CN104833348A - 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法 - Google Patents

一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法 Download PDF

Info

Publication number
CN104833348A
CN104833348A CN201510218125.6A CN201510218125A CN104833348A CN 104833348 A CN104833348 A CN 104833348A CN 201510218125 A CN201510218125 A CN 201510218125A CN 104833348 A CN104833348 A CN 104833348A
Authority
CN
China
Prior art keywords
angle
north
torquer
gyro
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510218125.6A
Other languages
English (en)
Other versions
CN104833348B (zh
Inventor
杨志强
田镇
张喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201510218125.6A priority Critical patent/CN104833348B/zh
Publication of CN104833348A publication Critical patent/CN104833348A/zh
Application granted granted Critical
Publication of CN104833348B publication Critical patent/CN104833348B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,包括如下步骤:一、安置仪器;二、陀螺定向测量:a.使陀螺马达旋转轴方向对准陀螺仪测角装置中的电子度盘零刻度线方向;第一位置寻北测量;c.计算得到电子度盘零刻度线方向偏离真北方向夹角∠NOR并向真北方向旋转角度∠NOR到达第二位置;重复执行步骤b、c,依次到达第三位置、……、第m位置,直至两次对应的夹角∠NOR差值小于阈值;得到电子度盘零刻度线方向偏离真北方向夹角∠NOR;三、照准系统方向观测;四、计算测线的真北方位角。本发明解决了架设区间小、需要人工调节、寻北时间长、数据稳定性差、效率低等问题,增强了仪器的环境适应性。

