RU2408843C1 - Аналитический гирокомпас для квазистатических измерений - Google Patents

Аналитический гирокомпас для квазистатических измерений Download PDF

Info

Publication number
RU2408843C1
RU2408843C1 RU2009118994/28A RU2009118994A RU2408843C1 RU 2408843 C1 RU2408843 C1 RU 2408843C1 RU 2009118994/28 A RU2009118994/28 A RU 2009118994/28A RU 2009118994 A RU2009118994 A RU 2009118994A RU 2408843 C1 RU2408843 C1 RU 2408843C1
Authority
RU
Russia
Prior art keywords
gyroscope
platform
axis
gyrocompass
analytical
Prior art date
Application number
RU2009118994/28A
Other languages
English (en)
Inventor
Александр Викторович Романов (RU)
Александр Викторович Романов
Дмитрий Александрович Романов (RU)
Дмитрий Александрович Романов
Original Assignee
Общество с ограниченной ответственностью Научно-производственное предприятие "Ориентир"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственное предприятие "Ориентир" filed Critical Общество с ограниченной ответственностью Научно-производственное предприятие "Ориентир"
Priority to RU2009118994/28A priority Critical patent/RU2408843C1/ru
Application granted granted Critical
Publication of RU2408843C1 publication Critical patent/RU2408843C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

