RU2641665C2 - Способ передачи зондирующего опорного сигнала в системе lte tdd - Google Patents

Способ передачи зондирующего опорного сигнала в системе lte tdd Download PDF

Info

Publication number
RU2641665C2
RU2641665C2 RU2013155824A RU2013155824A RU2641665C2 RU 2641665 C2 RU2641665 C2 RU 2641665C2 RU 2013155824 A RU2013155824 A RU 2013155824A RU 2013155824 A RU2013155824 A RU 2013155824A RU 2641665 C2 RU2641665 C2 RU 2641665C2
Authority
RU
Russia
Prior art keywords
srs
offset
scfdma
period
indicates
Prior art date
Application number
RU2013155824A
Other languages
English (en)
Other versions
RU2013155824A (ru
Inventor
Инян ЛИ
Сяоцян ЛИ
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2013155824A publication Critical patent/RU2013155824A/ru
Application granted granted Critical
Publication of RU2641665C2 publication Critical patent/RU2641665C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Abstract

Изобретение относится к системам беспроводной связи и относится к способу передачи зондирующего опорного сигнала (SRS) восходящей линии связи пользовательским оборудованием (UE) стандарта долгосрочного развития (LTE). Технический результат заключается в обеспечении того, чтобы формат SRS в LTE FDD и TDD LTF был одинаковым. UE принимает информацию, указывающую передачу SRS, генерирует SRS и передает SRS в двух символах OFDM в половине кадра или кадре, если информация указывает, что период SRS равен 2 мс. 4 н. и 16 з.п. ф-лы, 7 ил.

Description

Область техники
Настоящее изобретение относится в целом к системе связи и, более конкретно, к способу передачи зондирующего опорного сигнала (SRS) в системе связи стандарта долгосрочного развития (LTE) и устройству, использующему этот способ.
Предшествующий уровень техники
Организация стандартизации Проект партнерства 3-го поколения (3GPP) работает над стандартом беспроводной связи следующего поколения, то есть LTE. В интерфейсе физического уровня LTE принимает технологию ортогонального мультиплексирования с частотным разделением (OFDM), которая отличается от традиционной технологии множественного доступа с кодовым разделением (CDMA). OFDMA используется в нисходящей линии связи, и множественный доступ с частотным разделением с одной несущей (SCFDMA) используется в восходящей линии связи. Технология, используемая в LTE, является эффективной для противодействия многолучевому распространению, с принятием коррекции частотной области, снижающей сложность традиционной коррекции временной области, и является более подходящей для высокоскоростной передачи данных в ширине полосы.
С точки зрения радиоинтерфейса методы стандарта LTE могут быть разделены на две категории: системы дуплексной передачи с временным разделением (TDD) и системы дуплексной передачи с частотным разделением (FDD). Система LTE поддерживает переменную ширину полосы. И типичные значения ширины полосы включают в себя 1,4 МГц, 3 МГц, 5 МГц, 10 МГц, 15 МГц и 20 МГц, которые могут удовлетворить требования различных сценариев.
Фиг.1 иллюстрирует структуру кадра физического уровня для системы LTE FDD, в которой длина радиокадра (101) равна 10 мс, кадр включает в себя десять радиоподкадров (102) одинакового размера длиной 1 мс. Каждый радиоподкадр состоит из двух временных интервалов (103) одинакового размера длиной 0,5 мс.
Фиг.2 иллюстрирует структуру кадра физического (PHY) уровня для системы TDD LTE. Как проиллюстрировано на фиг.2, длина радиокадра (201) равна 10 мс, и кадр включает в себя десять радиоподкадров (204) одинакового размера длиной 1 мс. Каждые пять непрерывных радиоподкадров составляют полукадр (202), имеющий длину 5 мс. В отличие от системы LTE-FDD, второй (211) и седьмой (212) радиоподкадры в радиокадре TDD LTE являются двумя специальными подкадрами. Длина специального подкадра равна 1 мс, специальный подкадр включает в себя три специальных интервала, указывающих временной интервал пилот-сигнала нисходящей линии связи (DwPTS) (205 или 208), защитный период (GP) (206 или 209) и временной интервал пилот-сигнала восходящей линии связи (UpPTS) (207 или 210), соответственно. Длины трех специальных интервалов являются переменными и могут быть определены по-разному каждой системой, но общая длина равна 1 мс. Длина UpPTS может быть 0, 1 или 2 символа SCFDMA. Если длина UpPTS равна 2, UpPTS используется для передачи короткого канала произвольного доступа (RACH) восходящей линии связи или сигнала SRS восходящей линии связи или как короткого RACH, так и сигнала SRS. Если длина UpPTS равна 1, UpPTS используется для передачи сигнала SRS восходящей линии связи. Другие восемь подкадров, за исключением специальных двух, соответственно состоят из двух интервалов длиной 0,5 мс.
