RU2650425C1 - Гирокомпас с визуальным каналом - Google Patents

Гирокомпас с визуальным каналом Download PDF

Info

Publication number
RU2650425C1
RU2650425C1 RU2017106588A RU2017106588A RU2650425C1 RU 2650425 C1 RU2650425 C1 RU 2650425C1 RU 2017106588 A RU2017106588 A RU 2017106588A RU 2017106588 A RU2017106588 A RU 2017106588A RU 2650425 C1 RU2650425 C1 RU 2650425C1
Authority
RU
Russia
Prior art keywords
rod
theodolite
axis
longitudinal axis
gyroscopic
Prior art date
Application number
RU2017106588A
Other languages
English (en)
Inventor
Ефим Леонидович Межирицкий
Юрий Владимирович Ленский
Виктор Иванович Цветков
Валерий Петрович Царьков
Юрий Иванович Червяков
Сергей Дмитриевич Паркачев
Максим Дмитриевич Введенский
Евгений Андреевич Хомич
Original Assignee
Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") filed Critical Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority to RU2017106588A priority Critical patent/RU2650425C1/ru
Application granted granted Critical
Publication of RU2650425C1 publication Critical patent/RU2650425C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/34Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes
    • G01C19/38Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes with north-seeking action by other than magnetic means, e.g. gyrocompasses using earth's rotation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

Изобретение относится к области приборостроения и используется при определении азимутов. Гирокомпас с визуальным каналом содержит гироскопическую часть в виде установленного в герметичном корпусе карданова подвеса (КП), на раме которого установлен термостат, содержащий гироблок, наклономеры, приводы осей КП, блок электронных приборов, персональный компьютер, связанные между собой посредством соединительных электрических кабелей, при этом гироскопическая часть установлена на опорном устройстве. Отличительная особенность заключается в том, что гирокомпас содержит автоколлимационный теодолит, штангу, датчик угла (ДУ) теодолита и ДУ гироскопической части. При этом на одном конце штанги установлена гироскопическая часть так, что наружная ось КП жестко закреплена на штанге на одной линии с ее продольной осью с возможностью вращения рамы КП вокруг продольной оси штанги. На другом конце штанги установлен теодолит так, что наружная ось теодолита лежит на одной линии с продольной осью штанги. На штанге установлены ДУ теодолита и ДУ гироскопической части, обеспечивающие, соответственно, фиксацию углов поворота визирной трубы теодолита и рамы КП относительно продольной оси штанги. Опорное устройство выполнено с возможностью установки продольной оси штанги в вертикальное положение; в блок электронных приборов введен блок авто коллиматора, выполненный с возможностью приема сигнала с автоколлиматора и передачи цифрового сигнала в компьютер. Техническим результатом заявленного изобретения является расширение функциональных возможностей и повышение точности измерений благодаря передаче вектора азимута на внешний хранитель направления напрямую без дополнительных приборов. 1 ил.