Description

一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
技术领域
本发明涉及一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法。该方法可广泛应用于静态模式下的各类陀螺全站仪构建及隧道、巷道、引水隧洞等工程的贯通测量领域。
背景技术
陀螺全站仪是一种可以独立、精确确定地球上任意点真北方向的定向仪器,其测量原理为通过高速旋转陀螺敏感地球自转角动量。可应用于贯通导线测量误差积累改正、初始方位标校等,主要应用于公路铁路隧道、煤矿巷道、引水隧洞的贯通测量,导航设备标校,火箭、导弹等武器发射系统定向。
在工程中应用广泛的陀螺全站仪为悬挂式陀螺仪,采用悬挂带对陀螺灵敏部进行支承。目前,悬挂式陀螺仪寻北方法多采用人工或者电子设备观测陀螺旋转轴自由摆动曲线,以此来确定陀螺的动平衡位置,要等待陀螺的动平衡位置相对稳定后,才能进行观测、数据采集,即在陀螺马达转子达到额定转速,处于平衡稳定状态后,在此单一平衡位置下通过中天法、逆转点法、积分法等进行观测。该单一平衡位置下的寻北虽然能够相对准确地测定真北方位,但由于部分系统性误差的影响,例如陀螺水平测角系统的偏心误差,系统的常数漂移误差等等,会对陀螺定向成果产生影响,降低其测量精度。这些系统误差在短期时间或单次测量中表现出系统性,而在长期使用或多次测量间则表现出偶然性。而传统悬挂式陀螺全站仪由于陀螺的动平衡位置稳定时间较长,如果进行两个位置的数据采集比较消耗时间。同时,由于悬挂式陀螺结构设计,其对架设方位要求较为严格,比如要求北向标识在正北方向(-10°,+10°)范围内,不能大角度旋转,如果超出这个范围后陀螺全站仪不能正常工作,需要进行人工调整。
综上,造成了传统的陀螺寻北方法寻北时间长、数据稳定性差、效率低等问题,在存在外界干扰情况下,定向效果更差。
发明内容
本发明基于静态力矩模式陀螺全站仪,提出了一种逐次多位置寻北测量方法,它解决了传统陀螺寻北方法初始架设方位要求严格、寻北时间长、数据稳定性差、效率低等技术问题。
为了解决上述技术问题,本发明采取如下的技术解决方案:
一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,包括如下步骤:
一、安置仪器:在测站点安置基于静态模式寻北的陀螺全站仪,使北向标识位于真北方向(-90°,+90°)区间内,调整并对中;
二、陀螺定向测量:
a.启动马达启动加速模块、盘位转换模块,使陀螺马达旋转轴方向对准陀螺仪测角装置中的电子度盘零刻度线方向;
b.第一位置寻北测量:依次启动支承解锁模块、电流及光电信号采集模块,得到多组电流数据以及光电信号数据;根据电流数据计算得到陀螺灵敏部力矩值,并根据光电信号数据以及反射光线与入射光线的位置,计算陀螺灵敏部的角度位移量;启动稳定检测模块,如果陀螺灵敏部处于非稳定状态,则启动力矩反馈控制模块使得陀螺灵敏部稳定,然后启动支承锁定模块;根据采集的电流数据,计算陀螺灵敏部力矩值;
c.根据陀螺灵敏部力矩值,计算得到电子度盘零刻度线方向偏离真北方向夹角∠NOR;启动盘位转换模块使陀螺马达向真北方向旋转角度∠NOR到达第二位置;
d.重复执行步骤b、c,依次到达第三位置、……、第m位置;分别将第m和第m-1位置对应的夹角∠NOR求差值,如果差值小于阈值,则执行步骤e;
e.第m位置寻北测量:
执行步骤b、c,得到电子度盘零刻度线方向偏离真北方向夹角∠NOR;
三、照准系统方向观测:
a.使望远镜照准目标,记录照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCA
b.再将望远镜在竖直方向与水平方向分别旋转180度,然后调节望远镜照准测线方向,记录照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCB;完成一次目标照准;
c.再次将望远镜在竖直方向与水平方向分别旋转180度,重复a、b步骤分别获得照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCC、∠MOCD,至此照准系统完成第二次目标照准;计算两次目标照准的平均值∠MOC;
四、寻北结果计算:
计算测线的真北方位角A:
A=∠MOC+∠NOR+∠ROM
其中,∠ROM为陀螺寻北方向与电子度盘的零刻度线的夹角。
进一步的,所述马达启动加速模块、盘位转换模块、电流及光电信号采集模块、支承锁定模块、支承解锁模块、稳定检测模块和力矩反馈控制模块分别用于实现如下功能:
马达启动加速模块:控制陀螺马达的启动及加速;
盘位转换模块:控制驱动电机驱动轮盘转动,根据陀螺仪测角装置发送的轮盘的转动角度控制轮盘转动;
电流及光电信号采集模块:按设定采集次数采集第一力矩器转子、第一力矩器定子、第二力矩器转子和第二力矩器定子内部电流数据;第二微型计算机按设定采集次数采集支承稳定检测装置、水平力矩稳定检测装置、竖直力矩稳定检测装置的光电传感器的光电信号数据;
支承锁定模块:控制电感线圈断电,磁性消失,压缩状态的弹簧通过压片向上顶住下部连接盘,下部连接盘上的触头与上部连接盘接触;并向上拉动连接部、第一力矩器转子、陀螺灵敏部和第二力矩器转子的整体,使得悬挂带不受力松弛;
