WO2020215855A1 - 一种利用磁悬浮陀螺精密测定地理纬度的方法 - Google Patents

一种利用磁悬浮陀螺精密测定地理纬度的方法 Download PDF

Info

Publication number
WO2020215855A1
WO2020215855A1 PCT/CN2020/074469 CN2020074469W WO2020215855A1 WO 2020215855 A1 WO2020215855 A1 WO 2020215855A1 CN 2020074469 W CN2020074469 W CN 2020074469W WO 2020215855 A1 WO2020215855 A1 WO 2020215855A1
Authority
WO
WIPO (PCT)
Prior art keywords
gyro
gyroscope
magnetic levitation
measuring instrument
program
Prior art date
Application number
PCT/CN2020/074469
Other languages
English (en)
French (fr)
Inventor
杨志强
王逸文
曹健
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2020215855A1 publication Critical patent/WO2020215855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope

Definitions

  • the invention belongs to the technical fields of geodesy, astrometry and celestial mechanics, geodynamics, and inertial navigation. It can be used in the research fields of plate motion monitoring, aerospace, precision navigation and positioning, and geophysics. Method of determining geographic latitude.
  • pole shift is an important parameter used to describe the earth's rotation state.
  • the pole shift change can be derived by monitoring the change of the geographical latitude value on the station. Therefore, accurately measuring the change of latitude and then solving the change of pole shift has important practical significance and application value for the research of geodynamics and geodesy.
  • High-precision latitude measurement is an important measurement value in the fields of national economy and national defense construction, navigation and positioning, and the calculation of earth rotation parameters.
  • geodetic and global satellite positioning technology GNSS methods are used for measurement.
  • GNSS methods are used for measurement.
  • high-precision geographic latitude measurement has become a technical problem for precision orientation and earth pole shift measurement.
  • the purpose of the present invention is to provide a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope that is more accurate and simpler than the prior art.
  • a magnetic levitation gyroscope geographic latitude measuring instrument includes an outer shell, an inner shell arranged in the outer shell, a lower turntable located at the lower part of the outer shell and used to drive the outer shell to rotate, and:
  • the magnetic levitation gyro system includes a floating device arranged in the inner shell, the floating device drives the gyro house to float up or down to the initial position through the connecting frame, and the gyro house is in a stable position after floating up by adjusting the floating device;
  • a damping sensor rotor connected to the lower part of the gyro house is arranged under the inner casing, and the damping sensor stator is circumferentially distributed on the bottom of the outer casing;
  • the centering and leveling system is used to initially guide the north through the north indicator when the measuring instrument is installed, adjust the measuring instrument to be in a horizontal state, and make the central axis of the measuring instrument pass through the point to be measured;
  • the computer system is used to drive the gyro to rotate or stop, to drive the gyro room to float or fall, and to determine the stable position after floating, to form a uniform horizontal electromagnetic field between the damping sensor rotor and the damping sensor stator, and to collect the damping sensor rotor Current value and damping sensor stator current value, control the inner casing to rotate to a specified angle, and control the turntable to rotate to a specified angle;
  • a gyro drop cone is connected to the lower part of the damping sensor rotor, and a gyro drop groove matched with the gyro drop cone is arranged at the center of the inner surface of the bottom of the housing;
  • An adapter rod drop cone is arranged at the lower part of the adapter frame, and an adapter rod drop groove matched with the adapter rod drop cone is arranged at the bottom of the inner casing.
  • centering and leveling system includes the north indicator, the level tube, the foot screw, and the lower centering indicator hole, wherein:
  • the north indicator is located on the upper surface of the outer shell, the level tube is located at the center of the upper surface of the outer shell, and the central axis of the level tube is perpendicular to the central axis of the measuring instrument; the lower part of the lower turntable is installed on a horizontal platform through which the horizontal platform passes The foot screw at the bottom is installed on the lower platform, and the lower centering mark hole is located at the center of the lower platform.
  • the computer system is arranged on the upper surface of the outer shell and includes a microcomputer, a keyboard and a display screen.
  • the precision angle measurement and rotation system includes a grating dial, a rotation motor and the lower turntable, wherein:
  • the grating dial is installed on the top of the outer casing, the lower part of which is connected with the rotary motor, and the lower part of the rotary motor is connected with the inner casing.
  • the floating device includes an inductance coil located on the top of the inner shell, and an armature matched with the pole coil is provided on the adapter frame;
  • a self-collimating photoelectric sensor is arranged on the end part of the connecting frame, and reflecting prisms that cooperate with the self-collimating photoelectric sensor and corresponding to each other are distributed on the inner wall of the inner shell.
  • a gyro shaft is arranged inside the gyro room, both ends of the gyro shaft are mounted on the inner wall of the gyro room through bearings, and a gyro is installed on the gyro shaft.
  • a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope including the following steps:
  • Step 1 Install a magnetic levitation gyroscope geographic latitude measuring instrument on the point to be measured, so that the north indicator of the measuring instrument initially points to the north, and level the measuring instrument;
  • Step 2 Input the required latitude accuracy requirement e through the computer system
  • Step 3 sampling the directional torque at the 0° position of the rotary motor to obtain the corresponding torque value M A 0 at this position, and then rotate the rotary motor counterclockwise ⁇ to collect the corresponding torque value M B 0 at this position; through the following formula Calculate the initial value of latitude
  • H is the gyro angular momentum
  • ⁇ e is the average earth rotation angular velocity
  • Step 4 at 0 ° in the swing motor torque sampling point location, obtained at the position corresponding to the torque value M i propoxy, and the rotary motor 180 ° clockwise rotation, the torque value acquisition M D i corresponding to this position; the following The formula to calculate the north angle of the measuring instrument:
  • Step 5 Sampling the pointing torque at the 0° position of the rotary motor to obtain the corresponding torque value M Ai+1 at this position, then rotate the rotary motor counterclockwise ⁇ , and collect the corresponding torque value M B i+1 at this position ; Calculate geographic latitude by the following formula:
  • Step 6 Determine whether the geographic latitude meets the accuracy requirements, and if so, output If not satisfied, return to step 4 to re-iterate the calculation.
  • Magnetic levitation gyroscope rotation program the speed of the gyro increases from zero to the rated speed after receiving the instructions of the computer system, and is maintained at the rated speed;
  • Magnetic levitation gyroscope floating program the inductance coil is energized after receiving the instructions of the computer system, and drives the gyro house to float through the connecting frame;
  • the program for determining the stable position of the magnetic levitation gyroscope control the self-collimating photoelectric sensor to emit laser light and receive the laser light reflected by the reflecting prism. If the emitted laser light coincides with the reflected laser light, the position is stable; otherwise, the computer system adjusts the current in the inductor coil and the horizontal electromagnetic field Size until the position is stable;
  • Torque meter measurement procedure by forming a uniform horizontal electromagnetic field between the damping sensor rotor and the damping sensor stator, real-time damping sensor rotor internal current value I R and damping sensor stator internal current value I S , the torque value can be calculated:
  • k is the torque device coefficient
  • Magnetic levitation gyroscope drop program the inductance coil is powered off after receiving the computer system's instructions, the gyro room falls under the action of gravity, the adapter rod drop cone falls into the adapter rod drop slot, and the top drop cone falls into the top drop slot to realize the magnetic levitation gyro system Accurate reset;