Description

Изобретение относится к области приборостроения и используется при определении азимутов.
Известен гирокомпас, описанный в патенте US 2902772 [1], в котором использован чувствительный элемент - поплавковый интегрирующий гироскоп и карданов подвес чувствительного элемента. Гироскоп установлен на платформе, которая лежит в плоскости внутренней рамы карданова подвеса и имеет возможность разворота для установки оси чувствительности гироскопа в плоскости меридиана, а азимут определяют по сигналам датчика угла, установленного на оси карданова подвеса, с помощью которого определяют угловое положение платформы относительно внутренней рамы подвеса, определяя тем самым азимут. Недостатком этого гирокомпаса является сложность конструкции и низкая точность измерений.
Наиболее близким устройством по сущности и достигаемому эффекту является гирокомпас, описанный в патенте RU 2339910 [2], в котором в качестве чувствительных элементов гирокомпаса выбраны: датчик угловой скорости (ДУС) и два наклономера для контроля положения оси чувствительности ДУС относительно горизонтальной плоскости. Указанные чувствительные элементы расположены в термостате, который установлен в двухосном кардановом подвесе. Датчик угла установлен на внутренней оси подвеса с возможностью измерения углового положения термостата относительно рамы подвеса. ДУС установлен в термостате таким образом, что указанный датчик угла позволяет определять угол между наружной осью подвеса, и осью вращения ротора гиромотора ДУС (главной осью ДУС) и может измерять углы между измерительными положениями ДУС в азимуте. Для повышения точности гирокомпас производит измерения в нескольких положениях и компенсирует уходы гироскопа. Оптический отражатель (ОО) предназначен для обеспечения возможности передачи измеренного прибором азимута на объекты, азимут которых требуется определить. Он представляет собой набор призм с взаимно перпендикулярными гранями. ОО закрепляется на свободном торце наружной оси так, чтобы ребра призм были перпендикулярны внутренней оси карданова подвеса.
Основным недостатком конструкции является то, что измерения включают все погрешности изготовления оптического отражателя, погрешности внешнего теодолита, а также погрешности снятия отчетов оператором при наведении оптической оси теодолита на ОО, т.е. недостаточная точность измерений.
Задачей изобретения является расширение функциональных возможностей (вектор азимута на внешний хранитель направления передается напрямую без дополнительных приборов), повышение точности измерений.
Технический результат достигается тем, что в гирокомпас с визуальным каналом, содержащий гироскопическую часть в виде установленного в герметичном корпусе карданова подвеса (КП), на раме которого установлен термостат, содержащий гироблок, наклономеры, приводы осей КП; блок электронных приборов, персональный компьютер, связанные между собой посредством соединительных электрических кабелей, при этом гироскопическая часть установлена на опорном устройстве, введены автоколлимационный теодолит, штанга, датчик угла (ДУ) теодолита и ДУ гироскопической части, при этом, на одном конце штанги установлена гироскопическая часть так, что наружная ось КП жестко закреплена на штанге на одной линии с ее продольной осью с возможностью вращения рамы КП вокруг продольной оси штанги, на другом конце штанги установлен теодолит, так, что наружная ось теодолита лежит на одной линии с продольной осью штанги; на штанге установлены ДУ теодолита и ДУ гироскопической части обеспечивающие, соответственно, фиксацию углов поворота визирной трубы теодолита и рамы КП относительно продольной оси штанги, опорное устройство выполнено с возможностью установки продольной оси штанги в вертикальное положение; в блок электронных приборов введен блок автоколлиматора, выполненный с возможностью приема сигнала с автоколлиматора и передачи цифрового сигнала в компьютер.
На чертеже представлен измерительный блок на поворотном столе. Измерительный блок состоит из гирокомпаса и расположенного на нем автоколлимационного теодолита.
Принцип действия гирокомпаса основан на измерении проекции горизонтальной составляющей скорости вращения Земли в нескольких положениях.
Гирокомпас содержит гироблок (1), работающий в режиме датчика угловой скорости (ДУС), и два наклономера (2), измеряющих изменения углов наклона гироблока в двух взаимно перпендикулярных плоскостях. Эти чувствительные элементы, а также усилители ДУС, закреплены на приборной платформе (ПП) (3) посредством двухосного карданова подвеса (КП) (4) установленного в герметичный корпус (5) гирокомпаса. Внутренняя ось КП в рабочем положении располагается горизонтально. Подшипниковые опоры ПП находятся на раме КП, имеющей собственную (наружную) ось устанавливаемую вертикально. Рама с помощью подшипникового узла может вращаться вокруг штанги, устанавливаемой вертикально. На обеих осях КП имеются приводы (на чертеже не показаны), которые устанавливают раму и ПП в измерительные положения и удерживают ПП в этих положениях. Электрические соединения приборов, находящихся на ПП и осях КП, осуществляются через токоподводы. Приборная платформа размещена внутри термостата (на чертеже не показан) и может вращаться вокруг горизонтальной оси вместе с ним. Корпус термостата расположен на раме и вращается вместе с ней вокруг наружной оси КП. Ось прецессии гироблока в измерительных положениях устанавливается вертикально так, что гироскопический момент направлен по направлению внутренней оси КП.
