RU2649147C1 - Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе - Google Patents

Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе Download PDF

Info

Publication number
RU2649147C1
RU2649147C1 RU2017121719A RU2017121719A RU2649147C1 RU 2649147 C1 RU2649147 C1 RU 2649147C1 RU 2017121719 A RU2017121719 A RU 2017121719A RU 2017121719 A RU2017121719 A RU 2017121719A RU 2649147 C1 RU2649147 C1 RU 2649147C1
Authority
RU
Russia
Prior art keywords
indium
diethylcarbamate
tris
films
solution
Prior art date
Application number
RU2017121719A
Other languages
English (en)
Inventor
Андрей Сергеевич Левашов
Дмитрий Сергеевич Бурый
Александра Руслановна Латыпова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ")
Priority to RU2017121719A priority Critical patent/RU2649147C1/ru
Application granted granted Critical
Publication of RU2649147C1 publication Critical patent/RU2649147C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/02Carbamic acids; Salts of carbamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

Изобретение относиться к трис(N,N-диэтилкарбамату) индия. Также предложены способ его получения, применение и способ получения тонких пленок оксида индия (III). Пленки, полученные из раствора трис(N,N-диэтилкарбамата) индия, более равномерны, имеют меньше дефектов и более прозрачны в видимом диапазоне. 4 н.п. ф-лы, 2 ил., 10 пр.