  • Magnetic levitation gyroscope stop procedure The speed of the gyroscope gradually decelerates from the rated speed to zero after receiving instructions from the computer system.
  • the present invention has the following technical characteristics:
  • the invention provides a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope, and obtains the geographic latitude of a certain point on the ground according to the principle that the magnetic levitation gyroscope is sensitive to the rotation of the earth.
  • the magnetic levitation gyroscope geographic latitude measuring instrument of the present invention the high-precision geographic latitude of the station can be determined independently without the need to construct a network, and the change of the earth's pole shift can be obtained by solving the change of the latitude.
  • the instrument has comprehensive functions, simple operation, rigorous measurement method and fast calculation. This technology is not only suitable for geographic latitude measurement in the field of surveying and mapping, but also for national defense security, weapon launching and deep space exploration.
  • Figure 1 is a schematic diagram of the principle of measuring geographic latitude by using a magnetic levitation gyroscope in the present invention
  • FIG. 2 is a schematic diagram of the internal structure of the magnetic levitation gyroscope geographic latitude measuring instrument of the present invention in a standby state.
  • Figure 3 is a schematic diagram of the internal structure of the magnetic levitation gyroscope geographic latitude measuring instrument of the present invention in a suspended state.
  • Figure 4 is a top view of the magnetic levitation gyroscope geographic latitude measuring instrument of the present invention.
  • FIG. 5 is a top view of the connecting frame, self-collimating photoelectric sensor, and reflecting prism of the magnetic levitation gyroscope geographic latitude measuring instrument of the present invention
  • Figure 6 is a schematic flow chart of the method of the present invention.
  • Figure 7 is a diagram of the relationship between position A and position B;
  • Figure 8 shows the relationship between position C and position D.
  • 1 indicates the north mark, 2 microcomputer, 3 display screen, 4 keyboard, 5 level tube, 6 grating dial, 7 rotary motor, 8 inductance coil, 9 outer shell, 10 inner shell, 11 armature, 12 articulation frame, 13 reflective prism, 14 self-collimating photoelectric sensor, 15 articulation rod drop cone, 16 articulation rod drop groove, 17 gyro house, 18 gyro, 19 gyro shaft, 20 bearing, 21 damping sensor rotor, 22 damping sensor stator , 23 gyro drop cone, 24 gyro drop groove, 25 lower turntable, 26 horizontal platform, 27 foot screw, 28 lower centering mark hole.
  • a layer/element when referred to as being “on” another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located “under” the other layer/element when the orientation is reversed.
  • the present invention first discloses a magnetic levitation gyroscope geographic latitude measuring instrument, which includes an outer casing 9, an inner casing 10 arranged in the outer casing 9, and a lower turntable 25 located at the lower part of the outer casing 9 for driving the outer casing 9 to rotate.
  • a magnetic levitation gyroscope geographic latitude measuring instrument which includes an outer casing 9, an inner casing 10 arranged in the outer casing 9, and a lower turntable 25 located at the lower part of the outer casing 9 for driving the outer casing 9 to rotate.
  • the precision angle measurement and rotation system the centering and leveling system and the computer system. Each system is described in detail below.
  • the XX axis is the central axis of the magnetic levitation gyroscope geographic latitude measuring instrument, and also the central axis of the outer casing 9 and the lower turntable 25, the YY axis is the central axis of the vial 5, and the YY axis is perpendicular to the XX axis.
  • the floating device drives the gyro house 17 to float up or down to the initial position through the connecting frame 12, and the gyro house 17 is in a stable position after floating up by adjusting the floating device;
  • a damping sensor rotor 21 connected to the lower part of the gyro house 17 is arranged under the inner housing 10, and the bottom of the outer housing 9 is provided with damping sensor stators 22 in the circumferential direction;
  • the floating device includes a damping sensor located in the inner housing 10.
  • the inductance coil 8 at the top is provided with an armature 11 matching the pole coil 8 on the adapter frame 12;
  • a self-collimating photoelectric sensor 14 is arranged on the end portion of the connecting frame 12, and reflecting prisms 13 corresponding to the self-collimating photoelectric sensor 14 are distributed on the inner wall of the inner shell 10.
  • a gyro shaft 19 is arranged inside the gyro house 17, two ends of the gyro shaft 19 are mounted on the inner wall of the gyro house 17 through bearings 20, and a gyro 18 is installed on the gyro shaft 19.
  • the adapter frame 12 in this solution is composed of multiple adapter rods with the same length, connected at the same end, and evenly distributed in the circumferential direction. In this embodiment, there are 6 adapter rods.
  • a self-collimating photoelectric sensor 14 is installed at the end of the connecting rod; correspondingly, six reflecting prisms 13 are installed on the inner wall of the inner casing 10. As shown in Figure 5, the self-collimating photoelectric sensor 14 emits laser light along the lever arm to the corresponding six reflecting prisms 13 on the inner side wall of the inner casing 10.
  • the self-collimating photoelectric sensor 14 will also receive the reflection from the reflecting prism 13 If the laser light reflected by the reflecting prism 13 coincides with the laser light emitted by the self-collimating photoelectric sensor 14, it can be determined that the gyro 18 is in a stable position.
  • the said inductance coils 8 are centered on the XX axis, and six are evenly distributed in a regular hexagon.
  • An armature 11 that matches the inductance coil 8 is arranged on the upper part of each connecting rod. After the pole coil 8 is energized, it attracts the armature 11, thereby driving the gyro house 17 to float up.
  • a connecting rod drop cone 15 is arranged below the connecting rod arm, and a gyro housing 17 is fixedly connected under the connecting rod. Both ends of the gyro shaft 19 are connected to the gyro housing 17 through bearings 20. The gyro 18 can drive the gyro shaft 19 to rotate.
  • the lower part of the gyro house 17 is fixedly connected with the damping sensor rotor 21, and the gyro drop cone 23 is fixedly connected under the damping sensor rotor 21.
  • the gyro drop cone 23 falls into the gyro drop groove 24 under the inner wall of the housing 9
  • the adapter rod drop cone 15 accurately falls into the adapter rod drop groove 16 below the inner wall of the inner casing 10, so as to ensure the accurate reset of the maglev gyro system after it floats.
  • the damping sensor stator 22 is located below the inner surface of the outer casing 9, and a uniform horizontal electromagnetic field can be generated between the damping sensor rotor 21 and the damping sensor stator 22.
  • the precision angle measurement and rotation system Used to drive the inner casing 10 to rotate and measure the rotation angle, as well as to measure the rotation angle of the outer casing 9; specifically, the precision angle measurement and rotation system includes a grating dial 6, a rotation motor 7, and the lower The turntable 25, in which: the grating dial 6 is installed at the top of the outer shell 9, the lower part of which is connected to the rotating motor 7, and the lower part of the rotating motor 7 is connected to the inner shell 10.
  • the grating dial 6 can accurately measure and control the rotation angle of the rotary motor 7 and the lower turntable 25, and the rotary motor 7 can drive the inner casing 10 and its internal devices, the adapter 12, the gyro house 17 and its internal devices, and damping
  • the sensor rotor 21 and the gyro drop cone 23 rotate around the XX axis to any angle, and can receive instructions from the microcomputer 2 to rotate to a designated position.
  • the lower turntable 25 can receive instructions from the microcomputer 2 and rotate the entire outer shell 9 and its internal devices to a designated position around the XX axis.
  • the centering and leveling system includes the north pointing Mark 1, level tube 5, foot screw 27 and lower center mark hole 28, of which:
  • the north indicator 1 is located on the upper surface of the outer shell 9, and the north indicator 1 calibrates the zero position of the measuring instrument, that is, the 0° position of the grating dial 6 and the zero position of the rotary motor 7.
