RU2647047C1 - Способ получения оксида скандия из концентрата скандия - Google Patents

Способ получения оксида скандия из концентрата скандия Download PDF

Info

Publication number
RU2647047C1
RU2647047C1 RU2017115397A RU2017115397A RU2647047C1 RU 2647047 C1 RU2647047 C1 RU 2647047C1 RU 2017115397 A RU2017115397 A RU 2017115397A RU 2017115397 A RU2017115397 A RU 2017115397A RU 2647047 C1 RU2647047 C1 RU 2647047C1
Authority
RU
Russia
Prior art keywords
scandium
solution
concentrate
alkaline agent
concentration
Prior art date
Application number
RU2017115397A
Other languages
English (en)
Inventor
Владимир Николаевич Рычков
Евгений Владимирович Кириллов
Сергей Владимирович Кириллов
Григорий Михайлович Буньков
Максим Сергеевич Боталов
Николай Анатольевич Попонин
Алексей Леонидович Смирнов
Денис Валерьевич Смышляев
Original Assignee
Акционерное общество "Далур"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Далур" filed Critical Акционерное общество "Далур"
Priority to RU2017115397A priority Critical patent/RU2647047C1/ru
Application granted granted Critical
Publication of RU2647047C1 publication Critical patent/RU2647047C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к технологии получения оксида скандия (Sc2O3) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. В способе получения оксида скандия согласно изобретению реэкстракцию скандия проводят раствором фтористоводородной кислоты, что позволяет уменьшить потери экстрагента и его переход в оксид скандия и тем самым получить чистый оксид скандия. При этом путем обработки щелочным агентом концентрата фторида скандия, полученного по данному способу, удается выделить осадок скандия с содержанием скандия в пересчете на оксид на уровне 85-95%, что позволяет при его дальнейшей оксалатной перечистке получить оксид скандия чистотой уже 99,9÷99,99%. Техническим результатом заявляемого изобретения является получение более чистого Sc2O3 при увеличении степени извлечения Sc2O3. 6 ил., 6 пр.