Description

Изобретение относится к неорганической химии, а именно к получению производных солей индия, нашедших широкое применение для получения тонких проводящих пленок, используемых в оптоэлектронике.
Оксид индия(III) является перспективным полупроводником [H.S. Kirn, P.D. Byrne, A. Facchetti, T.J. Marks; J. Am. Chem. Soc. 2008, 130, 12580-12581]. Кроме того, тонкие пленки оксида индия толщиной несколько сотен нанометров обладают высоким светопропусканием в видимой спектральной области. Он находит применение, в частности, в сфере жидкокристаллических дисплеев, прежде всего в качестве «прозрачного электрода». Таким образом, содержащие оксид индия пленки и их формирование имеют большое значение для промышленного производства полупроводников и дисплеев.
В настоящее время известны карбаматы титана, циркония, гафния, ниобия, тантала, бора, цинка, магния, сурьмы, железа, олова и некоторых других элементов [Forte С., Pampaloni G., Pinzino С., Renili F. // Inorganica Chimica Acta - 2011. - T. 365 - №1 - C. 251-255; Tang Y., Zakharov L.N., Rheingold A.L., Kemp R. a. // Organometallics - 2004. - T. 23 - №20 - C. 4788-4791; Calucci L., Forte C., Pampaloni G., Pinzino C., Renili F. // Inorganica Chimica Acta - 2010. - T. 363 - №1 - С. 33-40; Belli D., Amico D., Calderazzo F., Labella L., Marchetti F. - 2008. - T. 47 - №12 - C. 5372-5376; Dell’Amico D.B., Calderazzo F., Labella L., Marchetti F., Mazzoncini I. // Inorganica Chimica Acta - 2006. - T. 359 - №10 - C. 3371-3374; Horley G. a., Mahon M.F, Molloy K.C., Haycock P.W., Myers C.P. // Inorganic Chemistry - 2002. - Т. 41 - №20 - C. 5052-5058; Belli D., Amico D., Boschi D., Calderazzo F., Ianelli S., Labella L., Marchetti F., Pelizzi G., Guy E., Quadrelli F. - 2000. - T. 302 - C. 882-891; Mishra a. K., Gupta V.D. // Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry - 1987. - T. 17 - №8-9 - C. 827-835]. В то же время карбаматы индия до настоящего времени не получены.
Известен способ получения карбаматов металлов взаимодействием амидов металлов, например тетрааминоолова, с углекислым газом [Dalton R.F, Jones K. // J. Chem. SOC. (A) - 1970. - С. 590-594]. Однако данный метод сложен из-за труднодоступности соответствующих амидов, которые необходимо получать металлоорганическим синтезом. Кроме того, они чрезвычайно легко гидролизуются.
Наиболее близким аналогом к предлагаемому является способ получения тетра(N,N-диалкилкарбаматов)олова смешением тетрахлорида олова и диалкиламина в среде толуола с последующим пропусканием через реакционную смесь углекислого газа в течение 12 часов. Осадок хлорида диалкиламмония отфильтровывают, фильтрат упаривают, продукт перекристаллизовывают из гептана (Luigi Abis, Daniela Belli Dell'Amico, Fausto Calderazzo, Ruggero Caminiti, Fabio Garbassi, Sandra Ianelli, Giancarlo Pelizzi, Pierluigi Robino, Alessandra Tomei. N,N-Dialkylcarbamato complexes as precursors for the chemical implantation of metal cations on a silica support. Part 1. Tin./J. of Molec. Cat. A: Chemical. - 1996. - Vol. 108. - p. L113-L117).
Известны способы получения пленок оксида индия методами магнетронного напыления. При этом пленки осаждают на подложки методом реактивного магнетронного распыления в плазме аргона и кислорода (50% Ar + 50% О2) при общем давлении в вакуумной камере Робщ=26,7⋅10-2 Па. Время распыления 30 минут. Материалом катода служит мишень металлического индия с содержанием примесей не более 0,01 ат. %. Последующее термоокисление осуществляют в реакторе печи резистивного нагрева в течение 30 минут при температурах: 473-723 К. [А.М. Ховив, Н.Н. Афонин, В.А. Логачева, Ю.А. Герасименко, А.Н. Лукин, М.В. Лобанов, Ю.Ю. Шамарина // Конденсированные среды и межфазные границы. - 2014. - Т. 16. - №3. - С. 361-366]. Однако данные методы сложны в исполнении и требуют применения дорогостоящего оборудования.
Известны способы получения пленок оксида индия методом пиролиза. Например, наносят пленку методом пиролиза аэрозоля пленкообразующего раствора, содержащего 0,2 моль/л InCl3, 0,05 моль/л NH4F, 0,1 моль/л H2O в метаноле. Аэрозоль доставляют в камеру напыления с помощью газа носителя (Ar + 5% O2) со скоростью 0,8 л/мин. Перед осаждением пленок поверхность обрабатывают 10 мин в перекисно-аммиачном растворе и 30 с в 4% растворе HF. Распыление аэрозоля производят на нагретую до 475°С подложку, помещенную на массивную плиту. Температуру плиты контролируют термопарой [Г.Г. Унтила, Т.Н. Кост, А.Б. Чеботарева, М.А. Тимофеев // Физика и техника полупроводников. - 2013. - Т. 47]. Недостатком метода пиролиза является сложность процесса и получение неоднородных пленок.
Известны золь-гель способы получения пленок оксида индия. Например, в патенте [патент RU №2570201, МПК C07F 5/00 (2006.01). С23С 18/12 (2006.01), опубл. 10.12.2015] описывается получение галогенсодержащего оксоалкоксида индия общей формулы In6O2X6(OR)6(R'CH(O)COOR'')2(HOR)x(HNR'''2)y, в которой X означает фтор, хлор, бром и/или йод, R означает алкил с 1-15 атомами углерода, R' означает алкил с 1-15 атомами углерода, R'' означает алкил с 1-15 атомами углерода, R''' означает алкил с 1-15 атомами углерода, х означает число от 1 до 10 и y означает число от 1 до 10. Способ позволяет получить галогенсодержащий оксоалкоксид индия, который используется для формирования содержащих оксид индия слоев, обладающих улучшенными электрическими рабочими характеристиками. Для нанесения пленок, используют, например, 5% раствор галогенсодержащего оксоалкоксида индия в этаноле. Наносят методом центрифужного полива (2000 об/мин). По завершении процесса нанесения покрытия снабженную покрытием основу в течение часа термостатируют на воздухе при температуре 260°С или 350°С. Недостатком данного метода является сложность получения исходных соединений, а также наличие в них галогена, который при удалении нарушает однородность покрытия.