  • the level tube 5 is located at the center of the upper surface of the outer shell 9, and the center axis of the level tube 5 is perpendicular to the center axis of the measuring instrument; the lower part of the lower turntable 25 is installed on the horizontal platform 26, and the horizontal platform 26 is installed through the foot screw 27 at the bottom.
  • the lower centering identification hole 28 is located at the center of the lower platform.
  • the current value of the rotor 21 and the current value of the stator 22 of the damping sensor are controlled to rotate the inner casing 10 to a specified angle, and the lower turntable 25 is controlled to rotate to a specified angle.
  • the computer system is arranged on the upper surface of the outer shell 9 and includes a microcomputer 2, a keyboard 4 and a display screen 3.
  • the computer system is the control center of the entire maglev gyroscope geographic latitude measuring instrument.
  • the maglev gyroscope geographic latitude measuring program consists of the following subroutines:
  • Magnetic levitation gyroscope rotation program the rotation speed of the top 18 is increased from zero to the rated rotation speed after receiving the instructions of the computer system, and is maintained at the rated rotation speed.
  • Magnetic levitation gyroscope floating program the inductance coil 8 is energized after receiving the computer system instruction, the armature 11 on the connecting rod is affected by the magnetic force, and the gyro room 17 and its internal devices, the damping sensor rotor 21, and the gyro falling cone 23 are pulled up together. Float.
  • the self-collimating photoelectric sensor 14 on the head of the connecting rod emits laser light along the direction of the rod arm to the corresponding 6 reflecting prisms 13 on the inner side wall of the inner casing 10.
  • the self-collimating photoelectric sensor 14 will also receive the laser light reflected by the reflective prism 13. If the laser light reflected by the six groups of reflective prisms 13 coincides with the laser light emitted by the self-collimating photoelectric sensor 14, it can be determined that the gyro 18 is in a stable position.
  • the current of the inductance coil 8 under the arm of the corresponding connecting rod and the damping sensor rotor 21 and the damping sensor stator 22 are adjusted.
  • the size of the horizontal electromagnetic field is uniform until the laser light reflected by the 6 groups of reflective prisms 13 coincides with the laser light emitted by the self-collimating photoelectric sensor 14.
  • Torque measuring procedures by forming a uniform electromagnetic field between the damping level sensor rotor 21 and the stator 22 -sensors, real-time acquisition of the current value of the internal damping of the sensor rotor 21 I R inside the stator 22 and a damper sensor current value I S, can be calculated
  • the output torque value is
  • k is the torque device coefficient
  • the k value has been accurately calibrated by the manufacturer before leaving the factory and stored in the microcomputer 2. After measuring the magnitude M of the torque value, the result is saved in the microcomputer 2.
  • Magnetic levitation gyroscope drop program the inductance coil 8 is powered off after receiving the computer system instruction, the suspended body falls under the action of gravity, the adaptor rod drop cone 15 falls into the adaptor rod drop slot 16, and the gyro drop cone 23 falls into the top drop slot 24. So as to realize the accurate reset of the magnetic levitation gyroscope system.
  • Magnetic levitation gyroscope stop procedure the speed of the top 18 gradually decelerates from the rated speed to zero after receiving the instructions of the computer system.
  • Suspension body rotation program After the rotation motor 7 receives the computer system instructions, it drives the inner casing 10 and its fixed inductance coil 8, the reflecting prism 13, and the adapter 12, the gyro room 17 and its internal devices, and the damping sensor rotor 21, The gyro drop cone 23 rotates around the XX axis to the angle specified by the grating dial 6. After the rotation is completed, the grating dial 6 performs precise angle measurement to determine whether to rotate to a specified angle.
  • Turntable rotation program After the lower turntable 25 receives instructions from the computer system, the entire outer shell 9 and its internal devices are rotated around the XX axis to the angle specified by the grating dial 6. After the lower turntable 25 is rotated, the grating dial 6 performs precision Angle measurement to determine whether the lower turntable 25 rotates to a specified angle.
  • the rotary motor 7 first measures the torque value M A at the position A, and then rotates a small angle ⁇ counterclockwise to the position B to measure the torque value M B.
  • the angle ⁇ between the position A and the position B can be accurately measured by the grating dial 6. According to the physical properties of the maglev top, there are
  • H is the angular momentum of the magnetic levitation gyroscope, and the H value has been measured and stored in the measuring instrument by the manufacturer when the magnetic levitation gyroscope leaves the factory;
  • is the angle between the rotary motor 7 and the true north direction.
  • is a small angle (a few degrees), that is, when the angle between the north indicator 1 and the true north direction at the point to be measured is a small angle when the measuring instrument is set up, there is
  • the accuracy of is directly related to the size of ⁇ : when other conditions are constant, the smaller ⁇ is, the accuracy of the geographic latitude solution Higher. Since it is difficult to ensure that the angle between the north indicator 1 of the measuring instrument and the true north direction at the point to be measured is a small angle (a few degrees) when the measuring instrument is initially set up, the present invention adopts an iterative method to gradually make the measuring instrument The angle between the north indicator 1 and the true north direction of the point to be measured is getting smaller and smaller, so that the measuring instrument can determine the high-precision geographic latitude.
  • the present invention further discloses a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope, which includes the following steps:
  • Step 1 Place the measuring instrument
  • Step 2 Enter the required latitude accuracy requirements e
  • Step 3 Solve the initial value of latitude
  • the pointing torque sampling is carried out: the magnetic levitation gyro rotation program, the maglev gyro floating program, the maglev gyro stable position determination program, the torque device measurement program, the maglev gyro falling program, and the maglev gyro stop program are executed in sequence.
  • H is the angular momentum of the top 18, and the value of H has been measured and stored in the measuring instrument by the manufacturer when the maglev gyroscope leaves the factory;
  • ⁇ e is the average earth rotation angular velocity;
  • ⁇ e 7.292115147 ⁇ 10-5rad/s; the latitude Initial value Stored in the microcomputer 2;
  • the suspension rotation program is started, and the rotation motor 7 rotates clockwise to return to the zero position.
  • the value of ⁇ is 0.2, and the value can also be any small angle.
  • Step 4 The measuring instrument is near north
  • the pointing torque sampling is carried out: the magnetic levitation gyro rotation program, the maglev gyro floating program, the maglev gyro stable position determination program, the torque device measurement program, the maglev gyro falling program, and the maglev gyro stop program are executed in sequence.
  • the suspended body rotation program starts, and the rotary motor 7 rotates 180° clockwise to return to the zero position; the turntable rotation program starts, and the turntable under the measuring instrument rotates ⁇ i counterclockwise to make the zero position of the measuring instrument closer to the true north direction;
  • Step 5 Geographic latitude calculation
  • the pointing torque sampling is carried out: the magnetic levitation gyro rotation program, the maglev gyro floating program, the maglev gyro stable position determination program, the torque device measurement program, the maglev gyro falling program, and the maglev gyro stop program are executed in sequence.
  • the torque value M ai+1 corresponding to the 0° position of the rotary motor 7 (position A as shown in Fig.
  • Step 6 Determine whether the geographic latitude meets the accuracy requirements:
  • step 4 If the accuracy requirement is not met, return to step 4 to re-iterate calculation;
  • the value of is the initial value of latitude in step 3; when the i-th (i>1) calculation Time, For the previous calculation Value, that is, the last iteration value.
  • the present invention is not limited to the above-mentioned specific embodiments, and other different specific solutions can also be obtained according to the concept of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