支承解锁模块:控制电感线圈通电,压片收到磁力向下进一步压缩弹簧,压片与下部连接盘脱离连接;由于下部连接盘、连接部、第一力矩器转子、陀螺灵敏部和第二力矩器转子整体的重力作用,使悬挂带受力拉紧;
稳定检测模块:将力矩角度位移数据采集模块得到的角度位移量与设定阈值相比较,如果不超过设定阈值,则陀螺灵敏部处于稳定状态,否则不稳定;
力矩反馈控制模块:根据电流及光电信号采集模块得到的力矩值控制第一力矩器转子、第一力矩器定子、第二力矩器转子和第二力矩器定子的内部电流,使得力矩器定子和其对应转子间形成与陀螺灵敏部摆动力矩大小相等、方向相反的合力矩,直至陀螺灵敏部稳定。
进一步的,所述安置仪器步骤中的所述调整并对中是指启动激光发射模块,移动仪器直至激光发射模块的激光束射向测站点标识;反复调节调节螺旋,直至上对中标识对准悬挂在测站点上的对中垂球尖部。
进一步的,所述陀螺定向测量中的步骤b中,根据采集的多组电流数据计算陀螺灵敏部力矩值的公式如下:
M = 1 n · k · Σ i = 1 n ( I RAi · I SAi + I RBi · I SBi )
其中,M表示陀螺灵敏部力矩值;i表示采集的数据的序号;IRA为第一力矩器转子电流值;IRB为第二力矩器转子电流值;ISA为第一力矩器定子电流值;ISB为第二力矩器定子电流值;k为力矩器系数;n为采集的电流数据的组数;
进一步的,所述陀螺定向测量中的步骤c中,根据陀螺灵敏部力矩值,计算得到电子度盘零刻度线方向偏离真北方向夹角的公式如下:
其中,M表示陀螺灵敏部力矩值;H为陀螺的角动量;ωe为地球的自转角速度;为测站点的地理纬度。
进一步的,所述照准系统方向观测中,所述步骤c中计算两次目标照准的平均值∠MOC的公式如下:
与传统悬挂式陀螺全站仪相比,本发明的优点是:逐次多位置寻北的方式放宽了陀螺全站仪对初始架设方位的限定条件,只要架设时北向标示位于区间(-90°,+90°)即可,解决了传统悬挂式陀螺全站仪架设区间小,需要人工调节,寻北时间长、数据稳定性差、效率低等问题,增强了仪器的环境适应性。
附图说明
图1为本发明的基于静态模式的陀螺全站仪的结构示意图。
图2为本发明俯视图。
图中各标号含义:1、上对中标识;3、固定螺钉;4、照准部测角装置;5、望远镜;6、竖直制动微动螺旋;8、照准系统显示屏;9、键盘;10、水平制动微动螺旋;13、通讯接口;14、陀螺仪水准管;15、陀螺仪显示屏;16、操作按钮组;17、陀螺仪测角装置;18、驱动电机;19、轮盘;20、滚珠盘;21、支承稳定检测装置;22、上部连接盘;23、下部连接盘;25、弹簧;27、电感线圈;28、压片;29、悬挂带;30、第一力矩器定子;31、第一力矩器转子;32、连接部;34、水平力矩稳定检测装置;35、陀螺马达;39、第二力矩器定子;40、第二力矩器转子;42竖直力矩稳定检测装置;45、调节螺旋;46、基座;47、第二微型计算机;48、接口组;49、通光孔;50、激光发射模块;51、外壳;53、扶手;54、上对中支架;55、照准部支架;56、旋转轴;57、照准部水准管;58、第一微型计算机;59、水平旋转部;60、触头;61、支撑台;62、北向标识;63、陀螺仪水平度盘;64、照准系统水平度盘。
图3为陀螺仪角度测量关系示意图。
图4为逐次多位置寻北示意图。
以下结合附图和具体实施方式,对本发明做进一步详细说明。
具体实施方式
如图3所示,图中大圆代表陀螺仪水平度盘63,小圆代表照准系统水平度盘64,由于陀螺仪与照准系统处于同轴状态,大圆与小圆为同心圆。其中,OR为陀螺马达35旋转轴56的方向,ON为真北方向;OC为照准目标测线方向。本发明的方法首先通过电子度盘零刻度线方向偏离真北方向夹角∠NOR(即陀螺旋转轴的北向偏角)、陀螺寻北方向(即陀螺旋转轴指向,图中为OR方向)与陀螺仪测角装置17的电子度盘的零刻度线(图2中OM方向)的夹角∠ROM、照准测线方向(LL方向)与陀螺仪测角装置17的电子度盘零刻度线方向之间的夹角∠MOC,即可确定真北方向ON相对于测线的方位;要想精确地测量真北方向ON相对于测线的方位就必须提高陀螺旋转轴的北向偏角∠NOR的测量精度。
对陀螺寻北工作原理分析可知,陀螺全站仪架设方位即陀螺马达35旋转轴56的初始方向位于真北方向附近(-90°,+90°)时,陀螺旋转轴的北向偏角∠NOR与陀螺灵敏部力矩值M之间为一一对应的函数关系,陀螺旋转轴的北向偏角∠NOR为不同值时,就会有唯一的陀螺灵敏部力矩值M与之对应。当陀螺旋转轴的北向偏角∠NOR越小时,陀螺灵敏部力矩值M就会越小,测量误差对陀螺旋转轴的北向偏角∠NOR测量精度的影响也会越小;反之,如果陀螺旋转轴的北向偏角∠NOR越大,测量值误差对其测量精度的影响也就越大。
综上,为了减小测量误差对陀螺寻北定向成果的影响,必须使陀螺旋转轴的北向偏角∠NOR在尽可能小的情况下进行寻北数据采样。为此,设计了本发明的逐次多位置寻北方法,使陀螺旋转轴的北向偏角∠NOR在尽可能小的情况下,进行寻北数据采集,提高陀螺定向成果精度。
本发明的方法所使用的基于静态模式的力矩反馈陀螺全站仪,其结构参见图1和图2,包括照准系统、陀螺仪测角系统、盘位转换系统、支承系统、陀螺灵敏部、力矩反馈控制系统、稳定检测系统、激光对中系统、数据处理及控制系统;其中,照准系统安装在一外壳51的上方,陀螺仪测角系统、盘位转换系统、支承系统、陀螺灵敏部、力矩反馈控制系统、稳定检测系统、激光对中系统、数据处理及控制系统安装在该外壳51的内部。
