chemical Corporation Poröses material auf kohlenstoffbasis, herstellungsverfahren dafür und verwendung davon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254551A1 (de) * 1986-07-22 1988-01-27 The British Petroleum Company P.L.C. Verfahren zur Herstellung von porösen Formteilen
EP0994912A1 (de) 1997-07-05 2000-04-26 Ocellus Inc. Organische,offenzellige schäume mit niedrigen gewicht,offenzellige kohlenschäume mit niedrigen gewicht,und verfahren zu deren herstellung
US6248691B1 (en) * 1998-02-10 2001-06-19 Corning Incorporated Method of making mesoporous carbon
US20030153636A1 (en) * 2002-02-12 2003-08-14 Steven Dietz Mesoporous carbons and polymers from hydroxylated benzenes
DE10243240A1 (de) 2002-09-17 2004-03-25 Basf Ag Vorwiegend aus Kohlenstoff zusammengesetzte Schaumstoffe hoher innerer Oberfläche und Verfahren zu deren Herstellung
US7419649B2 (en) 2003-09-12 2008-09-02 Eric Gustave Lundquist Macroreticular carbonaceous material useful in energy storing devices
EP2218680A2 (de) * 2000-08-09 2010-08-18 British American Tobacco (Investments) Limited Poröse Kohlenstoffe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254551A1 (de) * 1986-07-22 1988-01-27 The British Petroleum Company P.L.C. Verfahren zur Herstellung von porösen Formteilen
EP0994912A1 (de) 1997-07-05 2000-04-26 Ocellus Inc. Organische,offenzellige schäume mit niedrigen gewicht,offenzellige kohlenschäume mit niedrigen gewicht,und verfahren zu deren herstellung
US6248691B1 (en) * 1998-02-10 2001-06-19 Corning Incorporated Method of making mesoporous carbon
EP2218680A2 (de) * 2000-08-09 2010-08-18 British American Tobacco (Investments) Limited Poröse Kohlenstoffe
US20030153636A1 (en) * 2002-02-12 2003-08-14 Steven Dietz Mesoporous carbons and polymers from hydroxylated benzenes
DE10243240A1 (de) 2002-09-17 2004-03-25 Basf Ag Vorwiegend aus Kohlenstoff zusammengesetzte Schaumstoffe hoher innerer Oberfläche und Verfahren zu deren Herstellung
US7419649B2 (en) 2003-09-12 2008-09-02 Eric Gustave Lundquist Macroreticular carbonaceous material useful in energy storing devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921468A1 (de) * 2014-03-20 2015-09-23 CIC Energigune Verfahren zur Herstellung von flexiblen meso- oder makroporösen Kohlenstoffschaumstoffen
US20170297923A1 (en) * 2014-07-03 2017-10-19 National University Of Singapore Highly dense nano-carbon foam with controlled porosity synthesized from hollow carbon nanoparticles
EP3059011A1 (de) * 2015-02-19 2016-08-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Poröser Kohlenstoffkörper, Herstellungsverfahren dafür und ammoniakabsorbierendes Material
US10008338B2 (en) 2016-01-13 2018-06-26 Lawrence Livermore National Security, Llc High temperature oxygen treated carbon aerogels
EP3476476A4 (de) * 2016-07-22 2020-04-29 China Petroleum & Chemical Corporation Poröses material auf kohlenstoffbasis, herstellungsverfahren dafür und verwendung davon
US11161745B2 (en) 2016-07-22 2021-11-02 China Petroleum And Chemical Corporation Carbon-based porous material and preparation method and use thereof

Also Published As

Publication number Publication date
DE112010005730A5 (de) 2013-05-29

Similar Documents

Publication Publication Date Title
Beltrame et al. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves
EP2982649B1 (de) Verfahren zur herstellung von aktivkohle
Omri et al. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus spina-christi seeds
EP1200343B1 (de) Verfahren zur herstellung von formaktivkohle
EP3362407A1 (de) Verfahren zur herstellung von aktivkohle und auf diese weise hergestellte aktivkohle sowie deren verwendung
DE202006016898U1 (de) Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Mikroporosität
DE102007050971A1 (de) Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Meso- und Makroporosität
WO2012006973A1 (de) Verfahren zur herstellung von kohlenstoff-schaumstoffen
Rahman et al. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration
KR20170124591A (ko) 염기성 관능기를 부여한 활성탄 및 그 제조 방법
RU2436625C1 (ru) Способ получения углеродного адсорбента
DE102011013314A1 (de) Mikroporöses Kohlenstoffmaterial und Verfahren zum Bilden desselben
EP3406566A1 (de) Poröses kohlenstoffmaterial, verfahren zur herstellung davon, filter, folie und katalysatorträger
DE202016100318U1 (de) Vorrichtung zur Modifizierung poröser Feststoffe
JP4142341B2 (ja) 活性炭及びその製法
Štefelová et al. Biosorption (removing) of Cd (II), Cu (II) and methylene blue using biochar produced by different pyrolysis conditions of beech and spruce sawdust
Haji et al. Characterization of activated carbon produced from urban organic waste
JP2001294414A (ja) 高強度、高吸着能を有する活性コークスの製造方法
Demiral et al. Preparation and characterization of activated carbons from poplar wood (Populus L.)
RU2531933C2 (ru) Способ получения древесноугольного сорбента
RU2597400C1 (ru) Способ получения композиционного сорбента на основе минерального и растительного углеродсодержащего сырья
Patel et al. Study of KOH impregnated jack fruit leaf based carbon as adsorbent for treatment of wastewater contaminated with nickel
Choudhary et al. From wild thornbush to high-performance activated carbon using a novel integrated furnace–microwave activation
RU2362734C1 (ru) Способ получения активного угля
DE102009040818A1 (de) Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100057303

Country of ref document: DE

Ref document number: 112010005730

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010005730

Country of ref document: DE

Effective date: 20130529

122 Ep: pct application non-entry in european phase

Ref document number: 10771633

Country of ref document: EP

Kind code of ref document: A1