В системе LTE, согласно сетевому планированию, пользовательское оборудование (UE) отправляет SRS расширенному узлу B (eNodeB). Согласно результату анализа сигнала SRS, eNodeB оценивает качество канала, который используется для передачи SRS от UE к eNodeB и планирования данных согласно частотно-избирательным характеристикам. Дополнительно, eNodeB осуществляет отслеживание синхронизации для UE, анализируя сигнал SRS, и осуществляет управление мощностью замкнутого цикла. Согласно текущему процессу стандартизации, основные заключения для передачи SRS в системе LTE FDD включают в себя широковещательную передачу eNodeB SRS в назначенной соте, как требуется, и периодическую передачу SRS в некотором подкадре в назначенной соте. Период выбирается из 2, 5, 10, 20, 40, 80, 160 и 320 мс.
После того как UE принимает SRS в назначенной соте, ресурс символа ODFM, занятый SRS, не используется при передаче данных восходящей линии связи. Для осуществления передачи SRS UE должен принять назначенный пользователем сигнал SRS, переданный от сети. Сигнал сообщает пользователю ресурс символа OFDM, который используется для передачи SRS. В настоящий момент нет никакого описания для передачи SRS для назначенного UE в спецификации уровня PHY, которая реализована в LTE.
В настоящий момент основная идея в стандарте для назначаемой пользователем сигнализации SRS состоит в том, что сигнализация включает в себя три части: продолжительность, период и смещение, где продолжительность может использовать 1 бит для указания одного мгновенного состояния или бесконечности. Значение периода выбирается из 2, 5, 10, 20, 40, 80, 160, 320 мс.
В LTE FDD смещение является временем между двумя временами передачи каждого символа OFDM SRS с начала периода SRS, и основная единица равна 1 мс. В TDD LTE определение смещения отличается от определения в LTE FDD. Так как в TDD LTE, SRS может быть передан в UpPTS или другом подкадре восходящей линии связи, подкадр восходящей линии связи может быть прерывистым, и UpPTS занимает максимально два символа OFDM, смещение определяется, как интервал между позицией символа OFDM, используемого для передачи SRS, и позицией символа OFDM, используемого для передачи SRS до начала периода передачи SRS. Например, если позиция символа SRS в начале периода определена как 0, позиция символа, используемая для передачи SRS, равна 3, что означает, что интервал между этими двумя символами равен 3. Следовательно, есть максимально 2 позиции символа OFDM, которые могут использоваться для передачи SRS.
Способ передачи SRS в TDD LTE является, в целом, тем же, что и в LTE FDD. Однако структура системы TDD LTE отличается от структуры системы LTE FDD. Различие заключается в том, что в TDD LTE полукадр длиной 5 мс имеет и подкадр восходящей линии связи, и подкадр нисходящей линии связи, число подкадров восходящей линии связи и подкадров нисходящей линии связи конфигурируются сетью. В некоторой конфигурации полукадр длиной 5 мс, по меньшей мере, имеет один подкадр восходящей линии связи (исключая UpPTS).
Согласно принципу, что только один SRS передается в одном подкадре восходящей линии связи, каждые 5 мс есть только одна передача SRS, и система не может реализовать передачу SRS с периодом, равным 2 мс. Поэтому эффективность передачи SRS UE ухудшается в быстром изменяющемся во времени канале.
Ввиду различия между TDD LTE и LTE FDD текущая конфигурация периода передачи 2 мс для SRS в LTE FDD не может использоваться в системе TDD LTE.
Раскрытие изобретения
Техническое решение
Соответственно, изобретение было разработано, чтобы решить, по меньшей мере, вышеупомянутые проблемы, возникающие в предшествующем уровне техники, и варианты осуществления изобретения предоставляют устройство и способ для передачи SRS в системе TDD LTE.