图1中,VV轴为本发明的陀螺全站仪的中心轴线,也是外壳51的中心轴线,HH轴为望远镜5旋转轴56的轴线,LL轴为望远镜5的视准轴,该三轴相互垂直,且相交于望远镜5的内部中心点;H’H’轴为照准部水准管57的轴线,其与HH轴平行且垂直于VV轴;利用外壳51的下方的调节螺旋45对全站仪进行整平时,若照准部水准管57中的气泡居中,则表示磁悬浮陀螺全站仪在H’H’的轴向方向上处于水平状态。
照准系统包括上对中支架54、照准部支架55、照准部测角装置4、望远镜5和第一微型计算机58,其中,上对中支架54安装在照准部支架55顶端且与照准部支架55形成门形结构,上对中支架54中心位置设有上对中标识1,用于通过垂球法进行上对中,两者通过固定螺钉3连接,保证上对中标识1位于VV轴上;望远镜5通过旋转轴56安装于照准部支架55上,且能够在竖直面内绕HH轴自由旋转;望远镜5由测距系统和棱镜组组成,用于对目标实施精确照准,并测量望远镜中心(即三轴VV轴、LL轴、HH轴的交点)到目标点的距离;照准部支架55上设有竖直制动微动螺旋6和水平制动微动螺旋10,通过竖直制动微动螺旋6调整望远镜5在竖直面内所指向的方向,并根据照准部测角装置4测定望远镜5所指向的方向(LL轴方向)的竖直角角度值;通过水平制动微动螺旋10调整望远镜5在水平面内所指向的方向,再根据照准部测角装置4可测定望远镜所指向的方向(LL轴方向)的水平角角度值;照准部支架55底部设有一照准部水准管57,照准部支架55下方安装第一微型计算机58,且第一微型计算机58与照准部支架55均安装在一水平旋转部59上,水平旋转部59能够在水平面内绕自身轴线旋转,从而带动第一微型计算机58及其以上的结构整体在水平面内绕VV轴自由旋转;水平旋转部59内安装照准部测角装置4,照准部测角装置4采用电子度盘,照准部测角装置4与第一微型计算机58连接,用以测量出望远镜5视准轴LL轴方向的方位;第一微型计算机58上设有照准系统显示屏8、键盘9和通讯接口13。
数据处理及控制系统包括第二微型计算机47、接口组48、两个陀螺仪显示屏15和两个操作按钮组16(包括确认按钮:用于确定某项选择;返回按钮:用于取消某项选择并返回上一级菜单;前翻按钮:用于数字或者选项向前翻;后翻按钮:用于数字或者选项向后翻;激光开启按钮:用于控制激光束开启关闭);其中,接口组48、陀螺仪显示屏15和操作按钮组16分别连接第二微型计算机47;外壳51上部的两侧均设有一陀螺仪显示屏15和一操作按钮组16;接口组48安装在外壳51底部外侧,接口组48包括电力接口、陀螺仪通讯接口和存储接口,用于实现仪器的电力供应、数据通讯和数据存储;接口组48的陀螺仪通讯接口与照准部通讯接口13相互连接,实现第二微型计算机47与第一微型计算机58的连接,以实现两者数据通讯。
陀螺仪测角系统位于外壳51内的顶部,包括陀螺仪测角装置17,陀螺仪测角装置17与第二微型计算机47连接;陀螺仪测角装置17由电子度盘和RDC测角电路组成,其中,RDC测角电路用以测量陀螺寻北方向(图3中OR方向)与陀螺仪测角装置17的电子度盘的零刻度线(图3中OM方向)的夹角(图3中∠ROM)。
盘位转换系统位于陀螺仪测角装置17的正下方;盘位转换系统包括驱动电机18、轮盘19和滚珠盘20;其中,滚珠盘20固定在壳体51内壁,轮盘19安装在滚珠盘20上,且位于陀螺仪测角装置17的正下方,轮盘19能够相对于滚珠盘20绕VV轴转动,轮盘19的转动角度由陀螺仪测角装置17测定;滚珠盘20用于减小轮盘19转动的摩擦力,便于实现精确转位;驱动电机18通过齿轮组连接轮盘19,用于驱动轮盘19转动;驱动电机18连接第二微型计算机47,用于根据第二微型计算机47发来的指令控制轮盘19旋转。
支承系统包括上部连接盘22和下部连接盘23,上部连接盘22固定在轮盘19下方;上部连接盘22下方中心处固定有悬挂带29,下部连接盘23为中空圆盘;下部连接盘23顶面边缘沿周向等距设有四个触头60;下部连接盘23下方正对固定在外壳51内壁的带有中心孔的圆形的支撑台61,支撑台61上方以VV轴为中心均匀设有四个电感线圈27,每个电感线圈27上套有一弹簧25,每个弹簧25上端水平固定有一压片28;电感线圈27连接第二微型计算机47,用于接收数据处理及控制系统的指令实现电感线圈27的通断电。其中,压片28可采用电磁铁。
陀螺灵敏部包括陀螺马达房和陀螺马达35,陀螺马达房通过连接部32与其上方的下部连接盘23连接为一体,同时,悬挂带29的下端穿过下部连接盘23和连接部32后固定陀螺马达房的顶板中心;陀螺马达房内固定有与第二微型计算机47连接的陀螺马达35。当电感线圈27处于断电状态时,支撑台61上的弹簧25处于压缩状态,弹簧25通过压片28向上顶住下部连接盘23,使得下部连接盘23的触头60与上部连接盘22下表面接触,此时,由于下部连接盘23、连接部32和陀螺灵敏部为一整体,因此悬挂带29处于不受力状态;当电感线圈27处于通电状态时,压片28受到向下的电磁力而带动弹簧25使其进一步压缩,压片28下移与下部连接盘23脱离;陀螺灵敏部的重力将悬挂带29向下拉紧。