Изобретение относится к области приборостроения, а именно к гирокомпасам, вычисляющим азимут и углы наклона направлений, определенным образом связанных с неподвижным относительно Земли (статическим) объектом, на котором гирокомпас установлен. Гирокомпас включает основание, платформу, установленную на основании с возможностью поворота вокруг оси, перпендикулярной основанию, и фиксации в заданном положении, закрепленные на платформе гироскоп и акселерометр, ось чувствительности которого перпендикулярна оси вращения платформы, блок обработки информации и блок управления платформой. Гироскоп закреплен на платформе посредством узла крепления, расположенного выше центра тяжести гироскопа и включающего одноосный подвес или двухосный карданов подвес. Гирокомпас может быть дополнительно снабжен полым корпусом, размещенным на основании или платформе, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа. Изобретение обеспечивает устойчивое положение гироскопа таким образом, что при повороте объекта не происходит вращения гироскопа вокруг его оси чувствительности, что дает возможность повышения точности измерения азимута. 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится области приборостроения, а именно к гирокомпасам, вычисляющим азимут и углы наклона направлений, определенным образом связанных с неподвижным относительно Земли (статическим) объектом, на котором гирокомпас установлен. Такими направлениями могут быть, в частности, оси системы координат объекта, линия визирования оптического прибора, установленного вместе с гирокомпасом на объекте, продольная ось автомобиля и тому подобное. Изобретение может использоваться в геодезии, строительстве, при решении навигационных задач.
Известен волоконно-оптический гирокомпас, содержащий волоконно-оптический гироскоп (ВОГ), установленный с возможностью его поворота вокруг оси, перпендикулярной плоскости горизонта так, что его вектор чувствительности находится в плоскости горизонта, блок аналого-цифрового преобразования, связанный с блоком обработки и индикации. Дополнительно в него введены устройство вращения, связанное с ВОГ, блок фазовой обработки сигнала ВОГ, блок формирования сигнала частоты и фазы вращения ВОГ и датчик вращения ВОГ, при этом выход ВОГ соединен с входом блока фазовой обработки сигнала ВОГ, вход управления которого соединен с выходом блока формирования сигнала частоты и фазы вращения ВОГ, вход которого соединен с выходом датчика вращения ВОГ, вход которого связан с устройством вращения, а выход блока фазовой обработки сигнала ВОГ подключен к входу блока аналого-цифрового преобразования (патент РФ №2115889, МПК G01C 19/38, G01C 19/64, опубл. 1998.07.20).
Наиболее близким является статический лазерный гирокомпас на основе лазерного гироскопа с магнитооптическим управлением, содержащий основание, платформу, установленную на основании с возможностью поворота вокруг оси, перпендикулярной основанию, и фиксации в заданном положении, в котором соотношения между углами системы координат платформы и гирокомпаса известны. На платформе жестко установлены лазерный гироскоп и акселерометр, причем оси чувствительности гироскопа и акселерометра совпадают и перпендикулярны оси вращения платформы, блок измерений, связанный с блоком управления.
Известный лазерный гирокомпас работает следующим образом. Лазерный гирокомпас включают либо по команде с блока управления, либо от внешнего ПК. Измерения проводят в три этапа. На первом этапе измеряют проекции угловой скорости вращения Земли и угол наклона при исходном положении оси чувствительности, совпадающем с измерительной оси гирокомпаса, и определяют предварительный азимут. В блоке измерений регистрируется реальное угловое положение поворотной платформы. Затем в течение 10 сек измеряются наклоны платформы и накапливают показания гироскопа. По ним рассчитывают предварительный азимут оси чувствительности (ОЧ). Если направление ОЧ лазерного гироскопа не совпадает с направлением "запад-восток", то по команде блока управления устанавливают поворотную платформу в оптимальное положение. На втором этапе измеряют проекции угловой скорости вращения Земли и угол наклона при ОЧ, зафиксированной в положении, которое близко к направлению "запад-восток" ("восток-запад") и определяется по предварительному азимуту. В направлении "запад-восток" в течение 230 сек накапливаются показания гироскопа. На третьем этапе ОЧ фиксируют в положении, повернутом на угол 180°. После чего в течение 230 сек повторно производится накопление показаний. По накопленным показаниям угловой скорости рассчитывается азимут, и результат направляется в блок управления или на дисплей внешний ПК. После передачи результата поворотная платформа возвращается в исходное положение (Ю.Д.Голяев, А.И.Исаев, Ю.Ю.Колбас, С.В.Лантратов, В.М.Минзар, Г.И.Телегин. Гирокомпас на основе лазерного гироскопа с магнитооптическим управлением, Электроника, №8 (74), 2006 г., с.66-71 - прототип, адрес в Интернете: http://www.electronics.ru/issue/2006/8/14).
Недостатком известных гирокомпасов является невысокая достоверность результатов вычисления азимута из-за невозможности строго фиксировать объект относительно Земли. Под действием ветра, из-за проседания почвы или деформации конструкции в процессе измерения происходит дополнительное вращение объекта, что приводит к большим ошибкам вычисления азимута. Причина ошибки связана с тем, что скорость вращения Земли, проекция которой на оси чувствительности гироскопа измеряется, является относительно небольшой величиной и поэтому даже небольшая погрешность измерения гироскопа приводит к большой относительной погрешности измерения угловой скорости, а затем азимута. При повороте объекта вокруг оси чувствительности гироскопа на одну угловую секунду за время измерения, равное одной минуте, ошибка измерения азимута составит величину около десять угловых минут. Величина этой ошибки обратно пропорциональна времени измерения.
Технической задачей, на решение которой направлено заявляемое изобретение, является обеспечение возможности измерения азимута с точностью 1′ (одна угловая минута) за 5-10 минут измерения при квазистатическом положении объекта.
Поставленная техническая задача решается тем, что в аналитическом гирокомпасе для квазистатических измерений, включающем основание, платформу, установленную на основании с возможностью поворота вокруг оси, перпендикулярной основанию, и фиксации в заданном положении, закрепленные на платформе гироскоп и акселерометр, ось чувствительности которого перпендикулярна оси вращения платформы, блок обработки информации, блок управления платформой, согласно заявляемому изобретению гироскоп закреплен на платформе посредством узла крепления, расположенного выше центра тяжести гироскопа и включающего одноосный подвес или двухосный карданов подвес.
Кроме того, аналитический гирокомпас для квазистатических измерений дополнительно снабжен полым корпусом, размещенным на основании или платформе, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
Кроме того, одноосный подвес выполнен в виде стержня с, по меньшей мере, одним подшипником, посредством которого гироскоп соединен со стержнем таким образом, что ось вращения гироскопа на подшипнике перпендикулярна оси чувствительности гироскопа, или в виде стержня с, по меньшей мере, двумя подшипниками, посредством которого гироскоп соединен со стержнем таким образом, что его ось чувствительности направлена вдоль стержня.
Кроме того, карданов подвес выполнен в виде двух последовательно соединенных под прямым углом одноосных подвесов, причем один стержень посредством подшипников прикреплен к платформе, а на втором стержне посредством подшипников закреплен гироскоп.
Кроме того, платформа может быть выполнена в виде полого корпуса, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
Кроме того, основание может быть выполнено в виде полого корпуса, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