Целью настоящего изобретения является обеспечение того, чтобы формат SRS в LTE FDD и TDD LTE был одинаковым.
Другая цель настоящего изобретения заключается в решении проблемы поддержки периода, равного 2 мс, в системе TDD LTE.
Другая цель настоящего изобретения заключается в предоставлении способа для передачи SRS в системе связи TDD LTE.
В соответствии с целью настоящего изобретения, предоставлен способ передачи информации SRS восходящей линии связи LTE UE. Способ включает в себя прием UE информации N, указывающей передачу SRS, генерирование последовательности SRS и передачу SRS в двух символах OFDM в полукадре или кадре, если информация N указывает, что период для передачи SRS равен 2 мс.
В соответствии с другой целью настоящего изобретения, предоставлен способ передачи информации SRS восходящей линии связи LTE UE. Способ включает в себя прием UE информации N, указывающей передачу SRS, генерирование последовательности SRS и передачу SRS, занимая один символ OFDM или два символа OFDM в периоде, на основе информации N.
Краткое описание чертежей
Вышеупомянутые и другие цели, признаки и преимущества настоящего изобретения станут более понятными из последующего подробного описания, иллюстрируемого чертежами, на которых:
фиг.1 является схематичным изображением, иллюстрирующим структуру кадра в системе LTE FDD;
фиг.2 является схематичным изображением, иллюстрирующим структуру кадра в системе TDD LTE;
фиг.3 является схематичным изображением, иллюстрирующим процесс передачи SRS, назначенного пользователя в системе LTE;
фиг.4 является схематичным изображением, иллюстрирующим процесс передачи SRS LTE UE;
фиг.5 является схематичным изображением, иллюстрирующим семь типов конфигураций восходящей линии связи и нисходящей линии связи в системе TDD LTE;
фиг.6 иллюстрирует пример передачи SRS в системе TDD LTE согласно варианту осуществления настоящего изобретения; и
фиг.7 иллюстрирует пример передачи SRS в системе TDD LTE согласно варианту осуществления настоящего изобретения.
Варианты осуществления изобретения
Настоящее изобретение описано ниже более полно со ссылкой на чертежи. Настоящее изобретение может, однако, быть осуществлено во многих различных формах и не должно рассматриваться как ограниченное вариантами осуществления, сформулированными здесь.
Для системы LTE FDD, поскольку максимальный период SRS выбирается из 2, 5, 10, 20, 40, 80, 160, 320 мс, чтобы достичь максимальной гибкости, в течение произвольного периода, возможное смещение SRS выбирается из 0, 1,..., Период-1. Поэтому для LTE FDD SRS назначенного пользователя включает в себя 2+5+10+20+40+80+160+320=637 индексов. Этот способ предоставляет максимальную гибкость и использует 10 битов для представления 637 индексов. Поскольку, однако, 1024 части информации могут фактически быть указаны 10 битами, другие 1024-637=387 индексов резервируются для различных целей.
Когда период равен 320 мс, предоставление, по большей мере, 320 смещений является ненужными, и 10 битов могут быть не самым эффективным процессом. В таких условиях число индексов может быть уменьшено с уменьшением диапазона смещения так, что уменьшается общее число необходимых битов и уменьшается число зарезервированных индексов.
UE принимает индекс N, указывающий период передачи SRS от базовой станции. Для системы TDD LTE значение периода SRS также находится среди 2, 5, 10, 20, 40, 80, 160, 320 мс. Модель смещения является той же самой, что и в LTE FDD, за исключением ситуации, когда период равен 2 мс и 5 мс. Однако по сравнению с LTE FDD различие заключается в том, что в TDD LTE подкадр восходящей линии связи не всегда непрерывен, так что полный период, равный 2 мс, не используется. По этой причине период 2 мс для LTE должен иметь некоторую особую модель.
В настоящий момент есть семь конфигураций восходящей линии связи и нисходящей линии связи, поддерживаемые в TDD LTE, которые иллюстрируются на фиг.5.