力矩反馈控制系统包括与第二微型计算机47连接的第一力矩器转子31、第一力矩器定子30、第二力矩器转子40和第二力矩器定子39,它们用于在数据处理及控制系统的控制下完成力矩反馈控制;第一力矩器转子31套装在连接部32外,第一力矩器定子30固定在外壳51内壁上且将第一力矩器转子31套于内部;第二力矩器转子40固定在陀螺马达房的底板下方,第二力矩器定子39固定在外壳51内壁上且将第二力矩器转子40套于内部。
陀螺马达35用于感知地球自转角动量,陀螺马达35带动陀螺马达房旋转,从而带动第一力矩器转子31和第二力矩器转子40转动;力矩器定子固定在外壳51上,因此其内部电流始终保持恒定;力矩器转子与力矩器定子之间通电后形成水平电磁场,相互感应。两个力矩器转子与陀螺灵敏部为一体,其内部电流随陀螺马达35旋转轴56方位的变化而变化。
稳定检测系统包括支承稳定检测装置21、水平力矩稳定检测装置34和竖直力矩稳定检测装置42;其中,支承稳定检测装置21由安装在支撑台61上的反射镜组以及与其相对应安装在下部连接盘23外侧面的光电传感器组成;水平力矩稳定检测装置34由安装在外壳51内壁的反射镜组以及与其相对应安装在陀螺马达房外侧面的光电传感器组成;竖直力矩稳定检测装置42由安装在第二力矩器转子40下部的光电传感器以及其下方与其对应的反射镜组成;光电传感器用于发射光束并接收经反射镜组发射的光束;每个光电传感器与第二微型计算机47相连接,接收到的光束信号传输至第二微型计算机47。
激光对中系统包括激光发射模块50,激光发射模块50安装在外壳51底面,外壳51底板中心处上开有通光孔49,激光发射模块50发射的竖直向下的激光由通光孔49射出;激光对中系统用于在测站点上进行仪器摆放时的对中;激光发射模块50连接第二微型计算机47。第二微型计算机47根据操作按钮组16的开关动作控制激光发射模块50的开启关闭。激光发射模块50可采用激光器。
外壳51的下方设有基座46,基座46用于将本发明的仪器安装在三脚架上;可选的,基座46为圆形,基座46边缘沿周向设有三个间隔120°的调节螺旋45,调节螺旋45用于仪器的整平对中;外壳51上表面设有两个陀螺仪水准管14和一个北向标识62,北向标识62指示方向为陀螺仪测角装置17中的电子度盘零刻度线方向。其中,两个陀螺仪水准管14的轴线相互垂直(XX轴垂直于YY轴),两陀螺仪水准管14气泡居中时,陀螺仪外壳51上表面处于水平状态;外壳51的两侧还对称安装有两个扶手53。
数据处理及控制系统受第二微型计算机47控制,第二微型计算机47接收通过操作按钮组16输入的测站纬度信息、测量程序设置等内容。测量过程中,第二微型计算机47接收力矩器电流值、稳定检测装置的光电传感器光电信号数据。
数据处理及控制系统中加载以下功能模块:
马达启动加速模块:第二微型计算机47控制陀螺马达35的启动及加速。
盘位转换模块:第二微型计算机47控制驱动电机18驱动轮盘19转动,根据陀螺仪测角装置17发送的轮盘19的转动角度控制轮盘19转动。
电流及光电信号采集模块:第二微型计算机47按设定采集次数采集第一力矩器转子31、第一力矩器定子30、第二力矩器转子40和第二力矩器定子39内部电流数据(这些电流数据反映陀螺灵敏部摆动幅度);第二微型计算机47按设定采集次数采集支承稳定检测装置21、水平力矩稳定检测装置34、竖直力矩稳定检测装置42的光电传感器的光电信号数据。
支承锁定模块:第二微型计算机47控制电感线圈27断电,磁性消失,压缩状态的弹簧25通过压片28向上顶住下部连接盘23,下部连接盘23上的触头60与上部连接盘22接触;并向上拉动连接部32、第一力矩器转子31、陀螺灵敏部和第二力矩器转子40的整体,使得悬挂带29不受力松弛。
支承解锁模块:第二微型计算机47控制电感线圈27通电,压片28收到磁力向下进一步压缩弹簧25,压片28与下部连接盘23脱离连接;由于下部连接盘23、连接部32、第一力矩器转子31、陀螺灵敏部和第二力矩器转子40整体的重力作用,使悬挂带29受力拉紧。
稳定检测模块:第二微型计算机47将力矩角度位移数据采集模块得到的角度位移量与设定阈值相比较,如果不超过设定阈值,则陀螺灵敏部处于稳定状态,否则不稳定。
本发明中,仅当支承稳定检测装置21、水平力矩稳定检测装置34、竖直力矩稳定检测装置42三组入射光与反射光光路均满足设定的稳定条件时,陀螺灵敏部处于稳定状态。
力矩反馈控制模块:第二微型计算机根据电流及光电信号采集模块得到的力矩值控制第一力矩器转子31、第一力矩器定子30、第二力矩器转子40和第二力矩器定子39的内部电流,使得力矩器定子和其对应转子间形成与陀螺灵敏部摆动力矩大小相等、方向相反的合力矩,直至陀螺灵敏部稳定。
利用上文所述的基于静态模式的力矩反馈陀螺全站仪,本发明的逐次多位置寻北测量方法具体包括如下步骤:
一、安置仪器:
在指定测站点安置本发明的基于静态模式寻北的陀螺全站仪,使北向标识62位于真北方向(-90°,+90°)区间内,接通电源。当测站点位于地面时,通过操作按钮组16启动激光发射模块50,移动仪器直至激光发射模块50的激光束射向测站点标识;反复调节调节螺旋45,直至上对中标识1对准悬挂在测站点上的对中垂球尖部。
二、陀螺定向测量:
进行逐次多位置的测量,操作步骤如下:
a.启动马达启动加速模块、盘位转换模块,使陀螺马达35旋转轴56方向对准陀螺仪测角装置17中的电子度盘零刻度线方向(北向标识62指示方向);