一种利用磁悬浮陀螺精密测定地理纬度的方法,该方法所采用的测量仪由磁悬浮陀螺系统、精密测角及回转系统、对中整平系统和计算机系统等构成,其中方法为:安置测量仪、输入所需的纬度精度要求、纬度初值解算、测量仪近北、地理纬度解算,最后,通过与所需的精度要求进行比较进而判定是否继续迭代或是输出最终的地理纬度值,该测量仪简单易操作,地理纬度解算方法简便,数据处理快,可快速获取受限空间测站的地理纬度。

Description

一种利用磁悬浮陀螺精密测定地理纬度的方法 技术领域
本发明属于大地测量学、天体测量与天体力学、地球动力学、惯性导航技术领域,可以用于板块运动监测、航空航天、精密导航定位、地球物理学等研究领域,提供一种利用磁悬浮陀螺精密测定地理纬度的方法。
背景技术
由于地球的自转过程是不稳定的,极移是用以描述地球的自转状态的一个重要参数。通过监测测站上地理纬度值的变化可推导极移变化。因此,准确地测量纬度的变化进而解算极移变化,对于地球动力学、大地测量学的研究都有着重要的实际意义和应用价值。
高精度纬度测量是国民经济与国防建设、导航定位、地球自转参数解算等领域重要的测量值,一般采用大地测量及全球卫星定位技术GNSS方法进行测定。但在无地面联测数据、GNSS拒止等现代战争机动及地下空间环境下,高精度地理纬度测定成为精密定向与地球极移测定的技术难题。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种比现有技术精度更高且更为简便的利用磁悬浮陀螺精密测定地理纬度的方法。
为了实现上述任务,本发明采用以下技术方案:
一种磁悬浮陀螺地理纬度测量仪,包括外壳体,还包括设置于外壳体中的内壳体、位于外壳体下部,用于驱动外壳体旋转的下转台,以及:
磁悬浮陀螺系统,包括设置于内壳体中的浮起装置,浮起装置通过衔接架带 动陀螺房上浮或下落至初始位置,通过调节浮起装置使陀螺房上浮后处于位置稳定状态;所述的内壳体下方设置有与所述陀螺房下部连接的阻尼传感器转子,外壳体内的底部在周向分布有阻尼传感器定子;
精密测角及回转系统,用于驱动所述内壳体转动并测量转动角度,以及测量外壳体的旋转角度;
对中整平系统,用于在测量仪安装时通过指北标识进行初步指北、调整测量仪处于水平状态以及使测量仪的中心轴线穿过待测点;
计算机系统,用于驱动所述陀螺旋转或停止、驱动陀螺房浮起或下落以及浮起后的位置稳定判断、在所述阻尼传感器转子和阻尼传感器定子之间形成均匀水平电磁场并采集阻尼传感器转子电流值和阻尼传感器定子电流值、控制内壳体转动至指定角度、控制下转台转动至指定角度;
所述的阻尼传感器转子的下部连接有陀螺下落锥,位于外壳体底部内表面的中心处设置有与所述陀螺下落锥配合的陀螺下落槽;
所述衔接架下部设置有衔接杆下落锥,位于内壳体底部设置有与所述衔接杆下落锥配合的衔接杆下落槽。
进一步地,所述的对中整平系统包括所述的指北标识、水准管、脚螺旋以及下对中标识孔,其中:
所述的指北标识位于外壳体上表面,水准管位于外壳体上表面中心处,水准管的中心轴线与测量仪的中心轴线垂直;所述下转台下部安装于水平平台上,水平平台通过其底部的脚螺旋安装在下平台上,下对中标识孔位于所述下平台的中心处。
进一步地,所述的计算机系统设置在外壳体上表面上,包括微型计算机、键 盘以及显示屏。
进一步地,所述的精密测角及回转系统包括光栅度盘、回转马达以及所述的下转台,其中:
光栅度盘安装于外壳体内的顶部,其下部连接所述回转马达,回转马达下部连接所述内壳体。
进一步地,所述的浮起装置包括位于内壳体中顶部的电感线圈,在所述的衔接架上设置有与所述电杆线圈配合的衔铁;
在所述衔接架的端部分布有自准直光电传感器,所述内壳体的内壁上分布有与所述自准直光电传感器相互配合且一一对应的反射棱镜。
进一步地,所述的陀螺房内部设置有陀螺转轴,陀螺转轴的两端通过轴承安装于陀螺房内壁上,陀螺转轴上安装有陀螺。
一种利用磁悬浮陀螺精密测定地理纬度的方法,包括以下步骤:
步骤1,在待测点上安装磁悬浮陀螺地理纬度测量仪,使测量仪的指北标识初步指北,并调平测量仪;
步骤2,通过计算机系统输入所需的纬度精度要求e;
步骤3,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M 甲0,然后回转马达逆时针旋转λ,采集该位置处对应的力矩值M 乙0;通过以下公式计算纬度初值
Figure PCTCN2020074469-appb-000001
Figure PCTCN2020074469-appb-000002
上式中,H为陀螺角动量,ω e为平均地球自转角速度;
步骤4,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M i ,然后回转马达顺时针旋转180°,采集该位置处对应的力矩值M 丁i;由 以下公式计算测量仪偏北角:
Figure PCTCN2020074469-appb-000003
其中,
Figure PCTCN2020074469-appb-000004
为上一步中的纬度解算值;
控制下转台逆时针旋转角度α i,从而使测量仪零位更加接近真北方向;
步骤5,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M 甲i+1,然后回转马达逆时针旋转λ,采集该位置处对应的力矩值M 乙i+1;通过下式计算地理纬度:
Figure PCTCN2020074469-appb-000005
步骤6,判断地理纬度是否满足精度要求,如满足,则输出
Figure PCTCN2020074469-appb-000006
如不满足,则返回步骤4重新迭代计算。
进一步地,步骤3、步骤4、步骤5在每一个位置处进行力矩采样之前,先通过计算机系统依次执行以下程序:
磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,其中:
磁悬浮陀螺转动程序:陀螺接收计算机系统指令后转速从零增加到额定转速,并维持在额定转速;
磁悬浮陀螺浮起程序:电感线圈接收计算机系统指令后通电,通过衔接架带动陀螺房上浮;
磁悬浮陀螺稳定位置判定程序:控制自准直光电传感器发射激光,并接收反射棱镜反射的激光,如果发射出的激光与反射激光重合,则位置稳定;否则计算机系统调整电感线圈中电流大小以及水平电磁场大小,直至位置稳定;
力矩器测量程序:通过在阻尼传感器转子和阻尼传感器定子之间形成均匀水平电磁场,实时阻尼传感器转子内部电流值I R和阻尼传感器定子内部电流值I S,则可计算出力矩值为:
M=k·I R·I S
其中,k为力矩器系数;
磁悬浮陀螺下落程序:电感线圈接收计算机系统指令后断电,陀螺房在重力作用下下落,衔接杆下落锥落入衔接杆下落槽中,陀螺下落锥落入陀螺下落槽中,从而实现磁悬浮陀螺系统的准确复位;
磁悬浮陀螺停止程序:陀螺接收计算机系统指令后转速从额定转速逐渐减速到零。
本发明与现有技术相比具有以下技术特点:
本发明提供了一种利用磁悬浮陀螺精密测定地理纬度的方法,根据磁悬浮陀螺敏感地球自转运动的原理获取地面上某一点的地理纬度。采用本发明的磁悬浮陀螺地理纬度测量仪,无需构网就可独立测定测站高精度地理纬度,并根据可通过纬度变化进而解算求得地球极移变化。仪器功能全面、操作简便,测定方法严密、解算快速。该技术不仅适用于测绘领域的地理纬度测量,同时也可用于国防安全、武器发射及深空探测等领域。
附图说明
图1为本发明利用磁悬浮陀螺测定地理纬度的原理示意图;
