RU2655403C1 - Способ упрочнения поверхности стального инструмента - Google Patents

Способ упрочнения поверхности стального инструмента Download PDF

Info

Publication number
RU2655403C1
RU2655403C1 RU2017107101A RU2017107101A RU2655403C1 RU 2655403 C1 RU2655403 C1 RU 2655403C1 RU 2017107101 A RU2017107101 A RU 2017107101A RU 2017107101 A RU2017107101 A RU 2017107101A RU 2655403 C1 RU2655403 C1 RU 2655403C1
Authority
RU
Russia
Prior art keywords
steel
hardening
tool
steel tool
tools
Prior art date
Application number
RU2017107101A
Other languages
English (en)
Inventor
Александр Анатольевич Шматов
Original Assignee
Александр Анатольевич Шматов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Анатольевич Шматов filed Critical Александр Анатольевич Шматов
Priority to RU2017107101A priority Critical patent/RU2655403C1/ru
Priority to EA201800109A priority patent/EA033499B1/ru
Application granted granted Critical
Publication of RU2655403C1 publication Critical patent/RU2655403C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Настоящее изобретение относится к металлургии, а именно к способам упрочняющей обработки окончательно изготовленных стальных деталей машин и инструментов без изменения их первоначальных размеров и структуры. Способ упрочнения поверхности стального инструмента включает предварительную подготовку поверхности стального инструмента, гидрохимческую обработку упомянутого стального инструмента в среде на основе компонента, образующего на стальной поверхности упрочняющую фазу и окончательный нагрев. Гидрохимическую обработку проводят в течение 40-100 мин в кипящей вододисперной щелочной среде, содержащей компонент, образующий на стальной поверхности нанооксидную упрочняющую фазу, в виде нанооксида с концентрацией 0,5-50 г/л и поверхностно-активное вещество в виде глицерина с концентрацией 0,5-50 г/л с добавкой водного аммиака, а окончательный нагрев стального инструмента проводят в воздушной атмосфере при температуре 140-200°С. В частных случаях осуществления изобретения в качестве упомянутого компонента кипящей вододисперной щелочной среды используют нанооксид олова, марганца, кремния, свинца, кобальта, никеля, алюминия, молибдена, цинка, сурьмы, ванадия, висмута, бора, бериллия, циркония, железа, хрома, вольфрама, титана или меди. В обрабатываемых инструментах обеспечивается композиционная структура при реализации двойственного характера упрочнения, причем на поверхности осаждается нанооксидное твердосмазочное покрытие с очень низким коэффициентом трения и в подслое формируется зона повышенных напряжений сжатия, сравнимых с уровнем напряжений, получаемых методами поверхностной пластической деформации, что существенно повышает работоспособность быстроизнашиваемых стальных изделий и инструментов. 1 з.п. ф-лы, 1табл., 1 пр.