Наиболее близким аналогом к предлагаемому способу получения пленок оксида индия является способ, в котором в качестве исходного раствора для получения пленок используют соль InCl3 и этаноламин в качестве добавленного основания [Hyun Sung Kim, P.D. Byrne, A. Facchetti, T.J. Marks // J. Am. Chem. Soc. - 2008. - V 130. - P. 12580-12581]. Оптимальная концентрация InCl3 составляет 0,1 М в метоксиэтаноле. Приготовленные растворы перемешивают в течение 30 мин при комнатной температуре и затем наносят методом центрифужного полива на подложки. Далее пленки сушат на воздухе и отжигают при 400°С в течение 10 мин в трубчатой печи. Недостатком данного метода является применение хлорида индия, который легко гидролизуется с образованием нерастворимых оксидов и гидроксидов, что часто приводит к неоднородности покрытий. Кроме того, присутствующий в растворе хлорид ион является трудноудаляемым, что тоже приводит к нарушению однородности.
Техническим результатом предлагаемого изобретения является получение вещества, используемого для формирования пленок оксида индия, и повышение их однородности.
Для достижения технического результата предлагается новое вещество - трис(N,N-диэтилкарбамата)индия, которое получают в среде ароматического растворителя в соответствии со схемой:
InCl3 + 6 Et2NH + 3 CO2 → In(OOCNEt2)3 + 3 Et2N+H2Cl-
Смешивают диэтилами и хлорид индия в среде толуола с последующим пропусканием через реакционную смесь углекислого газа в течение 8 часов. Осадок галогенида диалкиламмония отфильтровывают, фильтрат упаривают, получают трис(N,N-диэтилкарбамат) индия. Для получения более чистого продукта его перекристаллизовывают из гептана. Данный способ позволяет получать трис(N,N-диэтилкарбамат) индия с выходом 71%.
Для получения тонких пленок оксида индия(III) в качестве исходного компонента используют трис(N,N-диэтилкарбамат) индия в спиртовом или эфирном растворителе. Данное соединение плавно гидролизуются с образованием легколетучих углекислого газа и вторичного амина, а образующиеся в процессе гидролиза гидроксиды, обезвоживаясь, образуют оксид индия(III) по схеме:
Figure 00000001
и может использоваться для получения модифицированных тонких пленок оксида индия. Трис(N,N-диэтилкарбамат) индия растворяют в спиртовом или эфирном растворителе в количестве 0,01-0,5 М. Полученный раствор трис(N,N-диэтилкарбамата) индия наносят на подложку методом центрифужного полива. Покрытие подвергают термообработке при температуре 300-500°С в течение 5-60 мин. Получают модифицированные тонкие пленки оксида индия(III) толщиной 50-150 нм, прозрачные в видимой области. Раствор для нанесения пленок оксида индия может хранится не менее 3 месяцев. Пленки, полученные из раствора трис(N,N-диэтилкарбамата) индия, более равномерны, имеют меньше дефектов и более прозрачны в видимом диапазоне.
На фигуре 1 представлены микрофотографии поверхностей пленок оксида индия, нанесенных на стеклянные подложки при 5-кратном увеличении: 1a) - из раствора трис(N,N-диэтилкарбамата) индия; 1б) - из раствора хлорида индия.
Пример 1. Получение трис(N,N-диэтилкарбамата) индия
В трехгорлую колбу объемом 25 мл помещают 0,9715 г (0,0044 моль) хлорида индия(III) и 10 мл толуола. При перемешивании по каплям добавляют 2,7 мл (0,0043 моль) диэтиламина в 7 мл толуола. Пропускают углекислый газ в течение 8 часов. Осадок хлорида диэтиламмония отфильтровывают, полученный раствор упаривают на ротационном испарителе. Продукт дополнительно очищают перекристаллизацией из гептана. Получают 1,42 г вещества (71,12%).
Пример 2. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в диоксане с концентрацией 0,01 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 300°С в течение 5 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление >18000 Ом⋅см.
Пример 3. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в бутаноле с концентрацией 0,5 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 300°С в течение 60 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 18 Ом⋅см.
Пример 4. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 300°С в течение 60 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 230 Ом⋅см.
Пример 5. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 400°С в течение 60 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 0,13 Ом⋅см.
Пример 6. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 400°С в течение 30 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 0,17 Ом⋅см.
Пример 7. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 400°С в течение 5 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 1,0 Ом⋅см.
Пример 8. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 500°С в течение 60 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 0,10 Ом⋅см.
Пример 9. Получение пленок оксида индия(III)
Раствор трис(N,N-диэтилкарбамата)индия в изопропаноле с концентрацией 0,3 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 500°С в течение 60 мин. Получают равномерную прозрачную пленку оксида индия, имеющую удельное сопротивление 0,05 Ом⋅см.
Пример 10. Получение пленок оксида индия(III)
Раствор хлорида индия в метоксиэтаноле с концентрацией 0,1 М наносят на стеклянную подложку, сушат на воздухе при комнатной температуре. Полученное покрытие подвергают термообработке при температуре 400°С в течение 60 мин. Получают неоднородную прозрачную пленку оксида индия, имеющую удельное сопротивление >18000 Ом⋅см.
Приведенные примеры иллюстрируют возможность достижения технического результата, а именно получение нового вещества формулы:
[(C2H5)2NCOO]3In,
Не известного из уровня техники; использование его для формирования пленок оксида индия, обладающих лучшей однородностью.
Предлагаемые объекты являются новыми, обладают изобретательским уровнем и промышленной применимостью, а следовательно, охраноспособны.