图2为本发明的磁悬浮陀螺地理纬度测量仪处于待机状态下的内部结构示意图。
图3为本发明的磁悬浮陀螺地理纬度测量仪处于悬浮状态下的内部结构示意 图。
图4为本发明的磁悬浮陀螺地理纬度测量仪的俯视图;
图5为本发明的磁悬浮陀螺地理纬度测量仪的衔接架、自准直光电传感器、反射棱镜工作状态下的俯视图;
图6为本发明方法的流程示意图;
图7为位置甲、位置乙的关系图;
图8为位置丙、位置丁的关系图。
图中标号说明:1指北标识,2微型计算机,3显示屏,4键盘,5水准管,6光栅度盘,7回转马达,8电感线圈,9外壳体,10内壳体,11衔铁,12衔接架,13反射棱镜,14自准直光电传感器,15衔接杆下落锥,16衔接杆下落槽,17陀螺房,18陀螺,19陀螺转轴,20轴承,21阻尼传感器转子,22阻尼传感器定子,23陀螺下落锥,24陀螺下落槽,25下转台,26水平平台,27脚螺旋,28下对中标识孔。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按 比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明首先公开了一种磁悬浮陀螺地理纬度测量仪,包括外壳体9,还包括设置于外壳体9中的内壳体10、位于外壳体9下部,用于驱动外壳体9旋转的下转台25,以及磁悬浮陀螺系统、精密测角及回转系统、对中整平系统和计算机系统,下面分别对每一个系统进行详细说明。
如图2所示,XX轴为磁悬浮陀螺地理纬度测量仪的中心轴线,也是外壳体 9及下转台25的中心轴线,YY轴为水准管5的中心轴线,YY轴与XX轴垂直。
1.磁悬浮陀螺系统
包括设置于内壳体10中的浮起装置,浮起装置通过衔接架12带动陀螺房17上浮或下落至初始位置,通过调节浮起装置使陀螺房17上浮后处于位置稳定状态;所述的内壳体10下方设置有与所述陀螺房17下部连接的阻尼传感器转子21,外壳体9内的底部在周向分布有阻尼传感器定子22;所述的浮起装置包括位于内壳体10中顶部的电感线圈8,在所述的衔接架12上设置有与所述电杆线圈8配合的衔铁11;
在所述衔接架12的端部分布有自准直光电传感器14,所述内壳体10的内壁上分布有与所述自准直光电传感器14相互配合且一一对应的反射棱镜13。所述的陀螺房17内部设置有陀螺转轴19,陀螺转轴19的两端通过轴承20安装于陀螺房17内壁上,陀螺转轴19上安装有陀螺18。
如图2和图3所示,本方案中的衔接架12由多根长度相同、同一端连接且在圆周方向上均匀分布的衔接杆构成,本实施例中衔接杆为6根,在每一根衔接杆的端部安装一个自准直光电传感器14;对应地,在内壳体10内壁上设置6个反射棱镜13。如图5所示,自准直光电传感器14发射沿杆臂方向的激光至内壳体10内侧壁上相对应的6个反射棱镜13上,自准直光电传感器14同时会接收反射棱镜13反射回的激光,若反射棱镜13反射回的激光与自准直光电传感器14射出的激光重合,则可以判定陀螺18处于稳定位置。
所述的电感线圈8以XX轴为中心、以正六边形均匀分布6个,在每一根衔接杆上部设置一个与电感线圈8配合的衔铁11。电杆线圈8通电后吸引衔铁11,从而带动陀螺房17上浮。
衔接杆杆臂下方设有衔接杆下落锥15,衔接杆下方固连有陀螺房17,陀螺转轴19的两端均通过轴承20连接在陀螺房17上,陀螺18可带动陀螺转轴19进行旋转。陀螺房17下方与阻尼传感器转子21固连,阻尼传感器转子21下方固连有陀螺下落锥23,在磁悬浮陀螺系统浮起并下落后陀螺下落锥23落入外壳体9内壁下方的陀螺下落槽24中,同时衔接杆下落锥15准确下落在内壳体10内壁下方的衔接杆下落槽16中,从而保证磁悬浮陀螺系统浮起以后下落的准确复位。阻尼传感器定子22位于外壳体9内表面处的下方,阻尼传感器转子21与阻尼传感器定子22间可产生均匀的水平电磁场。
2.精密测角及回转系统
用于驱动所述内壳体10转动并测量转动角度,以及测量外壳体9的旋转角度;具体地,所述的精密测角及回转系统包括光栅度盘6、回转马达7以及所述的下转台25,其中:光栅度盘6安装于外壳体9内的顶部,其下部连接所述回转马达7,回转马达7下部连接所述内壳体10。
所述的光栅度盘6可精确测量与控制回转马达7以及下转台25转动的角度,回转马达7可带动内壳体10及其内部装置以及衔接架12、陀螺房17及其内部装置、阻尼传感器转子21、陀螺下落锥23围绕XX轴回转至任意角度,并可接收微型计算机2的指令回转至指定的位置上。下转台25可以接收微型计算机2的指令并使整个外壳体9及其内部装置围绕XX轴旋转至指定位置。
3.对中整平系统
用于在测量仪安装时通过指北标识1进行初步指北、调整测量仪处于水平状态以及使测量仪的中心轴线穿过待测点;所述的对中整平系统包括所述的指北标识1、水准管5、脚螺旋27以及下对中标识孔28,其中:
所述的指北标识1位于外壳体9上表面,指北标识1标定了测量仪零位,即光栅度盘6的0°位置处以及回转马达7的零位。在测量仪安装时,将指北标识1粗略对准该点处的真北方向(使指北标识1与该点处真北方向夹角小于±10°以内)以进行初步指北。水准管5位于外壳体9上表面中心处,水准管5的中心轴线与测量仪的中心轴线垂直;所述下转台25下部安装于水平平台26上,水平平台26通过其底部的脚螺旋27安装在下平台上,下对中标识孔28位于所述下平台的中心处。安装时,通过在下对中标识孔28中安装垂球保证测量仪的中心轴线XX轴穿过待测点,调节脚螺旋27使水准管5气泡居中,此时测量仪在YY轴方向上处于水平状态,XX轴穿过测点。
4.计算机系统
用于驱动所述陀螺18旋转或停止、驱动陀螺房17浮起或下落以及浮起后的位置稳定判断、在所述阻尼传感器转子21和阻尼传感器定子22之间形成均匀水平电磁场并采集阻尼传感器转子21电流值和阻尼传感器定子22电流值、控制内壳体10转动至指定角度、控制下转台25转动至指定角度。计算机系统设置在外壳体9上表面上,包括微型计算机2、键盘4以及显示屏3。
计算机系统是整个磁悬浮陀螺地理纬度测量仪的控制中心,其中的磁悬浮陀螺地理纬度测量程序由以下几个子程序组成:
磁悬浮陀螺转动程序:陀螺18接收计算机系统指令后转速从零增加到额定转速,并维持在额定转速。
磁悬浮陀螺浮起程序:电感线圈8接收计算机系统指令后通电,衔接杆上的衔铁11受到磁力影响,拉起下方的陀螺房17及其内部装置、阻尼传感器转子21、陀螺下落锥23等一起向上浮起。
磁悬浮陀螺稳定位置判定程序:如图5所示,衔接杆杆头上的自准直光电传感器14发射沿杆臂方向的激光至内壳体10内侧壁上相对应的6个反射棱镜13上,自准直光电传感器14同时会接收反射棱镜13反射回的激光,若6组反射棱镜13反射回的激光与自准直光电传感器14射出的激光均重合,则可以判定陀螺18处于稳定位置。若反射棱镜13反射回的激光与自准直光电传感器14射出的激光不重合,则通过调整相应的衔接杆杆臂下方的电感线圈8电流大小以及阻尼传感器转子21与阻尼传感器定子22之间的均匀水平电磁场大小,直至6组反射棱镜13反射回的激光与自准直光电传感器14射出的激光均重合。
力矩器测量程序:通过在阻尼传感器转子21与阻尼传感器定子22之间形成均匀水平电磁场,实时采集阻尼传感器转子21内部的电流值I R以及阻尼传感器定子22内部的电流值I S,则可计算出力矩值为
M=k·I R·I S
其中,k为力矩器系数,k值在磁悬浮陀螺出厂时已经由生产厂家精确标定事先得出储存于微型计算机2中。测量出力矩值大小M以后将结果保存在微型计算机2中。