Description

Область техники
Настоящее изобретение относится к металлургии и главным образом к способам упрочняющей обработки окончательно изготовленных стальных инструментов без изменения их первоначальных размеров и структуры.
Предшествующий уровень техники
Известен способ упрочнения инструмента из быстрорежущей стали (а.с. СССР №1351979, кл. С21D 9/22, 1987), который включает обезжиривание поверхности, сначала обработку в 5…10%-ном водном растворе тиоацетамида при 95…100°C, затем обработку в кипящем 40%-ном водном растворе оксида молибдена с последующим нагревом до 250…300°C. Данный способ реализуется следующим образом. Предварительно заточенный инструмент обезжиривают уайт-спиритом и помещают в ванну с кипящим 5…10%-ным водным раствором тиоацетамида, где выдерживают его в течение 30-40 мин до приобретения поверхностью темно-серого цвета. Затем инструмент переносят в другую ванну с кипящим 40%-ным водным раствором оксида молибдена, где выдерживают его в течение 30 мин. По окончании этого процесса инструмент промывают водой, сушат и прогревают в муфельной печи при температуре 250°C в течение 1 часа.
Обработка инструмента в двух водных химических растворах позволяет создавать на поверхности комплексы тиоацетамида с оксидом молибдена, которые при нагреве взаимодействуют до образования упрочняющих фаз на базе твердых оксидов, нитридов и других тугоплавких соединений. В результате применения этого способа повышается стойкость инструмента из быстрорежущей стали.
К недостаткам указанного способа следует отнести невысокую износостойкость инструмента, длительность многостадийной обработки в водных растворах, невозможность применения этого способа для инструментов из нетеплостойких сталей, т.к. при нагреве выше 180…200°C происходят структурные превращения, приводящие к деформации и разупрочнению закаленных инструментов.
Наиболее близким к предлагаемому является способ упрочнения инструмента из быстрорежущей стали (РФ, Пат. 2023027), подготовку поверхности, обработку в водном растворе при температуре не выше его кипения, в состав которого входят металл- и неметаллсодержащие компоненты для образования на инструментальной поверхности упрочняющей фазы и окончательный нагрев до температуры tком…Ac1, причем все операции полного технологического цикла многократно повторяют. В качестве металлсодержащих компонентов используют оксиды ванадия, молибдена, титана, хрома или кислоты, щелочи, соли на базе указанных металлов. В качестве неметаллсодержащих компонентов используют тиомочевину и сульфанол. Все компоненты в водной химической среде не превышают концентрацию, когда образуется нетехнологичная водная суспензия из-за стойкого осадка. Окончательный нагрев осуществляют или путем резания труднообрабатываемого материала, или путем нагрева в нагревательном устройстве с защитной средой, чтобы не окислялось полученное покрытие.
Однако данный способ упрочнения мало применим для инструментов из нетеплостойких сталей кроме быстрорежущих, требует защитной среды для образования упрочняющей фазы на поверхности в процессе проведения окончательного высокотемпературатурного нагрева и многократного повторения технологического процесса, имеет быструю истощаемость химических растворов из-за получения стойкого осадка и не позволяет значительно повышать стойкость упрочненных инструментов после их нагрева в окислительной среде ниже 200°С.
Раскрытие изобретения
В основу изобретения положена задача разработки способа поверхностного упрочнения готового стального инструмента с помощью термогидрохимической (гидрохимической + термической) обработки, при которой можно сформировать в инструменте композиционную структуру, составленную из макроэлементов с разными свойствами в виде композиции: «твердосмазочный слой - переходный слой - матрица». При этом достигается двойственный характер упрочнения: на поверхности осаждаются нанооксидные твердосмазочные покрытия, которые почти на порядок снижают коэффициент сухого трения по сравнению с исходным состоянием от 0,55-0,85 до 0,07-0,38, а в подслое формируется переходная зона с повышенными напряжениями сжатия (270-470 МПа), сравнимыми с уровнем напряжений, получаемых методами поверхностной пластической деформации. В результате такого структурно-композиционного упрочнения можно существенно повысить работоспособность различных быстроизнашиваемых стальных инструментов.
Существо изобретения заключается в том, что в новом способе упрочнения поверхности стального инструмента, включающем предварительную подготовку поверхности, гидрохимическую обработку в водной среде на базе компонентов, образующих на стальной поверхности упрочняющую фазу и окончательный нагрев, согласно данному изобретению гидрохимическую обработку проводят в течение 40…100 мин в кипящей вододисперной среде, содержащей нанооксид с концентрацией 0,5…50 г/л и поверхностно-активного вещества (глицерина) с концентрацией 0,5…50 г/л с добавкой легкоиспаряемого водного аммиака для создания щелочного раствора (рН>7), а окончательный нагрев инструмента проводят в воздушной атмосфере при температуре 140…200°C. Предлагаемый способ распространяется на все марки инструментальных, в т.ч. нетеплостойких и теплостойких сталей.
Предварительную подготовку поверхности проводят по общепринятой методике: сначала обезжиривают в различных органических и водных растворителях, промывают в воде и затем декапируют в 5…10%-ном водном растворе неорганических кислот с последующей промывкой в воде.