Техническим результатом, достижение которого обуславливается осуществлением всей заявляемой совокупности существенных признаков, является обеспечение устойчивого положения гироскопа таким образом, что при повороте объекта не происходит вращения гироскопа вокруг его оси чувствительности, что дает возможность повышения точности измерения азимута с точностью 1′ (одна угловая минута) за 5-10 минут измерения при углах перемещения основания в несколько угловых секунд.
Изобретение поясняется чертежами, где
На фиг.1 представлен аналитический гирокомпас для квазистатических измерений с одноосным подвесом.
На фиг.2 представлен аналитический гирокомпас для квазистатических измерений с двуосным кардановым подвесом.
На фиг.3. представлен пример выполнения аналитического гирокомпаса для квазистатических измерений, в котором платформа выполнена в виде полого корпуса.
Аналитический гирокомпас для квазистатических измерений (фиг.1) включает основание 1, платформу 2, установленную на основании с возможностью поворота вокруг оси, перпендикулярной основанию, и фиксации в заданном положении, закрепленные на платформе 2 гироскоп 3 и акселерометр 4, ось чувствительности которого перпендикулярна оси вращения платформы, блок обработки информации и блок управления платформой (на чертежах блоки не показаны).
Для крепления подвеса на платформе 2 в случае размещения гирокомпаса под платформой в нижней части платформа 2 снабжена дополнительным плоским элементом в виде площадки 5, который жестко соединен валом с нижней частью платформы. Подвес крепится снизу этой площадки 5.
Гироскоп 3 закреплен на платформе посредством узла крепления, расположенного выше центра тяжести гироскопа и включающего одноосный подвес (фиг.1) или двухосный карданов подвес (фиг.2)
Благодаря предложенному размещению узла крепления, с одной стороны, гироскоп имеет возможность свободно вращаться вокруг своей оси чувствительности и занимать под действием собственного веса положение устойчивости, из-за чего не происходит вращения гироскопа вокруг оси чувствительности при нештатном вращении объекта, приводящего к большой ошибке измерения азимута гирокомпасом, а, с другой стороны, подвес ограничивает вращение гироскопа относительно платформы таким образом, что по показаниям гироскопа и акселерометра однозначно определяются искомые гирокомпасом азимут и углы наклона. В случае применения одноосного подвеса при неподвижной платформе гироскоп не имеет возможности вращаться вокруг осей, перпендикулярных оси чувствительности, а в случае применения двухосного подвеса ось чувствительности гироскопа лежит в плоскости горизонта и при неподвижной платформе ось чувствительности гироскопа не может вращаться в плоскости горизонта.
Гирокомпас снабжен полым корпусом 6, который в зависимости от расположения гироскопа размещен на основании 1 или платформе 2. Гироскоп устанавливается в корпусе 6 таким образом, что узел крепления всегда расположен выше центра тяжести гироскопа. Полый корпус может быть выполнен прямоугольной, кубической или цилиндрической формы.
Либо в виде полого корпуса может быть выполнена платформа 2 (например, как показано на фиг.3) или основание 3 (например, как показано на фиг.1 и 2).
Одноосный подвес выполнен в виде стержня 7 с, по меньшей мере, одним подшипником 8, посредством которого гироскоп 3 соединен со стержнем 7, таким образом, что ось вращения гироскопа на подшипнике перпендикулярна оси чувствительности гироскопа.
Кроме того, одноосный подвес может быть выполнен в виде стержня с, по меньшей мере, двумя подшипниками, посредством которого гироскоп соединен со стержнем таким образом, что его ось чувствительности направлена вдоль стержня (как показано на фиг.1).
Карданов подвес (фиг.2) выполнен в виде двух последовательно соединенных под прямым углом одноосных подвесов, причем один стержень 7 посредством подшипников 9 прикреплен к платформе 2 (либо к площадке 5 в нижней части платформы 2), а на втором стержне 10 посредством подшипников закреплен гироскоп 3.
Конструкция с двухосным кардановым подвесом юстируется с использованием груза 11 (фиг.2) таким образом, чтобы ось чувствительности гироскопа лежала в горизонтальной плоскости. В заявляемой конструкции при поворотах объекта ось чувствительности гироскопа всегда остается в плоскости горизонта.
Вращение платформы 2 обеспечивается двигателем 14. Фиксация платформы 2 в заданном положении осуществляется с использованием стоек 12 для фиксации положения платформы 2 и управляемого фиксатора 13 платформы 2,
Выбор подвеса не влияет на последовательность операций измерения. Для каждого вида подвеса выбирают известные формулы, по которым проводятся расчеты.
Расчеты показали, что если задают вектор, неподвижный в системе координат платформы, и азимут этого вектора совпадает с азимутом оси чувствительности гироскопа, то при наклонах и поворотах объекта несмотря на то, что гироскоп дополнительно поворачивается относительно платформы, азимуты вектора и оси чувствительности гироскопа останутся между собой равными. Это позволяет вычислять азимут первого положения, в частности, для конструкции с одноосным подвесом по формуле (1) и для конструкции с двухосным кардановым подвесом, полагая ускорение, равным нулю, по формуле 2:
Figure 00000001
Figure 00000002
где N=1, если ось чувствительности (ОЧ) направлена на Восток и N=2, если ОЧ направлена на Запад,
Ω [′′/с] - результат измерения угловой скорости гироскопом, равный скалярному произведению вектора скорости вращения Земли
Figure 00000003
на единичный вектор ОЧ гироскопа, [′′/с] - угловая секунда, деленная на единицу времени, выраженную в секундах;
а [м/с2] - результат измерения ускорения акселерометром, равный скалярному произведению вектора мнимого ускорения свободного падения
Figure 00000004
на единичный вектор ОЧ акселерометра (АК), по которому может быть определен угол наклона ОЧ АК относительно плоскости горизонта
Figure 00000005
;
g≈9.8 [м/с2] и Ω0=15,0407 [′′/с] - модули векторов ускорения свободного падения и скорости вращения Земли соответственно (при вычислениях дополнительно учитывается зависимость величины g от широты местности и высоты нахождения объекта относительно уровня моря);
φ - широта местности, величина которой либо задается, либо может быть вычислена по результатам двух измерений в неколлинеарных направлениях ОЧ.
С помощью вычисленного по формуле 1 или 2 азимута первого положения определяется разность азимутов между искомым (первым) и остальными направлениями, в которых производятся измерения.
Если объект наклонен и ОЧ гироскопа направлена в сторону Севера или Юга, то, платформу 2 поворачивают с использованием двигателя 14 так, чтобы ОЧ гироскопа была направлена в сторону Востока или Запада. Разность между азимутом в первом и основном измерительном положениях вычисляют по показаниям акселерометра (АК) в этих положениях по формуле:
Figure 00000006
где ϕ - угол поворота платформы между 1-ми 2-м положением фиксации,
а 1, а 2 - измеренные ускорения в 1-м и 2-м положениях.
В итоге азимут искомого первого положения вычисляется по формуле (4):
Figure 00000007
Сравнивая два значения разности азимутов между положением 1 и 2 для случаев, когда ОЧ направлена на Восток и на Запад, определенные по формуле (2), с правильным значением, определенным по формуле (4), однозначно определяют направление ОЧ в первом положении и в любых заданных положениях фиксации статических положений платформы 2 относительно основания 1.
В заявляемой конструкции аналитического гирокомпаса для квазистатических измерений могут быть использованы все виды гироскопов: механические гироскопы, волоконно-оптические гироскопы, лазерные гироскопы и иные гироскопы.
Использование заявляемого изобретения позволяет повысить точность измерения азимута с точностью 1′ (одна угловая минута) за 5-10 минут измерения при углах перемещения основания в несколько угловых секунд за счет обеспечения устойчивого положения гироскопа таким образом, что при повороте объекта не происходит вращения гироскопа вокруг его оси чувствительности.