b.第一位置寻北测量:依次启动支承解锁模块、电流及光电信号采集模块,得到多组电流数据以及光电信号数据;第二微型计算机47根据电流数据计算得到陀螺灵敏部力矩值,并根据光电信号数据以及反射光线与入射光线的位置,计算陀螺灵敏部的角度位移量;启动稳定检测模块,如果陀螺灵敏部处于非稳定状态,则启动力矩反馈控制模块使得陀螺灵敏部稳定,然后启动支承锁定模块。其中,电流及光电信号采集模块的采集次数为至少100次。本实施例中取100次。
对采集的多组电流数据,计算过程如下(以10组数据为例):
第二微型计算机47采集的每一条数据格式为:序号(i),第一力矩器转子电流值(IRA),第二力矩器转子电流值(IRB),第一力矩器定子电流值(ISA)、第二力矩器定子电流值(ISB)。数据格式如下表所示:
通过公式(1)计算陀螺灵敏部力矩值M:
M = 1 n · k · Σ i = 1 n ( I RAi · I SAi + I RBi · I SBi )
其中,力矩器系数k(常量,取333);n为采集的电流数据的组数。
c.第二微型计算机47根据陀螺灵敏部力矩值,计算得到陀螺仪测角装置17的电子度盘零刻度线方向偏离真北方向夹角∠NOR,见图3所示,此夹角值越大,精度越低。∠NOR通过公式(2)计算得到:
其中,陀螺的角动量H;地球的自转角速度ωe;测站点的地理纬度
启动盘位转换模块使陀螺马达35向真北方向(图3中ON为真北方向)旋转角度∠NOR,此时到达第二位置。此时陀螺马达35旋转轴56方向更趋近于真北方向;
d.重复执行步骤b、c,依次到达第三位置、……、第m位置,此过程中得到的夹角∠NOR值逐渐变小;分别将第m和第m-1位置对应的夹角∠NOR求差值,如果差值小于阈值(实施例中取10″),则执行步骤e;
e.第m位置寻北测量:
该步骤与步骤b、c相同,区别仅在于,电流与光电信号采集模块的采集次数为10000次,因此参与计算的数据为至少10000组数据,得到陀螺仪测角装置17的电子度盘零刻度线方向偏离真北方向夹角∠NOR;本实施例中取10000次。
三、照准系统方向观测:
a.调节水平制动微动螺旋10和竖直制动微动螺旋6,使望远镜5照准目标,此时保证水平制动微动螺旋10位于观测方向的左边,照准部测角装置4将此时照准测线方向(LL方向)与陀螺仪测角装置17的电子度盘零刻度线方向之间的夹角记为∠MOCA存储并显示在第一微型计算机58的照准系统显示屏8上。
b.再将望远镜5在竖直方向与水平方向分别旋转180度,此时水平制动微动螺旋10位于观测方向的右边,通过调节水平制动微动螺旋10、竖直制动微动螺旋6,再次使望远镜5照准测线方向,照准部测角装置4将此时照准测线方向(LL方向)与陀螺仪测角装置17的电子度盘零刻度线方向之间的夹角记为∠MOCB存储并显示在第一微型计算机58的照准系统显示屏8上;至此照准系统完成一次目标照准。
c.再次将望远镜5在竖直方向与水平方向分别旋转180度,此时水平制动微动螺旋10位于观测方向的左边,重复步骤a、b分别获得照准测线方向(LL方向)与陀螺仪测角装置17的电子度盘零刻度线方向之间的夹角记为∠MOCC、∠MOCD,至此照准系统完成第二次目标照准。依据公式(3)计算两次目标照准的平均值∠MOC。
四、寻北成果计算:
第一微型计算机58将陀螺定向测量过程最终获得的夹角∠NOR以及两次目标照准的平均值∠MOC进行计算,获得测线的真北方位角A,并显示在第一微型计算机58的照准系统显示屏8上。测线的真北方位角A计算公式(4)如下:
A=∠MOC+∠NOR+∠ROM   (4)
其中,两次目标照准的平均值∠MOC;陀螺寻北方向(图3中OR方向,即陀螺旋转轴指向)与陀螺仪测角装置17的电子度盘的零刻度线(图3中OM方向)的夹角∠ROM,∠ROM由陀螺仪测角装置17的RDC测角电路测得。
如图4所示,当陀螺仪开始进行寻北测量时,盘位转换模块首先驱动陀螺灵敏部,使陀螺马达35旋转轴56方向(OR1方向)转向北向标识62所指的方向,进行第一位置寻北测量,并计算得到第一位置下的陀螺旋转轴与真北方向夹角∠NOR1。接下来,在盘位转换模块的作用下,陀螺灵敏部以锁定状态,在盘位转换模块带动下向真北方向转∠NOR,陀螺旋转轴指向OR2方向。根据分析可知,OR2方向要比OR1方向更加接近真北方向(ON方向),寻北成果的理论精度要优于OR2方向。
依此类推,进行第二、第三、……、第i位置寻北测量,随着寻北位置的不断增加陀螺旋转轴的指向ORi逐渐向真北方向(ON方向)靠拢,最终ORi方向可近认为是真北方向,完成真北方向确定。
理论上,如果这种逐次寻北的位置无限制的增加下去,寻北定向精度会越来越高,但是,依据陀螺仪测角装置17的分辨率和力矩值的测量精度,最终陀螺旋转轴会在某一区域范围内反复摆动。所以应合理确定寻北位置的个数。因此限定了终止逐次寻北过程的阈值。
由于第一位置寻北测量的位置就是北向标识所指示的方位,因此仪器的初始架设方位也是影响寻北位置个数的一个重要因素。如果仪器的初始架设方位(北向标识的方位)正好指向真北方向或者非常接近真北方向,那么陀螺旋转轴经过一个位置的数据采样过程即可完成寻北工作;如果仪器的初始架设方位偏离真北方向较远,则需要进行多位置寻北过程,来精确测定真北方位。根据实际测算,当北向标示与真北方向偏角位于区间(-90°,+90°)时,一般经过2~3个位置的寻北测量过程即可完成寻北定向工作。