Description

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия (Sc2O3) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов.
В США при экстракции урана раствором ДДФК (додециловый эфир фосфорной кислоты) в керосине в органическую фазу вместе с ураном из продуктивных растворов переводят скандий, торий, титан, которые после реэкстракции урана соляной кислотой остаются в органической фазе (Технология редкоземельных и рассеянных элементов под ред. К.А. Большакова, 1976 г. т. II, М., Высшая школа, с. 267-268). Двухступенчатой обработкой растворами плавиковой, затем серной кислоты скандий и торий выделяются в виде фторидов, после чего радиационно-опасный концентрат подвергают длительным и трудоемким операциям разделения и очистки.
К недостатку указанного способа получения Sc2O3 относится низкая селективная способность экстрагента ДДФК, необходимость применения многоступенчатой технологии разделения и очистки скандия от других элементов при наличии радиационной опасности процесса.
Известен способ получения Sc2O3 из сбросного раствора гидролизной кислоты производства пигментного диоксида титана сернокислотным способом (Фаворская Л.В., Кошулько Л.П., Преснецова В.А. Технология минерального сырья: Сб. статей. Вып. 2. Алма-Ата, Мингео Каз. ССР, 1975, С. 67-73). При реализации способа скандий выделяют с помощью экстракции раствором Ди2ЭГФК 0,4 моль/л в керосине и соотношении фаз O:В=1:100. Скандий реэкстрагируют твердым фтористым натрием (NaF). Содержание Sc2O3 в конечном продукте составило до 61%.
Недостатком данного способа является использование экстрагента Ди2ЭГФК, который, несмотря на то что имеет большую емкость по Sc, но обладает незначительной селективностью по Sc в присутствии таких элементов, как титан, цирконий, торий, РЗЭ, ванадий. В результате получается достаточно грязный Sc2O3. Кроме того, данный экстрагент при его использовании в технологии проявляет склонность к эмульгированию, что затрудняет его эффективное использование.
Известен способ получения Sc2O3 из концентрата скандия, выделенного при сернокислотном выщелачивании давидитовых концентратов (Allen R.J., Pullman B.J. // AMDEL Bull., 1968, №5, P. 52-64). Согласно способу скандий экстрагируют раствором Ди2ЭГФК 0,1 моль/л в керосине с добавлением 4% нонилового спирта для предотвращения образования эмульсии. В результате промывки насыщенного экстрагента 9 н серной кислотой (H2SO4) отделяют от примесей тория, РЗЭ и ванадия. После этого скандий реэкстрагируют раствором щелочи (NaOH) 2,5 моль/л. По этой схеме извлекают до 80% скандия; чистота Sc2O3 - 95,8%.
Недостатком данного способа является неудовлетворительная очистка Sc2O3 от таких примесей, как титан и цирконий. Кроме того, значительные потери скандия происходят при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия.
Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ получения оксида скандия из концентрата скандия (Weiwei Wang, Yoko Pranolo, Chu Yong Cheng Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA // Separation and Purification Technology 108 (2013) 96-102), включающий растворение концентрата скандия в серной кислоте (H2SO4) с концентрацией 50-200 г/дм3 с получением продуктивного раствора, выделение из продуктивного раствора циркония, экстракцию скандия из рафината на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ при соотношении Ди2ЭГФК:ТБФ=1:0,5, промывку насыщенного экстрагента раствором H2SO4=50-200 г/дм3 и перекиси водорода (Н2О2)=5-20 г/дм3, реэкстракцию скандия раствором NaOH, с получением осадка скандия и маточника реэкстракции, где маточник реэкстракции донасыщают по щелочному агенту и повторно направляют на реэкстракцию, а осадок скандия перерастворяют в кислоте с осаждением оксалата скандия, который прокаливается до оксида скандия.
Несмотря на такие эффективные технологические приемы, как: предварительная очистка от ионов циркония, использование смеси Ди2ЭГФК и ТБФ для понижения эмульгирования органической фазы, дополнительная очистка от ионов титана за счет введения в промывной сернокислый раствор перекиси водорода, к недостаткам данного способа следует отнести значительные потери скандия при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия, а также большой растворимости экстрагентов в щелочной среде.
Изобретение направлено на решение технической проблемы, связанной со значительными потерями скандия при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия, а также большой растворимости экстрагентов в щелочной среде и попадания продуктов растворения в осадок скандия, что приводит к дальнейшему загрязнению оксида скандия
В основу изобретения положена задача, по созданию высокорентабельного технологического процесса получения Sc2O3 из концентрата скандия.
При этом техническим результатом заявляемого изобретения является получение более чистого Sc2O3 при увеличении степени извлечения Sc2O3.
Заявляемый технический результат достигается тем, что в способе получения оксида скандия из концентрата скандия согласно изобретению проводят растворение концентрата скандия в серной кислоте с получением продуктивного раствора, выделение из продуктивного раствора циркония, далее экстракцию скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ, промывку насыщенного экстрагента раствором серной кислоты и перекиси водорода, реэкстракцию скандия раствором NaOH, с получением осадка скандия и маточника реэкстракции, где маточник реэкстракции донасыщают по щелочному агенту и повторно направляют на реэкстракцию, а осадок скандия перерастворяют в кислоте с осаждением оксалата скандия, его дальнейшим прокаливанием и получением оксида скандия, отличающийся тем, что реэкстракцию скандия проводят раствором фтористоводородной кислоты 50-200 г/дм3 с получением раствора реэкстракции скандия, который обрабатывают кристаллическим щелочным агентом, причем в качестве кристаллического щелочного агента используют кальцинированную соду (Na2CO3) или поташ (К2СО3), при массовом соотношении раствор реэкстракции скандия: кристаллический щелочной агент=100:0,1÷10, образовавшуюся суспензию фильтруют с получением фильтрата, который насыщают по фтористоводородной кислоте и, повторно, направляют на операцию реэкстракции скандия и концентрата фторида скандия, который обрабатывают щелочным агентом, причем в качестве щелочного агента используют натриевую щелочь NaOH или калиевую щелочь КОН, с концентрацией 100-400 г/дм3 при температуре 50-90°С и соотношении концентрат фторида скандия:щелочной агент=1:5-20, фильтруют с получением фильтрата, который насыщают по щелочному агенту и, повторно, направляют на операцию обработки концентрата фторида скандия, при этом, поддерживают концентрацию ионов фтора в щелочном агенте не более 5 г/дм3, выводя часть щелочного агента на утилизацию, и осадка скандия, который направляют на получение оксида скандия.
Применение для реэкстракции фтористоводородной кислоты позволяет уменьшить потери скандия с экстрагентом, а также повысить чистоту оксида скандия за счет меньшего захвата фосфорных органических соединений.