Claims (4)

1. Трис(N,N-диэтилкарбамат) индия.
2. Способ получения трис(N,N-диэтилкарбамата) индия смешением хлорида металла и диалкиламина в среде толуола с последующим пропусканием через реакционную смесь углекислого газа, отфильтровыванием осадка хлорида диэтиламмония, упариванием и перекристаллизацией из гептана, отличающийся тем, что в качестве хлорида металла используют хлорид индия (III), пропускают углекислый газ в течение 8 часов.
3. Применение соединения, полученного по п. 2, в качестве исходного соединения для получения тонких пленок оксида индия (III).
4. Способ получения тонких пленок оксида индия (III), включающий приготовление раствора исходного компонента в растворителе с концентрацией 0,01-0,5 М, нанесение раствора на подложку, сушку на воздухе при комнатной температуре с последующей термообработкой, отличающийся тем, что в качестве исходного компонента используют раствор трис(N,N-диэтилкарбамата) индия в эфирном или спиртовом растворителе, термообработку осуществляют при температуре 300-500°C в течение 5-60 мин.
RU2017121719A 2017-06-20 2017-06-20 Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе RU2649147C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121719A RU2649147C1 (ru) 2017-06-20 2017-06-20 Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121719A RU2649147C1 (ru) 2017-06-20 2017-06-20 Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе

Publications (1)

Publication Number Publication Date
RU2649147C1 true RU2649147C1 (ru) 2018-03-30

Family

ID=61866988

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121719A RU2649147C1 (ru) 2017-06-20 2017-06-20 Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе

Country Status (1)

Country Link
RU (1) RU2649147C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761322C1 (ru) * 2020-10-21 2021-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление на его основе легированных пленок оксида олова
RU2762687C1 (ru) * 2020-10-21 2021-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление пленок оксида олова на его основе

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187353B1 (ko) * 2010-02-17 2012-10-05 한국화학연구원 신규의 인듐 디알킬글리신 화합물 및 그 제조 방법
RU2570201C2 (ru) * 2010-07-21 2015-12-10 Эвоник Дегусса Гмбх Оксоалкоксиды индия для получения содержащих оксид индия слоев