Claims (6)

1.一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,包括如下步骤:
一、安置仪器:在测站点安置基于静态模式寻北的陀螺全站仪,使北向标识位于真北方向(-90°,+90°)区间内,调整并对中;
二、陀螺定向测量:
a.启动马达启动加速模块、盘位转换模块,使陀螺马达旋转轴方向对准陀螺仪测角装置中的电子度盘零刻度线方向;
b.第一位置寻北测量:依次启动支承解锁模块、电流及光电信号采集模块,得到多组电流数据以及光电信号数据;根据电流数据计算得到陀螺灵敏部力矩值,并根据光电信号数据以及反射光线与入射光线的位置,计算陀螺灵敏部的角度位移量;启动稳定检测模块,如果陀螺灵敏部处于非稳定状态,则启动力矩反馈控制模块使得陀螺灵敏部稳定,然后启动支承锁定模块;根据采集的电流数据,计算陀螺灵敏部力矩值;
c.根据陀螺灵敏部力矩值,计算得到电子度盘零刻度线方向偏离真北方向夹角∠NOR;启动盘位转换模块使陀螺马达向真北方向旋转角度∠NOR到达第二位置;
d.重复执行步骤b、c,依次到达第三位置、……、第m位置;分别将第m和第m-1位置对应的夹角∠NOR求差值,如果差值小于阈值,则执行步骤e;
e.第m位置寻北测量:
执行步骤b、c,得到电子度盘零刻度线方向偏离真北方向夹角∠NOR;
三、照准系统方向观测:
a.使望远镜照准目标,记录此时照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCA
b.再将望远镜在竖直方向与水平方向分别旋转180度,然后调节望远镜照准测线方向,记录此时照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCB;完成一次目标照准;
c.再次将望远镜在竖直方向与水平方向分别旋转180度,重复a、b步骤分别获得照准测线方向与电子度盘零刻度线方向之间的夹角∠MOCC、∠MOCD,至此照准系统完成第二次目标照准;计算两次目标照准的平均值∠MOC;
四、寻北结果计算:
计算测线的真北方位角A:
A=∠MOC+∠NOR+∠ROM
其中,∠ROM为陀螺寻北方向与电子度盘的零刻度线的夹角。
2.如权利要求1所述的基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,所述马达启动加速模块、盘位转换模块、电流及光电信号采集模块、支承锁定模块、支承解锁模块、稳定检测模块和力矩反馈控制模块分别用于实现如下功能:
马达启动加速模块:控制陀螺马达的启动及加速;
盘位转换模块:控制驱动电机驱动轮盘转动,根据陀螺仪测角装置发送的轮盘的转动角度控制轮盘转动;
电流及光电信号采集模块:按设定采集次数采集第一力矩器转子、第一力矩器定子、第二力矩器转子和第二力矩器定子内部电流数据;第二微型计算机按设定采集次数采集支承稳定检测装置、水平力矩稳定检测装置、竖直力矩稳定检测装置的光电传感器的光电信号数据;
支承锁定模块:控制电感线圈断电,磁性消失,压缩状态的弹簧通过压片向上顶住下部连接盘,下部连接盘上的触头与上部连接盘接触;并向上拉动连接部、第一力矩器转子、陀螺灵敏部和第二力矩器转子的整体,使得悬挂带不受力松弛;
支承解锁模块:控制电感线圈通电,压片收到磁力向下进一步压缩弹簧,压片与下部连接盘脱离连接;由于下部连接盘、连接部、第一力矩器转子、陀螺灵敏部和第二力矩器转子整体的重力作用,使悬挂带受力拉紧;
稳定检测模块:将力矩角度位移数据采集模块得到的角度位移量与设定阈值相比较,如果不超过设定阈值,则陀螺灵敏部处于稳定状态,否则不稳定;
力矩反馈控制模块:根据电流及光电信号采集模块得到的力矩值控制第一力矩器转子、第一力矩器定子、第二力矩器转子和第二力矩器定子的内部电流,使得力矩器定子和其对应转子间形成与陀螺灵敏部摆动力矩大小相等、方向相反的合力矩,直至陀螺灵敏部稳定。
3.如权利要求1所述的基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,所述安置仪器步骤中的所述调整并对中是指启动激光发射模块,移动仪器直至激光发射模块的激光束射向测站点标识;反复调节调节螺旋,直至上对中标识对准悬挂在测站点上的对中垂球尖部。
4.如权利要求1所述的基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,所述陀螺定向测量中的步骤b中,根据采集的多组电流数据计算陀螺灵敏部力矩值的公式如下:
M = 1 n · k · Σ i = 1 n ( I RAi · I SAi + I RBi · I SBi )
其中,M表示陀螺灵敏部力矩值;i表示采集的数据的序号;IRA为第一力矩器转子电流值;IRB为第二力矩器转子电流值;ISA为第一力矩器定子电流值;ISB为第二力矩器定子电流值;k为力矩器系数;n为采集的电流数据的组数。
5.如权利要求1所述的基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,所述陀螺定向测量中的步骤c中,根据陀螺灵敏部力矩值,计算得到电子度盘零刻度线方向偏离真北方向夹角的公式如下:
其中,M表示陀螺灵敏部力矩值;H为陀螺的角动量;ωe为地球的自转角速度;为测站点的地理纬度。
6.如权利要求1所述的基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法,其特征在于,所述照准系统方向观测中,所述步骤c中计算两次目标照准的平均值∠MOC的公式如下:
CN201510218125.6A 2015-04-30 2015-04-30 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法 Expired - Fee Related CN104833348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510218125.6A CN104833348B (zh) 2015-04-30 2015-04-30 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510218125.6A CN104833348B (zh) 2015-04-30 2015-04-30 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法