Корпус теодолита (6) с помощью подшипникового узла может вращаться вокруг продольной оси штанги (7), устанавливаемой вертикально вручную (и лежащей на одной линии с азимутальной осью теодолита). Точная наводка зрительной трубы по азимутальной оси теодолита, как в обычном теодолите, выполняется с помощью ручного привода с микрометренным винтом. Зрительная труба теодолита закреплена на теодолитной платформе (ТП), имеющей два подшипниковых узла по оси устанавливаемой горизонтально, которыми она опирается на алидаду теодолита. На этой оси ТП находится датчик угла (на чертеже не показан) для отсчета углов наклона трубы от горизонтальной плоскости. На ТП установлены два наклономера (на чертеже не показаны) с осями чувствительности, направленными вдоль оси вращения трубы и вдоль оптической оси трубы. Второй наклономер необходим для установки в горизонтальную плоскость ребер призмы - отражателя, который устанавливается на торце горизонтальной оси теодолита. Отражатель расширяет функциональные возможности гирокомпаса. Развороты и точная наводка трубы вокруг горизонтальной оси аналогичны разворотам и наводке вокруг вертикальной оси. Оси теодолита снабжены сервоприводами. Предусмотрена возможность выставки перпендикулярности осей теодолита. На обеих осях устанавливаются скользящие токоподводы.
Сервоприводы позволяют:
- автоматически горизонтировать трубу теодолита по сигналам наклономеров;
- производить калибровку датчиков угла на осях теодолита;
- разворачивать автоматически оси теодолита в полуприемах (между положениями круг-лево и круг-право);
- автоматически устанавливать трубу теодолита в измерительные положения во втором и последующих приемах теодолитных измерений, после проведения оператором первого, «обучающего» приема измерений.
Для установки на точку гирокомпас снабжен источником света, установленным на раме КП, тонкий луч которого направлен вертикально вниз вдоль оси вала через защитное стекло.
КП гирокомпаса и теодолит имеют одну объединяющую их неподвижную вертикальную штангу с двумя датчиками угла. Один датчик (8) находится внутри герметичного корпуса, принадлежит гирокомпасу и определяет положение горизонтальной оси приборной платформы относительно корпуса. Другой датчик (9) принадлежит теодолиту и фиксирует его положение относительно того же корпуса.
Каждый датчик угла состоит из двух частей - позиционной и высокоточной.
Опорное устройство (10) в виде штатива (или кронштейн) для установки измерительного блока имеет столик с тремя опорными площадками, находящимися в одной плоскости, тремя подъемными винтами для вертикализации штанги гиротеодолита и три прижима, обеспечивающих неподвижность корпуса прибора во время разворотов ПП и теодолита.
Блок электронных приборов (БЭП) представляет из себя набор электронных блоков в герметичном корпусе с термостатированием. БЭП содержит электронные приборы, обеспечивающие функционирование чувствительных элементов, находящихся в измерительном блоке. Также БЭП содержит электронное устройство для обмена информацией между ПК и чувствительными элементами и исполнительными органами в измерительном блоке. В БЭП введен блок автоколлиматора (БАК), выполненный с возможностью приема сигнала с автоколлиматора (АК) и преобразования его в цифровой сигнал для передачи в компьютер.
Персональный компьютер предназначен для управления работой прибора путем подачи команд и управления приводами на осях карданова подвеса, опроса и накопления информации с чувствительного элемента с последующей ее обработкой и вычислением выходной величины в виде азимута наружной оси КП и нормали внешнего отражателя.
Заявляемое устройство работает следующим образом.
На БЭП подают питание от внешнего источника.
По командам с пульта обеспечивается подача внешнего питания на измерительный блок и БЭП, далее БЭП начинает работать в режиме ожидания команд от компьютера по интерфейсу и приему цифровой информации.
Производится установка наружной оси гироскопической части в вертикальное положение по сигналам наклономеров.
Устанавливают визирную ось зрительной трубы теодолита в горизонтальную плоскость по сигналам наклономеров теодолитной части.
Посредством привода внутренней оси КП ось прецессии гироблока устанавливается в вертикальное положение.
Подают команду компьютеру провести грубое измерение азимута внутренней оси КП.
Далее производятся измерения сигналов ДУС F1 и датчика угла гироскопической части. Информация о сигнале ДУ поступает в компьютер и запоминается. Затем компьютер подает команды на разворот ДУС из исходного положения на 90° вокруг наружной оси КП и производит измерение сигнала ДУС F2, снимает отсчет ДУ. По результатам измерений сигналов в двух положениях компьютер рассчитывает приблизительное значение азимута вектора кинетического момента (h) ДУС в исходном положении по формуле: Ah = arctg F1/F2, где Ah - азимут вектора кинетического момента; F1,2, - сигналы ДУС.
Квадрант, в котором находится Ah определяется по знакам F. Таким образом, происходит привязка отсчетов датчика угла наружной оси КП к азимуту вектора кинетического момента, которая позволяет произвести измерение азимута с высокой точностью не только вектора кинетического момента ДУС, но и направления наружной оси КП.
Далее производится установка гироблока в четыре известных измерительных положения для измерения азимута за исключением того, что в данном устройстве наружная ось расположена всегда вертикально и разворот происходит вокруг нее.
В первом и третьем измерительных положениях вектор h направлен приблизительно на север, во втором и четвертом - приблизительно на юг. Для установки ДУСа в первое положение из исходного необходимо развернуть его на угол равный азимуту наружной оси КП, определенному при грубом измерении. В первом и втором положениях ось прецессии ДУСа направлена вертикально вверх, в третьем и четвертом положении ось прецессии ДУСа направлена вертикально вниз. Перемещение ДУСа из второго в третье положение достигается путем разворота ДУСа в исходное, последующего разворота вокруг внутренней оси КП на 180 и разворота вектора h вокруг наружной оси КП на север по показаниям ДУ.