В качестве основного компонента вододисперсной среды, создающего на поверхности нанооксидную упрочняющую фазу, используют наноксид различных элементов, таких как: нанооксид олова, марганца, кремния, свинца, кобальта, никеля, алюминия, молибдена, цинка, сурьмы, ванадия, висмута, бора, бериллия, циркония, железа, хрома, вольфрама, титана или меди. Поверхностно-активное вещество (ПАВ) в виде глицерина вводят в состав вододисперсной среды для создания ювенильной поверхности на стальном инструменте и диспергирования агрегированных оксидных частиц в условиях расклинивающего действия ПАВ и гидродинамического воздействия кипящей вододисперсной среды. Концентрация нанооксида и ПАВ в пределах 0,5…50 г/л выбрана из расчета, что при снижении их содержания ниже 0,5 г/л эффект упрочнения сталей незначителен, а увеличение их содержания выше 50 г/л делает состав вододисперсной среды нетехнологичным.
При наличии щелочного характера (рН>7) вододисперсной среды, что создается путем добавления туда водного аммиака (NH4OH), достигается стабильное осаждение на стальной поверхности качественных покрытий из наноструктурированных оксидов. При снижении рН<7 нарушается процесс устойчивого осаждения мономолекулярного твердого слоя, меняется морфология и качество покрытий, появляются черные следы коррозии на их поверхности, что существенно снижает рабочие свойства стального инструмента. Для поддержания щелочного состояния среды (рН>7) в нее постоянно добавляют легкоиспаряемый водный аммиак со свойствами щелочи.
Выбор времени гидрохимической обработки сталей обусловлен тем, что время в пределах 40…100 мин является оптимальным, т.к. ниже 40 мин - не достигается улучшение триботехнических и эксплуатационных свойств стального инструмента, выше 100 мин - все оптимальные свойства снижаются, а сам процесс обработки становится нетехнологичным.
Выбор температурного интервала (140…200°С) при окончательном нагреве в воздушной атмосфере гидрохимически обработанных сталей обусловлен тем, что в указанном интервале температур снимаются критические остаточные напряжения, вызванные предшествующей обработкой в вододисперсной среде, и проходят благоприятные фазовые превращения в покрытии при образовании сложных нанооксидов, легированных железом матрицы и в подслое, модифицированном этими оксидами, что в целом улучшает триботехнические и эксплуатационные свойства сталей. Верхний температурный предел окончательного нагрева ограничен температурой 200°C, поскольку выше этой температуры при нагреве в воздушной среде наблюдается местное окисление поверхности, в закаленной матрице нетеплостойких сталей проходят разупрочняющие структурно-фазовые превращения, что резко ухудшает рабочие свойства стального инструмента. Нижний температурный предел окончательного нагрева ограничен температурой 140°C, поскольку ниже этой температуры не релаксируются критические остаточные напряжения, что может вызвать частичное отслаивание покрытия и трещинообразование стального инструмента в процессе его эксплуатации. Длительность выдержки при температуре 140…200°С выбирается согласно общепринятым нормам термообработки из условия полного прогрева различных инструментов и составляет для разных минимальных размеров и диаметров инструментов в среднем 30…60 мин и более. Охлаждение может проходить на воздухе или в масле.
Лучший вариант осуществления изобретения
Предлагаемый способ упрочнения поверхности стального инструмента, преимущественно для интенсивно эксплуатируемого режущего или штампового инструмента, осуществляют следующим образом. Инструмент из теплостойких быстрорежущих сталей обезжиривали в бензине Б-70, промывали в горячей и холодной воде, затем декапировали в 5... 10%-ном водном растворе серной кислоты в течение 1 мин и снова промывали в воде. После этого инструмент подвергали специальной обработке в течение 40…100 мин в кипящей вододисперсной среде, содержащей нанооксид и поверхностно-активное вещество с их концентрацией 0,5…50 г/л, в которую постоянно добавляли легкоиспаряемый водный аммиак для создания щелочного раствора (рН>7). Обработанный инструмент с твердосмазочными покрытиями промывали в горячей и холодной воде, и затем подвергали окончательному нагреву в муфельной печи с воздушной атмосферой при температуре 140…200°С в течение времени согласно общепринятым нормам термообработки (30…60 мин) с последующим охлаждением на воздухе.
Примеры
Эксплуатационную стойкость инструмента оценивали по результатам испытаний метчиков М6Х1, изготовленных из стали Р18 путем нарезания резьбы 5Н6Н в гайках из жаропрочного никелевого сплава ЭИ437Б с твердостью НВ 300…350. Нарезание резьбы осуществляли на резьбонарезном станке Г813-5026 при следующих режимах обработки: V=5 м/мин, S - ручная с самозатягиванием, СОЖ - масло МР-7. В зависимости от состава вододисперсных сред, а также режима гидрохимической и термической обработки определяли коэффициент трения упрочненной поверхности при сухом скольжении (без смазки). Условия триботехнических испытаний на микротрибометре возвратно-поступательного типа были следующие: нагрузка 1 Н; длина хода (трека) 3 мм, скорость 4 мм/с; пара трения: упрочненная сталь Р18 (плоскость) - сталь ШХ15 (сфера диаметром 4 мм). Коэффициент трения стальной поверхности до ее упрочнения составил 0,573 при 1500 циклах скольжения. Результаты сравнительных триботехнических и эксплуатационных испытаний приведены в табл. 1. Показатели определяли как усредненное значение испытаний нескольких образцов, упрочненных по одному режиму.
Figure 00000001
Figure 00000002
Из приведенных данных следует, что использование предлагаемого способа упрочнения поверхности стального инструмента позволяет, по сравнению с прототипом, снизить коэффициент трения стальной поверхности в 1,2…5,9 раз и повысить стойкость метчиков при резании труднообрабатываемого жаропрочного сплава в 1,1…2,4 раза.
Промышленная применимость
Предлагаемый способ можно применить в условиях любого инструментального, машиностроительного и другого производства, оснащенного оборудованием для химической и термической обработки инструментальных сталей.