Оптимальное массовое соотношение в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 определяется тем, что именно в этом интервале растворимость комплексных фторидов железа, титана и циркония имеет большее значение. Это позволяет отделиться от этих компонентов при осаждении концентрата фторида скандия.
Использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3 при температуре 50-90°С и соотношении концентрат фторида скандия:щелочной агент=1:5-20 позволяет в результате операции обработки, избирательно конвертировать концентрат фторида скандия в гидроксид скандия - осадок скандия. При этом элементы-примеси в виде комплексных фторидов не конвертируются в гидроксиды в данных условиях. При последующих операциях перерастворения осадка скандия в кислоте элементы-примеси в виде комплексных фторидов не растворяются. Тем самым удается и на этой операции частично очиститься от примесей.
Сущность изобретения поясняется фигурами, на которых изображено:
- фиг. 1 – таблица: степень реэкстракции скандия и растворимость экстрагентов в зависимости от типа реэкстрагирующего раствора по примеру 1,
- фиг. 2 – таблица: влияние массового соотношении раствор реэкстракции скандия: Na2CO3 на степень осаждения скандия и примесей по примеру 2,
- фиг. 3 – таблица: влияние концентрации щелочного агента на качество получаемого осадка скандия по примеру 3,
- фиг. 4 – таблица: влияние температуры на качество получаемого осадка скандия по примеру 4,
- фиг. 5 – таблица: влияние соотношения концентрат фторида скандия:щелочной агент на качество получаемого осадка скандия по примеру 5,
- фиг. 6 – таблица: сравнительные результаты состава оксида скандия, полученного с использованием заявляемого способа и прототипа по примеру 6.
Осуществление заявляемого способа подтверждается следующими примерами.
Пример 1. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом содержащим Ди2ЭГФК:ТБФ=1:0,5.
Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент делили на равные порции и реэкстрагировали фтористоводородной кислотой различной концентрации и раствором NaOH с концентрацией 100 г/дм3. Полученные маточники экстракции анализировали на содержание компонентов и на растворимость экстрагентов.
Пример 1 показывает влияние концентрации фтористоводородной кислоты на степень реэкстракции скандия. Из примера 1 видно, что использование фтористоводородной кислоты с концентрацией в интервале 50-200 г/дм3 позволяет наиболее полно проводить операцию реэкстракции. Вместе с тем растворимость экстрагентов в присутствии фтористоводородной кислоты более чем на два порядка ниже, чем при использовании при реэкстракции раствора NaOH.
Пример 2. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции скандия равными порциями вносили в мерные стаканы и при перемешивании, в каждый стакан, добавляли определенное количество кристаллического Na2CO3. В каждой порции полученную суспензию фильтровали. Фильтраты анализировали. По разности концентраций элементов в исходном растворе и полученных фильтратах рассчитывали степень осаждения исследуемых элементов.
Пример 2 демонстрирует влияние массового соотношения раствора реэкстракции скандия: Na2CO3 на степень осаждения скандия и сопутствующих примесей. Из данных примера 2 видно, что при использовании массового соотношения в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 удается эффективно осадить скандий из раствора реэкстракции и при этом эффективно отделиться от железа, титана и циркония.
Пример 3. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Полученный концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH при температуре 70°С и соотношении концентрат фторида скандия : щелочной агент=1:10. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.
Пример 3 позволяет оценить влияние концентрации щелочного агента на качество получаемого осадка скандия. Из данных примера 3 видно, что при использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3 удается эффективно перевести фторид скандия в гидроксид скандия - концентрат скандия. При этом использование раствора NaOH более 400 г/дм3 не приводит к улучшению качества получаемого концентрата скандия.
Пример 4. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок с фильтра - концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH 200 г/дм3 при соотношении концентрат фторида скандия щелочной агент=1:10 и различных температурах. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.
Пример 4 позволяет оценить влияние температуры на качество получаемого осадка скандия. Из данных примера 4 видно, что в интервале температуры 50-90°С удается эффективно перевести концентрат фторида скандия в гидроксид скандия - концентрат скандия. При этом использование температуры выше 90°С технологически не целесообразно. Проведение операции при комнатной температуре не позволяет полноценно перевести концентрат фторида скандия в гидроксид скандия - осадок скандия.
Пример 5. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 -20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок с фильтра - концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH 200 г/дм3 при температуре 70°С и различном соотношении концентрат фторида скандия щелочной агент. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.
Пример 5 позволяет оценить влияние соотношения концентрат фторида скандия щелочной агент на качество получаемого осадка скандия. Из данных примера 5 видно, что при использовании соотношения концентрат фторида скандия щелочной агент 1:5-20 удается эффективно перевести фторид скандия в гидроксид скандия - концентрат скандия. При этом при более низком соотношении не удается полноценно перевести концентрат фторида скандия в гидроксид скандия - осадок скандия. При более высоком соотношении в осадок скандия начинают переходить элементы-примеси.
Пример 6. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок обработали раствором NaOH 200 г/дм3 при температуре 70°С и соотношении концентрат фторида скандия: щелочной агент=1:10. Полученную суспензию отфильтровали. Другую навеску концентрата скандия обработали согласно прототипу (использовали для выделения циркония 0.025 М раствор экстрагента Primene JMT в Shellsol D70; экстракцию скандия проводили экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5; реэкстракцию проводили раствором NaOH). Полученные осадки скандия в обоих случаях отфильтровывали, растворяли в кислоте, осаждали оксалаты скандия, оксалаты скандия прокаливали до оксидов. Полученные оксиды анализировали на содержание компонентов.
Пример 6 дает сравнительные результаты состава оксида скандия, полученного с использованием заявляемого способа и прототипа. Из данных примера 3 видно, что использование заявляемого способа позволяет получить более чистый концентрат скандия.
Таким образом, при использовании фтористоводородной кислоты с концентрацией в интервале 50-200 г/дм3, применении при осаждении концентрата фторида скандия качестве кристаллического щелочного агента в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 и при использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3, температуре в интервале 50-90°С и при использовании соотношения концентрат фторида скандия : щелочной агент 1:5-20 для получения осадка скандия позволяет получить более чистый оксид скандия и минимизировать его потери.