На фиг.5 определяется группа соответствующих индексов SRS для указания индекса SRS назначенного пользователя периода 2 мс. Для конфигураций 0 (501), 1 (502), 2 (503) и 6 (507) все индексы указывают, что в периоде полукадра 5 мс или в периоде кадра 5 мс выбираются две смежных или произвольных позиции OFDM из символов OFDM, которые конфигурируются для передачи SRS. Назначенный пользователь указывается для использования этой позиции для передачи SRS. Для конфигураций 3 (504), 4 (505) и 5 (506) все индексы указывают, что в периоде кадра 10 мс выбираются две смежных или произвольных позиции OFDM из символов OFDM, которые конфигурируются для передачи SRS. Назначенный пользователь указывается для использования этой позиции для передачи SRS. Упомянутое определение используется для сообщения назначенному пользователю, как выбрать позицию OFDM, используемую для передачи SRS в период 2 мс.
Учитывается, что в системе TDD LTE имеется максимально 5 символов OFDM, использующихся для передачи SRS в полукадре 5 мс, который включает в себя два символа в UpPTS и три символа OFDM в подкадре 2, 3 и 4 восходящей линии связи. Таким образом, если два выбранных символа произвольны, число вариантов равно C(5,2)=10 (C представляет комбинацию) с 10 соответствующими индексами. Десять индексов соответствуют конкретным символам OFDM, однако любое соответствие может быть использовано, не отступая от сути и объема настоящего изобретения.
Например, соответствие может быть выбрано произвольно или при создании соответствия, присваивая индексы с высоким приоритетом первой или последней позиции. Одно рассмотрение, связанное с приоритетом, заключается вначале в рассмотрении ситуации с 1 или 2 символами UpPTS. Есть четыре ситуации (последний символ OFDM и первый символ OFDM не являются логически смежными) или пять ситуаций (последний символ OFDM и первый символ OFDM являются логически смежными), если выбираются два смежных символа OFDM, так что четыре или пять индексов используются для указания.
Если период равен 5 мс, особый случай в TDD LTE заключается в том, что для конфигураций 3 (504), 4 (505) и 5 (506) нет никакого ресурса восходящей линии связи во втором полукадре в кадре 10 мс. Соответственно, SRS не может быть передан во втором полукадре. Если две смежных или произвольных позиции OFDM выбираются из символов OFDM, сконфигурированных для передачи SRS в первом полукадре, определение является тем же самым, что и в TDD LTE с периодом 2 мс. Поэтому, чтобы упростить проектирование системы, период 5 мс не является подходящим для конфигураций 3, 4 и 5 в TDD LTE в соответствии с вариантом осуществления настоящего изобретения.
По сравнению с LTE FDD в некоторых ситуациях периоды 2 мс и 5 мс не поддерживаются. Соответственно, периоды 2 мс и 5 мс повторно определяются для достижения подобной функции, как в LTE FDD.
На основе способа повторного определения, чтобы повторно определить период 2 мс конфигураций с 0 по 2 и 6, фактический период равен 5 мс, то есть два символа SRS заняты на каждые 5 мс. Для того чтобы повторно определить период 2 мс конфигураций 3-5, фактический период равен 10 мс, то есть два символа SRS заняты на каждые 10 мс. Повторное определение, описанное выше для периода 5 мс и 2 мс для TDD LTE, может использоваться в системной конфигурации и делает сравнение с LTE FDD относительно легким.
Часто система не поддерживает периоды 2 мс и 5 мс и напрямую конфигурирует два SRS в 5 мс или 10 мс. Однако основной принцип этих двух способов является тем же самым. Таким образом, принцип способа является тем же, что и повторное определение периода.
Более конкретно для второго способа период SRS 2 мс не поддерживается в TDD LTE. Для конфигураций с 3 по 5 не поддерживается период SRS 5 мс. Однако два символа SRS могут быть сконфигурированы в каждый полукадр, то есть каждые 5 мс, как для конфигураций с 0 по 2 и 6. Кроме того, два символа SRS могут быть сконфигурированы в первом полукадре, то есть каждые 10 мс, в радиокадре, как и для конфигураций с 3 по 5. Конфигурация двух символов SRS в каждом полукадре может использовать подобный способ в качестве способа, используемого в повторном определении периода 5 мс и 2 мс, описанном выше. Полностью гибкая конфигурация указывает C(5,2)=10 вариантов или уменьшение числа выбора, ограничивая способ конфигурации.