Claims (7)

1. Аналитический гирокомпас для квазистатических измерений, включающий основание, платформу, установленную на основании с возможностью поворота вокруг оси, перпендикулярной основанию, и фиксации в заданном положении, закрепленные на платформе гироскоп и акселерометр, ось чувствительности которого перпендикулярна оси вращения платформы, блок обработки информации, блок управления платформой, отличающийся тем, что гироскоп закреплен на платформе посредством узла крепления, расположенного выше центра тяжести гироскопа и включающего одноосный подвес или двухосный карданов подвес.
2. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что дополнительно снабжен полым корпусом, размещенным на основании или платформе, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
3. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что одноосный подвес выполнен в виде стержня с, по меньшей мере, одним подшипником, посредством которого гироскоп соединен со стержнем таким образом, что ось вращения гироскопа на подшипнике перпендикулярна оси чувствительности гироскопа.
4. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что одноосный подвес выполнен в виде стержня с, по меньшей мере, двумя подшипниками, посредством которого гироскоп соединен со стержнем таким образом, что его ось чувствительности направлена вдоль стержня.
5. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что карданов подвес выполнен в виде двух последовательно соединенных под прямым углом одноосных подвесов, причем один стержень посредством подшипников прикреплен к платформе, а на втором стержне посредством подшипников закреплен гироскоп.
6. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что платформа выполнена в виде полого корпуса, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
7. Аналитический гирокомпас для квазистатических измерений по п.1, отличающийся тем, что основание выполнено в виде полого корпуса, внутри которого закреплен гироскоп таким образом, что узел крепления расположен выше центра тяжести гироскопа.
RU2009118994/28A 2009-05-20 2009-05-20 Аналитический гирокомпас для квазистатических измерений RU2408843C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009118994/28A RU2408843C1 (ru) 2009-05-20 2009-05-20 Аналитический гирокомпас для квазистатических измерений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009118994/28A RU2408843C1 (ru) 2009-05-20 2009-05-20 Аналитический гирокомпас для квазистатических измерений