磁悬浮陀螺下落程序:电感线圈8接收计算机系统指令后断电,悬浮体在重力作用下下落,衔接杆下落锥15落入衔接杆下落槽16中,陀螺下落锥23落入陀螺下落槽24中,从而实现磁悬浮陀螺系统的准确复位。
磁悬浮陀螺停止程序:陀螺18接收计算机系统指令后转速从额定转速逐渐减速到零。
悬浮体回转程序:回转马达7接计算机系统指令后,带动内壳体10及其内部固连的电感线圈8、反射棱镜13以及衔接架12、陀螺房17及其内部装置、阻 尼传感器转子21、陀螺下落锥23围绕XX轴回转至光栅度盘6所指定的角度上。回转完成后,光栅度盘6进行精密角度测量,判定是否回转到指定角度上。
转台旋转程序:下转台25接收计算机系统指令后,使整个外壳体9及其内部装置围绕XX轴旋转至光栅度盘6所指定的角度上,下转台25旋转完成后,光栅度盘6进行精密角度测量,判定下转台25是否旋转到指定角度上。
本发明的理论依据如下:
如图1所示,回转马达7首先在在位置A处测量力矩值M A,然后逆时针旋转一个小角度λ转至位置B处测量力矩值M B。位置A与位置B之间的夹角λ可通过光栅度盘6精确测量得出。根据磁悬浮陀螺的物理性质,有
Figure PCTCN2020074469-appb-000007
Figure PCTCN2020074469-appb-000008
式中,H为磁悬浮陀螺角动量,H值在磁悬浮陀螺出厂时已经由生产厂家测定储存于测量仪中;ω e为平均地球自转角速度,ω e=7.292115147×10 -5rad/s,
Figure PCTCN2020074469-appb-000009
为该点处的地理纬度;α为回转马达7与真北方向的夹角。
将两式做差,得
Figure PCTCN2020074469-appb-000010
当α为一个小角度(几度)时,即当测量仪架设时指北标识1与待测点处真北方向的夹角为一个小角度时,有
sin(α+λ)-sinα≈sinλ   式4
则此时,公式3转化为
Figure PCTCN2020074469-appb-000011
进而可求解出该点处的地理纬度值
Figure PCTCN2020074469-appb-000012
由推导过程可知,
Figure PCTCN2020074469-appb-000013
的精度与α的大小有直接关系:在其他条件一定时,α越小,地理纬度解算精度
Figure PCTCN2020074469-appb-000014
越高。由于在测量仪初始架设时,难以保证测量仪的指北标识1与待测点处真北方向的夹角为一个小角度(几度),因此本发明采用迭代的方法,逐渐使测量仪的指北标识1与待测点处真北方向的夹角越来越小,从而使测量仪可测定出高精度的地理纬度。
在上述技术方案的基础上,本发明进一步公开了一种利用磁悬浮陀螺精密测定地理纬度的方法,包括以下步骤:
步骤1,安置测量仪
在待测点上安置磁悬浮陀螺地理纬度测量仪,使测量仪指北标识1与该点处真北方向夹角小于10°以内以进行初步指北,调节脚螺旋27使水平平台26保持水平;在下对中标识孔28中安装垂球并使其通过待测点,则此时测量仪在YY轴方向上处于水平状态,XX轴穿过待测点;
步骤2,输入所需的纬度精度要求e
按下键盘4的开机按钮打开微型计算机2,显示屏3亮起,通过键盘4输入所需的纬度精度要求e,并点击确认按钮;
步骤3,纬度初值解算
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图7中所示位置甲)处对应的力矩值M 甲0,然后悬浮体回转程序启动,回转马达7逆时针旋转λ,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺 浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集乙位置处(如图7所示)对应的力矩值M 乙0;通过以下公式计算纬度初值
Figure PCTCN2020074469-appb-000015
Figure PCTCN2020074469-appb-000016
上式中,H为陀螺18角动量,H值在磁悬浮陀螺出厂时已经由生产厂家测定储存于测量仪中;ω e为平均地球自转角速度;ω e=7.292115147×10-5rad/s;将纬度初值
Figure PCTCN2020074469-appb-000017
保存于微型计算机2中;
最后,悬浮体回转程序启动,回转马达7顺时针旋转λ回到零位。本实施例中,λ取值为0.2,也可以取值为任意小角度。
步骤4,测量仪近北
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图8中所示位置丙)对应的力矩值M 丙i;然后悬浮体回转程序启动,回转马达7顺时针旋转180°,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集丁位置处(如图8所示)对应的力矩值M 丁i;由以下公式计算测量仪偏北角:
Figure PCTCN2020074469-appb-000018
其中,
Figure PCTCN2020074469-appb-000019
为上一步中的纬度解算值;
最后,悬浮体回转程序启动,回转马达7顺时针旋转180°回到零位;转台旋 转程序启动,测量仪下方的转台逆时针旋转α i,使测量仪零位更加接近真北方向;
步骤5,地理纬度解算
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图7中所示位置甲)对应的力矩值M 甲i+1;然后悬浮体回转程序启动,回转马达7逆时针旋转λ,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集该位置处(如图7中所示位置乙)对应的力矩值M 乙i+1,通过下式计算地理纬度:
Figure PCTCN2020074469-appb-000020
将地理纬度解算结果
Figure PCTCN2020074469-appb-000021
保存于微型计算机2中。最后,悬浮体回转程序启动,回转马达7顺时针旋转λ回到零位。
步骤6,判断地理纬度是否满足精度要求:
Figure PCTCN2020074469-appb-000022
则不满足精度要求,返回步骤4重新迭代计算;
Figure PCTCN2020074469-appb-000023
则满足要求,即得到待测点最终的地理纬度值
Figure PCTCN2020074469-appb-000024
并将
Figure PCTCN2020074469-appb-000025
显示到显示屏3上;
其中,当第一次计算
Figure PCTCN2020074469-appb-000026
时,
Figure PCTCN2020074469-appb-000027
的取值为步骤3中的纬度初值;当第i(i>1)次计算
Figure PCTCN2020074469-appb-000028
时,
Figure PCTCN2020074469-appb-000029
为前一次计算的
Figure PCTCN2020074469-appb-000030
值,即上一次迭代值。
需要说明的是本发明并不仅限于上述具体实施例,还可根据本发明的构思得到其他不同的具体方案,例如本发明可以不需要进行迭代直接测量纬度值;在地理纬度解算中选择的两个位置为0°和逆时针旋转的λ=0.3°处测量指向力矩,也可 以选择其他角度;诸如此等改变以及等效变换等均落入本发明的保护范围之内。