Claims (2)

1. Способ упрочнения поверхности стального инструмента, включающий предварительную подготовку поверхности стального инструмента, гидрохимическую обработку упомянутого стального инструмента в среде на основе компонента, образующего на стальной поверхности упрочняющую фазу, и окончательный нагрев, отличающийся тем, что гидрохимическую обработку проводят в течение 40-100 мин в кипящей вододисперной щелочной среде, содержащей компонент, образующий на стальной поверхности нанооксидную упрочняющую фазу, в виде нанооксида с концентрацией 0,5-50 г/л и поверхностно-активное вещество в виде глицерина с концентрацией 0,5-50 г/л с добавкой водного аммиака, а окончательный нагрев стального инструмента проводят в воздушной атмосфере при температуре 140-200°С.
2. Способ по п. 1, отличающийся тем, что в качестве упомянутого компонента кипящей вододисперной щелочной среды используют нанооксид олова, марганца, кремния, свинца, кобальта, никеля, алюминия, молибдена, цинка, сурьмы, ванадия, висмута, бора, бериллия, циркония, железа, хрома, вольфрама, титана или меди.
RU2017107101A 2017-03-03 2017-03-03 Способ упрочнения поверхности стального инструмента RU2655403C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017107101A RU2655403C1 (ru) 2017-03-03 2017-03-03 Способ упрочнения поверхности стального инструмента
EA201800109A EA033499B1 (ru) 2017-03-03 2018-02-16 Способ упрочнения готовых к эксплуатации стальных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017107101A RU2655403C1 (ru) 2017-03-03 2017-03-03 Способ упрочнения поверхности стального инструмента

Publications (1)