Publications (1)

Publication Number Publication Date
RU2408843C1 true RU2408843C1 (ru) 2011-01-10

Family

ID=44054671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009118994/28A RU2408843C1 (ru) 2009-05-20 2009-05-20 Аналитический гирокомпас для квазистатических измерений

Country Status (1)

Country Link
RU (1) RU2408843C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526477C1 (ru) * 2013-04-16 2014-08-20 Открытое акционерное общество "Завод им. В.А. Дегтярева" Гирокомпас
CN113865621A (zh) * 2021-10-28 2021-12-31 北京天兵科技有限公司 任意六位置MEMS陀螺仪及其g值敏感系数标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОЛЯЕВ Ю.Д. и др. Гирокомпас на основе лазерного гироскопа с магнитооптическим управлением, Электроника, №8 (74), 2006, с.66-71. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526477C1 (ru) * 2013-04-16 2014-08-20 Открытое акционерное общество "Завод им. В.А. Дегтярева" Гирокомпас
CN113865621A (zh) * 2021-10-28 2021-12-31 北京天兵科技有限公司 任意六位置MEMS陀螺仪及其g值敏感系数标定方法
CN113865621B (zh) * 2021-10-28 2023-08-22 北京天兵科技有限公司 任意六位置MEMS陀螺仪及其g值敏感系数标定方法

Similar Documents

Publication Publication Date Title
US4166406A (en) Self-aligning pitch and azimuth reference unit
EP2239540B1 (en) Gyroscope adapted to be mounted to a goniometer
Curey et al. Proposed IEEE inertial systems terminology standard and other inertial sensor standards
US8826550B2 (en) Geographically north-referenced azimuth determination
US4800501A (en) Vehicle land navigating device
EP2638360B1 (en) A system and method for north finding
RU2378616C1 (ru) Астронавигационная система
US4472978A (en) Stabilized gyrocompass
RU2408843C1 (ru) Аналитический гирокомпас для квазистатических измерений
US11698465B2 (en) Direction finder
RU2550592C1 (ru) Гирогоризонткомпас
RU2608337C1 (ru) Способ автономной начальной выставки стабилизированной платформы трехосного гиростабилизатора в плоскость горизонта и на заданный азимут
US4123849A (en) Miniature north reference unit
CN104655123B (zh) 一种利用光纤陀螺测定地球自转角速度的方法
RU2320963C2 (ru) Способ выставки осей подвижного объекта
US9671248B2 (en) Method for calibrating an inertial navigation system with a limited mechanical turning range
CN104655095A (zh) 一种利用光纤陀螺测定地理纬度的方法
US3242744A (en) Satellite vertical reference system
KR880000774A (ko) 스트랩다운 자이로스코프(Strap-down Gyroscope)를 사용하여 방위각을 빨리 측정하기 위한 방법과 장치
RU2617136C1 (ru) Гирогоризонткомпас
RU2601240C1 (ru) Гирогоризонткомпас
Caspary Gyroscope technology, status and trends
RU2192622C1 (ru) Самоориентирующаяся система гирокурсокреноуказания
RU2128822C1 (ru) Способ компенсации инерционной погрешности гирокомпаса при маневрировании судна и гирокомпас для его осуществления (варианты)
RU2650425C1 (ru) Гирокомпас с визуальным каналом

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120521