Claims (1)

  1. Способ получения оксида скандия из концентрата скандия, включающий растворение концентрата скандия в серной кислоте с получением продуктивного раствора, выделение из продуктивного раствора циркония, экстракцию скандия на экстрагенте, состоящем из смеси ди-2-этилгексилфосфорной кислоты (Ди2ЭГФК) и трибутилфосфата (ТБФ), промывку насыщенного экстрагента раствором серной кислоты и перекиси водорода, реэкстракцию скандия, получение оксида скандия с использованием растворения в кислоте, осаждение оксалата скандия и его прокаливание, отличающийся тем, что реэкстракцию скандия проводят раствором фтористоводородной кислоты 50-200 г/дм3 с получением раствора реэкстракции скандия, который обрабатывают кристаллическим щелочным агентом, в качестве которого используют кальцинированную соду (Na2CO3) или поташ (K2CO3), при массовом соотношении раствор реэкстракции скандия : кристаллический щелочной агент = 100:0,1÷10, образовавшуюся суспензию фильтруют с получением фильтрата, который насыщают по фтористоводородной кислоте и, повторно, направляют на операцию реэкстракции скандия и концентрата фторида скандия, который обрабатывают щелочным агентом, в качестве которого используют натриевую щелочь NaOH или калиевую щелочь КОН, с концентрацией 100-400 г/дм3 при температуре 50-90°C и соотношении концентрат фторида скандия : щелочной агент = 1:5-20, фильтруют с получением осадка скандия и фильтрата, который насыщают по щелочному агенту и, повторно, направляют на операцию обработки концентрата фторида скандия, при этом концентрацию ионов фтора в щелочном агенте поддерживают не более 5 г/дм3, выводят часть щелочного агента на утилизацию, а осадок скандия направляют на получение оксида скандия.
RU2017115397A 2017-05-02 2017-05-02 Способ получения оксида скандия из концентрата скандия RU2647047C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017115397A RU2647047C1 (ru) 2017-05-02 2017-05-02 Способ получения оксида скандия из концентрата скандия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017115397A RU2647047C1 (ru) 2017-05-02 2017-05-02 Способ получения оксида скандия из концентрата скандия

Publications (1)

Publication Number Publication Date
RU2647047C1 true RU2647047C1 (ru) 2018-03-13

Family

ID=61629524

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017115397A RU2647047C1 (ru) 2017-05-02 2017-05-02 Способ получения оксида скандия из концентрата скандия

Country Status (1)

Country Link
RU (1) RU2647047C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781712C1 (ru) * 2022-05-17 2022-10-17 Общество с ограниченной ответственностью "Рок Кэпитал Партнерс" Способ получения концентрата скандия