Кроме того, повторное определение периода 2 мс, описанное выше, конфигурирует два символа SRS в полукадре (5 мс). Таким образом, разумно, что период 2 мс не поддерживается в системе TDD LTE, и два символа SRS конфигурируются в каждый полукадр (5 мс). Для конфигураций с 0 по 2 и 6 фактический период равен 5 мс, то есть два символа SRS заняты на каждые 5 мс. Для конфигураций с 3 по 5 фактический период равен 10 мс, то есть два символа SRS заняты на каждые 10 мс. Конфигурация двух символов SRS в каждом полукадре может использовать подобный способ, как используется в повторном определении периода 5 мс и 2 мс, описанном выше. Таким образом, гибкая конфигурация указывает C(5,2)=10 вариантов или уменьшение числа выбора, ограничивая способ конфигурации.
После того как UE принимает информацию N, которая указывает передачу SRS от сети, когда период SRS, указанный посредством N, меньше или равен числу символов OFDM, сконфигурированных, чтобы передать SRS во всей соте в периоде, смещение может быть вычислено следующим образом:
I. Если диапазон N составляет от 0 до 320/f-1, период, указанный посредством N, равен 320 мс, то SRS передается с использованием смещения N×f.
II. Если диапазон N составляет от 320/f до 320/f+160/m-1, период, указанный посредством N, равен 160 мс, то SRS передается с использованием смещения N-320/f×m.
III. Если диапазон N составляет от 320/f+160/m до 320/f+160/m+80/t-1, период, указанный посредством N, равен 80 мс, то SRS передается с использованием смещения N-320/f-160/m×t.
IV. Если диапазон N составляет от 320/f+160/m+80/t до 320/f+160/m+80/t+40/n-1, период, указанный посредством N, равен 40 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t×n.
V. Если диапазон N составляет от 320/f+160/m+80/t+40/n до 320/f+160/m+80/t+40/n+20/p-1, период, указанный посредством N, равен 20 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n×p.
VI. Если диапазон N составляет от 320/f+160/m+80/t+40/n+20/p до 320/f+160/m+80/t+40/n+20/p+10/x-1, период, указанный посредством N, равен 10 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n-20/p×x.
VII. Если диапазон N составляет от 320/f+160/m+80/t+40/n+20/p+10/x до 320/f+160/m+80/t+40/n+20/p+10/x+5-1, период, указанный посредством N, равен 10 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n-20/p-10/x.
В вычислениях выше f, m, t и n могут быть 1, 2, 4 и 8; p может быть 1, 2, 4, 5 и 10; x может быть 1, 2 и 5; и М представляет число символов OFDM, сконфигурированных для передачи SRS в периоде во всей соте, указанной информацией N. Значения f, m, t, n и М устанавливаются статически в системной спецификации.
После того как UE принимает информацию N, указывающую передачу SRS от сети, когда период SRS, указанный посредством N, больше чем число символов OFDM, сконфигурированных для передачи SRS во всей соте в периоде, смещение может быть вычислено следующим образом:
I. Если диапазон N составляет от 0 до M-1, период, указанный посредством N, равен 320 мс, то SRS передается с использованием смещения N.
II. Зарезервировано системой, если диапазон N составляет от М до 320/f-1.
III. Если диапазон N составляет от 320/f до 320/f+M-1, период, указанный посредством N, равен 160 мс, то SRS передается с использованием смещения N-320/f.
IV. Зарезервировано системой, если диапазон N составляет от М до 320/f+160/m-1.
V. Если диапазон N составляет от 320/f+160/m до M-1, период, указанный посредством N, равен 80 мс, то SRS передается с использованием смещения N-320/f-160/m.
VI. Зарезервировано системой, если диапазон N составляет от М до 320/f+160/m+80/t-1.
VII. Если диапазон N составляет от 320/f+160/m+80/t до M-1, период, указанный посредством N, равен 40 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t.
VIII. Зарезервировано системой, если диапазон N составляет от М до 320/f+160/m+80/t+40/n-1.
IX. Если диапазон N составляет от 320/f+160/m+80/t+40/n до M-1, период, указанный посредством N, равен 20 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n.
X. Зарезервировано системой, если диапазон N составляет от М до 320/f+160/m+80/t+40/n+20/p-1.
XI. Если диапазон N составляет от 320/f+160/m+80/t+40/n+20/p до M-1, период, указанный посредством N, равен 10 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n-20/p.
XII. Зарезервировано системой, если диапазон N составляет от М до 320/f+160/m+80/t+40/n+20/p+10/x-1.
XIII. Если диапазон N составляет от 320/f+160/m+80/t+40/n+20/p+10/x до M-1, период, указанный посредством N, равен 5 мс, то SRS передается с использованием смещения N-320/f-160/m-80/t-40/n-20/p-10/x.