Publication Number Publication Date
RU2655403C1 true RU2655403C1 (ru) 2018-05-28

Family

ID=62559870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017107101A RU2655403C1 (ru) 2017-03-03 2017-03-03 Способ упрочнения поверхности стального инструмента

Country Status (2)

Country Link
EA (1) EA033499B1 (ru)
RU (1) RU2655403C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248079A (en) * 1988-11-29 1993-09-28 Li Chou H Ceramic bonding method
RU2023027C1 (ru) * 1991-07-30 1994-11-15 Шматов Александр Анатольевич Способ упрочнения инструмента из быстрорежущей стали
RU2195516C2 (ru) * 1996-08-28 2002-12-27 Дир Энд Компани Способ упрочнения поверхности металла (варианты) и суспензия для упрочнения металлической поверхности
RU2435637C2 (ru) * 2006-04-17 2011-12-10 Алтана Электрикал Инсулейшн Гмбх Дисперсия нанооксида алюминия в смоле или системе растворителей

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248079A (en) * 1988-11-29 1993-09-28 Li Chou H Ceramic bonding method
RU2023027C1 (ru) * 1991-07-30 1994-11-15 Шматов Александр Анатольевич Способ упрочнения инструмента из быстрорежущей стали
RU2195516C2 (ru) * 1996-08-28 2002-12-27 Дир Энд Компани Способ упрочнения поверхности металла (варианты) и суспензия для упрочнения металлической поверхности
RU2435637C2 (ru) * 2006-04-17 2011-12-10 Алтана Электрикал Инсулейшн Гмбх Дисперсия нанооксида алюминия в смоле или системе растворителей

Also Published As

Publication number Publication date
EA201800109A2 (ru) 2018-09-28
EA201800109A3 (ru) 2018-11-30
EA033499B1 (ru) 2019-10-31

Similar Documents

Publication Publication Date Title
JP4762077B2 (ja) 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
JP5322001B2 (ja) 鉄鋼材料及びその製造方法並びに高周波焼入れ部品
JP7082944B2 (ja) クロムベースのコーティング、クロムベースのコーティングを生成する方法およびコーティングされた物体
JP2007119851A (ja) 黒色めっき膜およびその形成方法、めっき膜を有する物品
US6899956B2 (en) Metal coloring process and solutions therefor
RU2655403C1 (ru) Способ упрочнения поверхности стального инструмента
RU2721730C1 (ru) Стальной элемент с модифицированной поверхностью, образованный путем пропитки никелем и цинком, и способ его изготовления
JP5331524B2 (ja) 鉄鋼の黒化処理液、黒化処理方法及び鉄鋼材
CN104674158B (zh) 一种popo盐浴三元共渗复合共渗处理方法
CN108138327B (zh) 耐腐蚀性和加工后的外观优异的钢线材
CN109136825B (zh) 一种利用预氧化提高Co-Al-W系高温合金抗热腐蚀性能的方法
RU2655404C1 (ru) Способ упрочнения твердого сплава
JP5263175B2 (ja) 放電被覆方法およびそれに用いる圧粉体電極
Chang et al. Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment
RU2676125C2 (ru) Способ упрочнения алмазных инструментов
JP4539457B2 (ja) 摺動部材と潤滑油との組合せ及び摺動方法
JP4104570B2 (ja) 摺動部材の製造方法
CN104561873B (zh) 一种基于表面预处理碳钢热浸铝工艺
JP5258928B2 (ja) 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
WO2007107854A1 (en) A method of eliminating fretting corrosion and tribo-corrosion of contact surfaces of machine parts operating in direct contact with one another
RU2023027C1 (ru) Способ упрочнения инструмента из быстрорежущей стали
JP2004011026A (ja) アルミニウム又はアルミニウム合金の表面処理方法
JP3023738B2 (ja) チタン製エンジンバルブの表面改質方法
JPH07108319A (ja) 潤滑性及び耐食性にすぐれる冷間鍛造用棒鋼線材の製造方法
KR100349809B1 (ko) 금속재의 열처리방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210304