Claims (8)

  1. 一种磁悬浮陀螺地理纬度测量仪,包括外壳体(9),其特征在于,还包括设置于外壳体(9)中的内壳体(10)、位于外壳体(9)下部,用于驱动外壳体(9)旋转的下转台(25),以及:
    磁悬浮陀螺系统,包括设置于内壳体(10)中的浮起装置,浮起装置通过衔接架(12)带动陀螺房(17)上浮或下落至初始位置,通过调节浮起装置使陀螺房(17)上浮后处于位置稳定状态;所述的内壳体(10)下方设置有与所述陀螺房(17)下部连接的阻尼传感器转子(21),外壳体(9)内的底部在周向分布有阻尼传感器定子(22);
    精密测角及回转系统,用于驱动所述内壳体(10)转动并测量转动角度,以及测量外壳体(9)的旋转角度;
    对中整平系统,用于在测量仪安装时通过指北标识(1)进行初步指北、调整测量仪处于水平状态以及使测量仪的中心轴线穿过待测点;
    计算机系统,用于驱动所述陀螺(18)旋转或停止、驱动陀螺房(17)浮起或下落以及浮起后的位置稳定判断、在所述阻尼传感器转子(21)和阻尼传感器定子(22)之间形成均匀水平电磁场并采集阻尼传感器转子(21)电流值和阻尼传感器定子(22)电流值、控制内壳体(10)转动至指定角度、控制下转台(25)转动至指定角度;
    所述的阻尼传感器转子(21)的下部连接有陀螺下落锥(23),位于外壳体(9)底部内表面的中心处设置有与所述陀螺下落锥(23)配合的陀螺下落槽(24);
    所述衔接架(12)下部设置有衔接杆下落锥(15),位于内壳体(10)底部设置有与所述衔接杆下落锥(15)配合的衔接杆下落槽(16)。
  2. 如权利要求1所述的磁悬浮陀螺地理纬度测量仪,其特征在于,所述的对中整平系统包括所述的指北标识(1)、水准管(5)、脚螺旋(27)以及下对中标识孔 (28),其中:
    所述的指北标识(1)位于外壳体(9)上表面,水准管(5)位于外壳体(9)上表面中心处,水准管(5)的中心轴线与测量仪的中心轴线垂直;所述下转台(25)下部安装于水平平台(26)上,水平平台(26)通过其底部的脚螺旋(27)安装在下平台上,下对中标识孔(28)位于所述下平台的中心处。
  3. 如权利要求1所述的磁悬浮陀螺地理纬度测量仪,其特征在于,所述的计算机系统设置在外壳体(9)上表面上,包括微型计算机(2)、键盘(4)以及显示屏(3)。
  4. 如权利要求1所述的磁悬浮陀螺地理纬度测量仪,其特征在于,所述的精密测角及回转系统包括光栅度盘(6)、回转马达(7)以及所述的下转台(25),其中:
    光栅度盘(6)安装于外壳体(9)内的顶部,其下部连接所述回转马达(7),回转马达(7)下部连接所述内壳体(10)。
  5. 如权利要求1所述的磁悬浮陀螺地理纬度测量仪,其特征在于,所述的浮起装置包括位于内壳体(10)中顶部的电感线圈(8),在所述的衔接架(12)上设置有与所述电杆线圈(8)配合的衔铁(11);
    在所述衔接架(12)的端部分布有自准直光电传感器(14),所述内壳体(10)的内壁上分布有与所述自准直光电传感器(14)相互配合且一一对应的反射棱镜(13)。
  6. 如权利要求1所述的磁悬浮陀螺地理纬度测量仪,其特征在于,所述的陀螺房(17)内部设置有陀螺转轴(19),陀螺转轴(19)的两端通过轴承(20)安装于陀螺房(17)内壁上,陀螺转轴(19)上安装有陀螺(18)。
  7. 一种利用磁悬浮陀螺精密测定地理纬度的方法,其特征在于,包括以下步骤:
    步骤1,在待测点上安装磁悬浮陀螺地理纬度测量仪,使测量仪的指北标识(1)初步指北,并调平测量仪;
    步骤2,通过计算机系统输入所需的纬度精度要求e;
    步骤3,在回转马达(7)的0°位置处进行指向力矩采样,得到该位置处对应的力矩值M 甲0,然后回转马达(7)逆时针旋转λ,采集该位置处对应的力矩值M 乙0;通过以下公式计算纬度初值
    Figure PCTCN2020074469-appb-100001
    Figure PCTCN2020074469-appb-100002
    上式中,H为陀螺(18)角动量,ω e为平均地球自转角速度;
    步骤4,在回转马达(7)的0°位置处进行指向力矩采样,得到该位置处对应的力矩值M i ,然后回转马达(7)顺时针旋转180°,采集该位置处对应的力矩值M i;由以下公式计算测量仪偏北角:
    Figure PCTCN2020074469-appb-100003
    其中,
    Figure PCTCN2020074469-appb-100004
    为上一步中的纬度解算值;
    控制下转台(25)逆时针旋转角度α i,从而使测量仪零位更加接近真北方向;
    步骤5,在回转马达(7)的0°位置处进行指向力矩采样,得到该位置处对应的力矩值M 甲i+1,然后回转马达(7)逆时针旋转λ,采集该位置处对应的力矩值M 乙i+1;通过下式计算地理纬度:
    Figure PCTCN2020074469-appb-100005
    步骤6,判断地理纬度是否满足精度要求,如满足,则输出
    Figure PCTCN2020074469-appb-100006
    如不满足,则返回步骤4重新迭代计算。
  8. 如权利要求7所述的利用磁悬浮陀螺精密测定地理纬度的方法,其特征 在于,步骤3、步骤4、步骤5在每一个位置处进行力矩采样之前,先通过计算机系统依次执行以下程序:
    磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,其中:
    磁悬浮陀螺转动程序:陀螺(18)接收计算机系统指令后转速从零增加到额定转速,并维持在额定转速;
    磁悬浮陀螺浮起程序:电感线圈(8)接收计算机系统指令后通电,通过衔接架(12)带动陀螺房(17)上浮;
    磁悬浮陀螺稳定位置判定程序:控制自准直光电传感器(14)发射激光,并接收反射棱镜(13)反射的激光,如果发射出的激光与反射激光重合,则位置稳定;否则计算机系统调整电感线圈(8)中电流大小以及水平电磁场大小,直至位置稳定;
    力矩器测量程序:通过在阻尼传感器转子(21)和阻尼传感器定子(22)之间形成均匀水平电磁场,实时阻尼传感器转子(21)内部电流值I R和阻尼传感器定子(22)内部电流值I S,则可计算出力矩值为:
    M=k·I R·I S
    其中,k为力矩器系数;
    磁悬浮陀螺下落程序:电感线圈(8)接收计算机系统指令后断电,陀螺房(17)在重力作用下下落,衔接杆下落锥(15)落入衔接杆下落槽(16)中,陀螺下落锥(23)落入陀螺下落槽(24)中,从而实现磁悬浮陀螺系统的准确复位;
    磁悬浮陀螺停止程序:陀螺(18)接收计算机系统指令后转速从额定转速逐渐减速到零。
PCT/CN2020/074469 2019-04-25 2020-02-07 一种利用磁悬浮陀螺精密测定地理纬度的方法 WO2020215855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910337409.5 2019-04-25
CN201910337409.5A CN110108276B (zh) 2019-04-25 2019-04-25 一种利用磁悬浮陀螺精密测定地理纬度的方法