По результатам измерений в первом и втором положениях, определяется азимут вектора h в первом положении (первом полу приеме); по результатам измерений в третьем и четвертом положениях определяется азимут h в третьем положении (во втором полу приеме).
Далее компьютер рассчитывает азимут внутренней оси КП: рассчитываются азимуты внутренней оси при направлениях оси прецессии гироблока вверх и вниз в виде соответствующих сумм отсчета датчика угла и гироскопического азимута в первом и втором полуприемах, а искомый азимут внутренней оси вычисляется как среднее арифметическое этих сумм.
Для того, чтобы передать азимут базовой оси гироскопической части на хранитель направления, на который наведена визирная труба, производится калибровка, при которой определяются отсчеты датчиков угла гироскопической и теодолитной части, при которых базовая ось гироскопической части параллельна оптической оси зрительной трубы. На первом этапе калибровки, определяются и запоминаются отсчеты датчиков угла гироскопической и теодолитной части, при которых базовая ось гироскопической части параллельна внутренней оси поворота зрительной трубы. Для этого наружная ось КП располагается горизонтально, после чего снимаются отсчеты с наклономеров и ДУ гироскопической и теодолитной части. Разности отсчетов ДУ и наклономера, соответственно, гироскопической и теодолитной части, дают отсчет ДУ, при котором соответствующая ось (внутренняя ось КП или внутренняя ось поворота зрительной трубы) будет лежать в плоскости горизонта, то есть эти оси будут параллельны. Для учета негоризонтальности наружных осей теодолитной и гироскопической частей при калибровке снимаются отсчеты еще в двух измерительных положениях - втором и третьем. Второе измерительное положение: наружная ось горизонтальна, внутренняя ось обоих частей прибора развернута на 90°, таким образом, чтобы очи чувствительности наклономеров были направлены вдоль наружной оси. Третье измерительное положение отличается от первого разворотом вокруг наружной оси на 180°. Полусумма сигналов наклономеров во втором и третьем положениях даст негоризонтальность наружной оси, которую нужно учесть в вычислении кодов ДУ, при которых базовая ось гироскопической части и внутренняя ось поворота зрительной трубы параллельны: ϕ0ДУ1нм1ДУ1-arcsin(fHM1/(fm*cos(dN))), где ϕ0 - отсчет ДУ, при котором соответствующая внутренняя ось совпадает с другой внутренней осью, ϕДУ1 и ϕнм1 - отсчеты ДУ и угол отклонения оси чувствительности наклономера в первом измерительном положении, fHM1 - сигнал наклономера в первом измерительном положении, fm - масштабный коэффициент наклономера, dN - негоризонтальность наружной оси при калибровке, для вычислений берутся отсчеты ДУ и наклономеров гироскопической или теодолитной части соответственно. Далее, чтобы получить отсчеты датчиков угла гироскопической и теодолитной части, при которых базовая ось гироскопической части совпадает с оптической осью зрительной трубы, на втором этапе калибровки внутренняя ось выставляется вертикально и оптическая ось визирной трубы наводится на технологический отражающий элемент в четвертом измерительном положении. Для перехода в пятое измерительное положение производится разворот теодолитной части вокруг его наружной и внутренней осей на 180°, после чего труба снова наводится на технологический отражающий элемент. Вычисляется угол неперпендикулярности внутренней оси разворота визирной трубы и ее оптической оси: dϕ=0.5*(ϕДУ5ДУ4). Окончательно получаем отсчет ДУ теодолитной части, при котором оптическая ось визирной трубы параллельна базовой оси гироскопической части: Ф00+90°-dϕ.
Таким образом, заявлен гирокомпас с визуальным каналом, содержащий гироскопическую часть в виде установленного в герметичном корпусе карданова подвеса (КП), на раме которого установлен термостат, содержащий гироблок, наклономеры, приводы осей КП; блок электронных приборов, персональный компьютер, связанные между собой посредством соединительных электрических кабелей, при этом гироскопическая часть установлена на опорном устройстве. Отличительная особенность заключается в том, что гирокомпас содержит автоколлимационный теодолит, штангу, датчик угла (ДУ) теодолита и ДУ гироскопической части, при этом, на одном конце штанги установлена гироскопическая часть так, что наружная ось КП жестко закреплена на штанге на одной линии с ее продольной осью с возможностью вращения рамы КП вокруг продольной оси штанги, на другом конце штанги установлен теодолит так, что наружная ось теодолита лежит на одной линии с продольной осью штанги; на штанге установлены ДУ теодолита и ДУ гироскопической части обеспечивающие, соответственно, фиксацию углов поворота визирной трубы теодолита и рамы КП относительно продольной оси штанги, опорное устройство выполнено с возможностью установки продольной оси штанги в вертикальное положение; в блок электронных приборов введен блок автоколлиматора, выполненный с возможностью приема сигнала с автоколлиматора и передачи цифрового сигнала в компьютер.
Техническим результатом заявленного изобретения является расширение функциональных возможностей и повышение точности измерений благодаря тому, что вектор азимута на внешний хранитель направления передается напрямую без дополнительных приборов.
Источники информации
1. Патент US №2902772, опубл. 1959 г., МПК (аналог).
2. Патент RU №2339910, опубл. 2008 г., МПК G01С 19/38 (прототип).