Publications (2)

Publication Number Publication Date
CN104833348A true CN104833348A (zh) 2015-08-12
CN104833348B CN104833348B (zh) 2017-07-14

Family

ID=53811385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510218125.6A Expired - Fee Related CN104833348B (zh) 2015-04-30 2015-04-30 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法

Country Status (1)

Country Link
CN (1) CN104833348B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864842A (zh) * 2015-04-30 2015-08-26 杨志强 一种基于静态模式的力矩反馈陀螺全站仪
CN107339583A (zh) * 2017-08-01 2017-11-10 中国科学院武汉岩土力学研究所 一种自对中式激光三脚架
CN108592899A (zh) * 2018-03-27 2018-09-28 湖北三江航天万峰科技发展有限公司 陀螺定向测量方法
WO2020215855A1 (zh) * 2019-04-25 2020-10-29 长安大学 一种利用磁悬浮陀螺精密测定地理纬度的方法
CN112648986A (zh) * 2020-11-17 2021-04-13 中船航海科技有限责任公司 一种高精度光电摆及其倾斜角度计算方法
CN116296013A (zh) * 2023-05-16 2023-06-23 合肥中隐新材料有限公司 陀螺力矩检测装置、检测系统、检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047149B1 (en) * 1998-04-28 2006-05-16 Hitachi, Ltd. Optical measurement instrument and optical measurement method
CN101082491A (zh) * 2006-08-28 2007-12-05 北京航天发射技术研究所 一种摆式陀螺寻北仪测量方法
CN101285684A (zh) * 2008-05-22 2008-10-15 长安大学 一种陀螺定向测量的新方法
CN201600134U (zh) * 2010-02-05 2010-10-06 长安大学 新型磁悬浮陀螺全站仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047149B1 (en) * 1998-04-28 2006-05-16 Hitachi, Ltd. Optical measurement instrument and optical measurement method
CN101082491A (zh) * 2006-08-28 2007-12-05 北京航天发射技术研究所 一种摆式陀螺寻北仪测量方法
CN101285684A (zh) * 2008-05-22 2008-10-15 长安大学 一种陀螺定向测量的新方法
CN201600134U (zh) * 2010-02-05 2010-10-06 长安大学 新型磁悬浮陀螺全站仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王涛 等: "新型陀螺全站仪方位定向误差分析及工程应用", 《煤炭科学技术》 *
石震: "GAT高精度磁悬浮陀螺全站仪寻北关键技术及其应用研究", 《测绘学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864842A (zh) * 2015-04-30 2015-08-26 杨志强 一种基于静态模式的力矩反馈陀螺全站仪
CN104864842B (zh) * 2015-04-30 2017-05-03 杨志强 一种基于静态模式的力矩反馈陀螺全站仪
CN107339583A (zh) * 2017-08-01 2017-11-10 中国科学院武汉岩土力学研究所 一种自对中式激光三脚架
CN108592899A (zh) * 2018-03-27 2018-09-28 湖北三江航天万峰科技发展有限公司 陀螺定向测量方法
WO2020215855A1 (zh) * 2019-04-25 2020-10-29 长安大学 一种利用磁悬浮陀螺精密测定地理纬度的方法
CN112648986A (zh) * 2020-11-17 2021-04-13 中船航海科技有限责任公司 一种高精度光电摆及其倾斜角度计算方法
CN116296013A (zh) * 2023-05-16 2023-06-23 合肥中隐新材料有限公司 陀螺力矩检测装置、检测系统、检测方法

Also Published As

Publication number Publication date
CN104833348B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN104833348A (zh) 一种基于静态力矩模式陀螺全站仪的逐次多位置寻北测量方法
CN104931029B (zh) 一种基于静态力矩模式陀螺全站仪的双位置回转寻北测量方法
CN100565115C (zh) 多位置捷联寻北系统方位效应的标定方法
CN101776445B (zh) 一种磁悬浮陀螺全站仪
CN101063610B (zh) 工程变形自动监测系统
CN100504296C (zh) 基于光纤陀螺的全站仪组合定向方法
CN103292801B (zh) 光纤陀螺经纬仪及其寻北方法
US20210156679A1 (en) Angle and distance measuring method, trajectory diagram drawing method, and laser ranging system
JPS5912966B2 (ja) 測角器を自動整準する方法とその装置
CN102207386A (zh) 基于方位效应误差补偿的寻北方法
US1984874A (en) Gyro vertical
CN103776434A (zh) 新型陀螺寻北仪和寻北方法
CN103376098B (zh) 一种摆式陀螺寻北仪纬度自测算与精度自动补偿方法
CN201600134U (zh) 新型磁悬浮陀螺全站仪
CN104864842A (zh) 一种基于静态模式的力矩反馈陀螺全站仪
CN104655123B (zh) 一种利用光纤陀螺测定地球自转角速度的方法
CN201697623U (zh) 用于电子经纬仪的一种激光下对中装置
WO2020215855A1 (zh) 一种利用磁悬浮陀螺精密测定地理纬度的方法
CN110108265B (zh) 一种自主获取地理纬度并自动寻北的陀螺测量仪器
CN114838721B (zh) 一种光纤陀螺定向仪
CN103791896A (zh) 一种摆式陀螺寻北仪的全方位寻北装置及方法
CN104655095B (zh) 一种利用光纤陀螺测定地理纬度的方法
US2637914A (en) Self-orienting three-axis reference apparatus
CN107179066B (zh) 旋转定标装置及其定标方法
RU2611575C1 (ru) Гирокомпас

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170714