Publications (1)

Publication Number Publication Date
WO2020215855A1 true WO2020215855A1 (zh) 2020-10-29

Family

ID=67486563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074469 WO2020215855A1 (zh) 2019-04-25 2020-02-07 一种利用磁悬浮陀螺精密测定地理纬度的方法

Country Status (2)

Country Link
CN (1) CN110108276B (zh)
WO (1) WO2020215855A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812520A (zh) * 2022-03-04 2022-07-29 中铁第四勘察设计院集团有限公司 高速磁浮轨道安装测控三维控制网的测设方法及系统
CN116664669A (zh) * 2023-05-30 2023-08-29 浙江海康智联科技有限公司 一种目标中心定位补偿方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108276B (zh) * 2019-04-25 2022-09-13 长安大学 一种利用磁悬浮陀螺精密测定地理纬度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776445A (zh) * 2010-02-05 2010-07-14 长安大学 一种磁悬浮陀螺全站仪
CN201600134U (zh) * 2010-02-05 2010-10-06 长安大学 新型磁悬浮陀螺全站仪
US20130192072A1 (en) * 2011-10-06 2013-08-01 Vectronix Ag Geographically north-referenced azimuth determination
CN104833348A (zh) * 2015-04-30 2015-08-12 长安大学 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
CN104931029A (zh) * 2015-04-30 2015-09-23 长安大学 一种基于静态力矩模式陀螺全站仪的双位置回转寻北测量方法
CN110108276A (zh) * 2019-04-25 2019-08-09 长安大学 一种利用磁悬浮陀螺精密测定地理纬度的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880132B1 (fr) * 2004-12-23 2007-02-02 Thales Sa Dispositif de determination autonome des coordonnees geographiques absolues d'un mobile evoluant en immersion
IL209261A0 (en) * 2010-11-11 2011-01-31 Israel Aerospace Ind Ltd A system and method for north finding
CN103376098B (zh) * 2012-04-27 2016-01-06 中国人民解放军第二炮兵工程学院 一种摆式陀螺寻北仪纬度自测算与精度自动补偿方法
CN103983259B (zh) * 2014-05-29 2016-07-13 中国人民解放军第二炮兵工程大学 基于摆式陀螺最大进动速度粗寻北原理的全方位寻北方法
CN104655095B (zh) * 2015-01-21 2017-06-30 长安大学 一种利用光纤陀螺测定地理纬度的方法
US10378900B2 (en) * 2015-09-16 2019-08-13 Raytheon Company Magnetic field gradient navigation aid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776445A (zh) * 2010-02-05 2010-07-14 长安大学 一种磁悬浮陀螺全站仪
CN201600134U (zh) * 2010-02-05 2010-10-06 长安大学 新型磁悬浮陀螺全站仪
US20130192072A1 (en) * 2011-10-06 2013-08-01 Vectronix Ag Geographically north-referenced azimuth determination
CN104833348A (zh) * 2015-04-30 2015-08-12 长安大学 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
CN104931029A (zh) * 2015-04-30 2015-09-23 长安大学 一种基于静态力矩模式陀螺全站仪的双位置回转寻北测量方法
CN110108276A (zh) * 2019-04-25 2019-08-09 长安大学 一种利用磁悬浮陀螺精密测定地理纬度的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812520A (zh) * 2022-03-04 2022-07-29 中铁第四勘察设计院集团有限公司 高速磁浮轨道安装测控三维控制网的测设方法及系统
CN116664669A (zh) * 2023-05-30 2023-08-29 浙江海康智联科技有限公司 一种目标中心定位补偿方法

Also Published As

Publication number Publication date
CN110108276A (zh) 2019-08-09
CN110108276B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN101776445B (zh) 一种磁悬浮陀螺全站仪
US8826550B2 (en) Geographically north-referenced azimuth determination
CN100565115C (zh) 多位置捷联寻北系统方位效应的标定方法
WO2020215855A1 (zh) 一种利用磁悬浮陀螺精密测定地理纬度的方法
CN104931029B (zh) 一种基于静态力矩模式陀螺全站仪的双位置回转寻北测量方法
CA2771653A1 (en) Gyroscopic system for determination of downhole position
CN103376098B (zh) 一种摆式陀螺寻北仪纬度自测算与精度自动补偿方法
CN104833348B (zh) 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
CN102648391B (zh) 通过转动惯性装置来确定航向的方法
CN111366144A (zh) 一种陀螺寻北仪多位置寻北方法
CN201600134U (zh) 新型磁悬浮陀螺全站仪
CN114838721B (zh) 一种光纤陀螺定向仪
CN109681189A (zh) 一种井径扇区固井质量及轨迹一体化测量仪
CN110108265B (zh) 一种自主获取地理纬度并自动寻北的陀螺测量仪器
CN104655123B (zh) 一种利用光纤陀螺测定地球自转角速度的方法
CN104864842B (zh) 一种基于静态模式的力矩反馈陀螺全站仪
CN107255475A (zh) 一种对称结构加速度计寻北仪与动态差分寻北方法
CN103983259A (zh) 基于摆式陀螺最大进动速度粗寻北原理的全方位寻北方法
RU2339910C1 (ru) Гирокомпас
CN106917621B (zh) 小孔径单陀螺水平井旋转定向测斜装置及方法
CN104655095B (zh) 一种利用光纤陀螺测定地理纬度的方法
US4123849A (en) Miniature north reference unit
CN214951273U (zh) 方位指示系统
CN106949905B (zh) 一种重力垂线偏差测量装置
RU2650425C1 (ru) Гирокомпас с визуальным каналом

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795697

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20795697

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20795697

Country of ref document: EP

Kind code of ref document: A1