Claims (1)

  1. Гирокомпас с визуальным каналом, содержащий гироскопическую часть в виде установленного в герметичном корпусе карданова подвеса (КП), на раме которого установлен термостат, содержащий гироблок, наклономеры, приводы осей КП; блок электронных приборов, персональный компьютер, связанные между собой посредством соединительных электрических кабелей, при этом гироскопическая часть установлена на опорном устройстве, отличающийся тем, что содержит автоколлимационный теодолит, штангу, датчик угла (ДУ) теодолита и ДУ гироскопической части, при этом на одном конце штанги установлена гироскопическая часть так, что наружная ось КП жестко закреплена на штанге на одной линии с ее продольной осью с возможностью вращения рамы КП вокруг продольной оси штанги, на другом конце штанги установлен теодолит так, что наружная ось теодолита лежит на одной линии с продольной осью штанги; на штанге установлены ДУ теодолита и ДУ гироскопической части, обеспечивающие, соответственно, фиксацию углов поворота визирной трубы теодолита и рамы КП относительно продольной оси штанги, опорное устройство выполнено с возможностью установки продольной оси штанги в вертикальное положение; в блок электронных приборов введен блок автоколлиматора, выполненный с возможностью приема сигнала с автоколлиматора и передачи цифрового сигнала в компьютер.
RU2017106588A 2017-02-28 2017-02-28 Гирокомпас с визуальным каналом RU2650425C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017106588A RU2650425C1 (ru) 2017-02-28 2017-02-28 Гирокомпас с визуальным каналом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017106588A RU2650425C1 (ru) 2017-02-28 2017-02-28 Гирокомпас с визуальным каналом