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043765A1 (fr) * 1980-07-03 1982-01-13 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé de séparation des actinides et des lanthanides présents à l'état trivalent dans une solution aqueuse acide
US4339416A (en) * 1978-11-28 1982-07-13 Commissariat A L'energie Atomique Uranium recovery process
US4943318A (en) * 1989-02-27 1990-07-24 British Nuclear Fuels Plc Removal of thorium from raffinate
GB2305291A (en) * 1995-09-12 1997-04-02 Doryokuro Kakunenryo A method of separating trivalent actinides and rare earth elements
RU2188157C2 (ru) * 2000-03-27 2002-08-27 Институт химии нефти СО РАН Способ извлечения тория из водных растворов, содержащих редкоземельные металлы
RU2425804C1 (ru) * 2010-02-12 2011-08-10 Открытое акционерное общество "Сибирский химический комбинат" Способ очистки регенерированного урана
RU2517651C1 (ru) * 2013-05-07 2014-05-27 Александра Валерьевна Ануфриева Способ экстракционной очистки нитратных растворов, содержащих рзм

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339416A (en) * 1978-11-28 1982-07-13 Commissariat A L'energie Atomique Uranium recovery process
EP0043765A1 (fr) * 1980-07-03 1982-01-13 COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel Procédé de séparation des actinides et des lanthanides présents à l'état trivalent dans une solution aqueuse acide
US4943318A (en) * 1989-02-27 1990-07-24 British Nuclear Fuels Plc Removal of thorium from raffinate
GB2305291A (en) * 1995-09-12 1997-04-02 Doryokuro Kakunenryo A method of separating trivalent actinides and rare earth elements
RU2188157C2 (ru) * 2000-03-27 2002-08-27 Институт химии нефти СО РАН Способ извлечения тория из водных растворов, содержащих редкоземельные металлы
RU2425804C1 (ru) * 2010-02-12 2011-08-10 Открытое акционерное общество "Сибирский химический комбинат" Способ очистки регенерированного урана
RU2517651C1 (ru) * 2013-05-07 2014-05-27 Александра Валерьевна Ануфриева Способ экстракционной очистки нитратных растворов, содержащих рзм

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Weiwei Wang, Yoko Pranolo, Chu Yong Cheng, Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA, Separation and Purification Technology 108, 2013, p.96-102. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781712C1 (ru) * 2022-05-17 2022-10-17 Общество с ограниченной ответственностью "Рок Кэпитал Партнерс" Способ получения концентрата скандия
RU2814787C1 (ru) * 2023-06-16 2024-03-04 Акционерное общество "Леоли Кэпитал Групп" Способ получения концентрата скандия

Similar Documents

Publication Publication Date Title
US3104950A (en) Process for the separation of iron and titanium values by extraction and the subsequent preparation of anhydrous titanium dopxode
US10494697B2 (en) Method of refining of scandium oxide from concentrates using solvent extraction
JPH02277730A (ja) 希土類元素鉱石の処理方法
CN107344725B (zh) 硫酸直浸法提取锂矿石中锂元素的制备工艺
CN115427592A (zh) 从炉渣材料中回收钒
US5023059A (en) Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge
CN102139907A (zh) 一种从含铈溶液中分离回收含铈化合物的方法
CN1005565B (zh) 从人造金红石中提取氧化钪的方法
RU2670232C2 (ru) Способ разделения ниобия и тантала
RU2647047C1 (ru) Способ получения оксида скандия из концентрата скандия
Bautista Processing to obtain high-purity gallium
US2849286A (en) Method of processing monazite sand
CN111575485A (zh) 一种降低稀土渣放射性的回收处理方法
RU2070596C1 (ru) Способ получения скандиевых концентратов
JP7370919B2 (ja) Scの抽出方法
RU2618012C2 (ru) Способ получения оксида скандия из концентрата скандия
US3146063A (en) Process for separating scandium from mixtures containing scandium and thorium values
Molchanova et al. Hydrometallurgical methods of recovery of scandium from the wastes of various technologies
RU2716693C1 (ru) Способ переработки гидролизной кислоты
CN111020241A (zh) 一种从氧氯化锆母液中提取氧化钪的方法
US3848055A (en) Extraction of strontium values from celestite
US6780384B2 (en) Method and system for recovering zirconium values from a hard rock ore containing uranium
CN114262798B (zh) 一种从氯化法钛白体系渣中回收二氧化钍的方法
RU2765647C2 (ru) Способ переработки комплексной руды, содержащей в качестве основных компонентов ниобий и редкоземельные элементы
US3105734A (en) Removal of silica from uranium-containing solution

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190503

PD4A Correction of name of patent owner
NF4A Reinstatement of patent

Effective date: 20200319