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187353B1 (ko) * 2010-02-17 2012-10-05 한국화학연구원 신규의 인듐 디알킬글리신 화합물 및 그 제조 방법
RU2570201C2 (ru) * 2010-07-21 2015-12-10 Эвоник Дегусса Гмбх Оксоалкоксиды индия для получения содержащих оксид индия слоев

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABIS L. et al. N,N-Dialkylcarbamato complexes as precursors for the chemical implantation of metal cations on a silica support. Part 1. Tin, Journal of Molecular Catalysis A: Chemical, 1996, v. 108, p. L113-L117. *
KIM H.S. et al. High Perfomance Solution-Processed Indium Oxide Thin-Film Transistors, J. Am. Chem. Soc., 2008, v. 130, no. 38, p. 12580-12581. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761322C1 (ru) * 2020-10-21 2021-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление на его основе легированных пленок оксида олова
RU2762687C1 (ru) * 2020-10-21 2021-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление пленок оксида олова на его основе

Similar Documents

Publication Publication Date Title
Valet et al. Synthesis of homoleptic gallium alkoxide complexes and the chemical vapor deposition of gallium oxide films
Ahmet et al. Tin guanidinato complexes: oxidative control of Sn, SnS, SnSe and SnTe thin film deposition
US7723493B2 (en) Metal complexes of tridentate BETA -ketoiminates
JP5933540B2 (ja) 酸化インジウム含有層を製造するためのインジウムオキソアルコキシド
US20130122647A1 (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and use thereof
Edleman et al. Synthesis and characterization of volatile, fluorine-free β-ketoiminate lanthanide MOCVD precursors and their implementation in low-temperature growth of epitaxial CeO2 buffer layers for superconducting electronics
TW201606115A (zh) 用於薄膜沉積之含鉬及鎢之前驅物
RU2649147C1 (ru) Трис(n,n-диэтилкарбамат) индия, способ его получения и получение пленок оксида индия на его основе
JP2013532640A (ja) 酸化インジウム含有層を製造するためのインジウムオキソアルコキシド
Barry et al. Chemical vapour deposition of In 2 O 3 thin films from a tris-guanidinate indium precursor
Schlafer et al. Fluorinated cerium (IV) enaminolates: Alternative precursors for chemical vapor deposition of CeO2 thin films
US6627765B2 (en) Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films
JP2003501360A (ja) 化学蒸着のための原料試薬としてのテトラヒドロフラン付加II族β−ジケトネート錯体
KR100807947B1 (ko) 비대칭형 β-케토이미네이트 리간드 화합물의 제조방법
Fragalà et al. Synthesis, characterization, and mass transport properties of a self-generating single-source magnesium precursor for MOCVD of MgF2 films
Lai et al. Synthesis and characterization of ruthenium complexes with two fluorinated amino alkoxide chelates. The quest to design suitable MOCVD source reagents
Kim et al. Synthesis and characterization of lead (IV) precursors and their conversion to PZT materials through a CVD process
Malandrino et al. Synthesis, characterization and application of Ni (tta) 2· tmeda to MOCVD of nickel oxide thin films
RU2761322C1 (ru) Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление на его основе легированных пленок оксида олова
RU2762687C1 (ru) Бис(N,N-диэтилкарбамат) олова, способ его получения и изготовление пленок оксида олова на его основе
JP6373373B2 (ja) インジウムアルコキシド化合物を製造するための方法、当該方法に従って製造可能なインジウムアルコキシド化合物及び当該化合物の使用
US20120070690A1 (en) Composition and Method for Producing ITO Powders or ITO Coatings
Jakob et al. Phosphane-and phosphite-silver (I) phenolates: Synthesis, characterization and their use as CVD precursors
EP1170251A1 (en) Compositions for forming metal oxide films
JP3664422B2 (ja) 塗布液およびこれを用いた金属酸化物薄膜作成方法