Publications (1)

Publication Number Publication Date
RU2650425C1 true RU2650425C1 (ru) 2018-04-13

Family

ID=61977117

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017106588A RU2650425C1 (ru) 2017-02-28 2017-02-28 Гирокомпас с визуальным каналом

Country Status (1)

Country Link
RU (1) RU2650425C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966744A (en) * 1958-07-18 1961-01-03 Mueller Fritz Kurt Gyroscopic theodolite assembly
SU1566873A1 (ru) * 1988-07-25 1991-09-15 Предприятие П/Я Х-5827 Гиротеодолит
RU2339910C1 (ru) * 2007-06-01 2008-11-27 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦ АП") Гирокомпас
UA73373U (en) * 2012-02-17 2012-09-25 Национальный Технический Университет Украины "Киевский Политехнический Институт" Gyro-theodolite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966744A (en) * 1958-07-18 1961-01-03 Mueller Fritz Kurt Gyroscopic theodolite assembly
SU1566873A1 (ru) * 1988-07-25 1991-09-15 Предприятие П/Я Х-5827 Гиротеодолит
RU2339910C1 (ru) * 2007-06-01 2008-11-27 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦ АП") Гирокомпас
UA73373U (en) * 2012-02-17 2012-09-25 Национальный Технический Университет Украины "Киевский Политехнический Институт" Gyro-theodolite

Similar Documents

Publication Publication Date Title
US8826550B2 (en) Geographically north-referenced azimuth determination
CN103292801B (zh) 光纤陀螺经纬仪及其寻北方法
IL198109A (en) Facility, system and method for finding the north
JPS5912966B2 (ja) 測角器を自動整準する方法とその装置
CN201159646Y (zh) 捷联式多位置陀螺罗盘
CN101776445A (zh) 一种磁悬浮陀螺全站仪
CN101033967A (zh) 基于光纤陀螺的全站仪组合定向方法
CN104833348A (zh) 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
CN103162712B (zh) 圆光栅测角偏差处理及轴系歪斜补偿方法
CN201697623U (zh) 用于电子经纬仪的一种激光下对中装置
RU2339910C1 (ru) Гирокомпас
WO2020215855A1 (zh) 一种利用磁悬浮陀螺精密测定地理纬度的方法
RU2611575C1 (ru) Гирокомпас
CN110108265B (zh) 一种自主获取地理纬度并自动寻北的陀螺测量仪器
RU2650425C1 (ru) Гирокомпас с визуальным каналом
CN1034835C (zh) 快速高精度陀螺经纬仪
CN114838721B (zh) 一种光纤陀螺定向仪
RU2656263C1 (ru) Гирокомпас с визуальным каналом
CN107179066B (zh) 旋转定标装置及其定标方法
Gonsette et al. AUTODIF: automatic absolute DI measurements
CN105758340B (zh) 新型火炮身管内膛直线度检测设备
CN108716922B (zh) 一种自身核验的北向基准装置
RU2445574C1 (ru) Маркшейдерский гирокомпас
CN107228649B (zh) 一种用于绝对地磁观测的自动化磁通门经纬仪
RU2408843C1 (ru) Аналитический гирокомпас для квазистатических измерений

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20220325