XIV. Зарезервировано, если диапазон N составляет от М до 320/f+160/m+80/t+40/n+20/p+10/x+5-1.
В вычислениях выше f, m, t и n могут быть 1, 2, 4 и 8; p может быть 1, 2, 4, 5 и 10; x может быть 1, 2 и 5; и М представляет число символов OFDM, сконфигурированных для передачи SRS в период в целой соте, указанной информацией N. Значения f, m, t, n и М устанавливаются статически в системной спецификации.
Способ разработки, описанный выше, является самой основной разработкой SRS для назначенного пользователя. Настоящее изобретение рассматривает когерентность формата сигнала в LTE TDD LTE и FDD.
Во-первых, биты информации, указывающие передачу SRS назначенного пользователя в LTE FDD и TDD LTE, являются одинаковыми. Например, 10 битов или 9 битов используются для сообщения.
Затем зарезервированный индекс занимает только один раздел непрерывных индексов, как в LTE FDD, так и в TDD LTE.
Согласно принципу проектирования TDD LTE, совместимого с LTE FDD, сигнал передачи SRS для назначенного пользователя может ссылаться на таблицу 1 ниже:
Таблица 1
Индекс Đ Период Смещение Описание
0-4 5 0-4 Конфигурация 3, 4 и 5 является зарезервированной в TDD LTE
5-14 10 0-9 Đ
15-34 20 0-19 Đ
35-74 40 0-39 Đ
75-154 80 0-79 Đ
155-314 160 0-159 Đ
315-634 320 0-319 Đ
635-1023 2 0-1 в FDD 0-9 для TDD Индексы 637-1023 являются зарезервированными в LTE FDD, индексы 645-1023 являются зарезервированными в LTE TDD, смещение в TDD LTE является индексом способа, который используется для выбора двух символов SRS из полукадра
Индексы сигнала SRS
Таблица 2, приведенная ниже, используется для описания при использовании того же самого принципа проектирования.
Таблица 2
Индекс Đ Период Смещение Описание
0-319 320 0-319 Đ
320-479 160 0-159 Đ
480-559 80 0-79 Đ
560-599 40 0-39 Đ
600-619 20 0-19 Đ
620-629 10 0-9 Đ
630-634 5 0-4 Конфигурация 3, 4 и 5 является зарезервированной в TDD LTE
635-1023 2 0-1 в FDD 0-9 для TDD Индексы 637-1023 являются зарезервированными в LTE FDD, индексы 645-1023 являются зарезервированными в LTE TDD, смещение в TDD LTE является индексом способа, который используется для выбора двух символов SRS из полукадра
Индексы сигнала SRS
Учитывая, что значения периода могут быть упорядочены от малого к большему, таблица 3 равномерно описывает индексы сигнала SRS для TDD LTE и LTE FDD.
Таблица 3
Индекс Đ Период Смещение Описание
0-9 2 0-1: LTE FDD
0-9: LTE FDD
2-9 являются зарезервированными в LTE FDD, смещение в TDD LTE является индексом способа, который используется для выбора двух символов SRS из полукадра
10-14 5 0-4 Конфигурация 3, 4 и 5 является зарезервированной в TDD LTE
15-24 10 0-9 Đ
25-44 20 0-19 Đ
45-84 40 0-39 Đ
85-164 80 0-79 Đ
165-324 160 0-159 Đ
325-1023 320 0-1 в FDD 0-9 для TDD Индексы 645-1023 являются зарезервированными в LTE TDD
Индексы сигнала SRS
Чтобы гарантировать когерентность проектирования для LTE FDD и TDD LTE, степень гибкости может быть принесена в жертву в TDD LTE. Если период равен 2 мс, число индексов ограничено 2 в TDD LTE, чтобы число индексов в LTE FDD и TDD LTE было точно тем же самым. Это показано в таблице 4:
Таблица 4
Индекс Đ Период Смещение Описание
0-1 2 0-1
2-6 5 0-4 Конфигурация 3, 4 и 5 является зарезервированной в TDD LTE
7-16 10 0-9 Đ
17-36 20 0-19 Đ
37-76 40 0-39 Đ
77-156 80 0-79 Đ
157-316 160 0-159 Đ
317-1023 320 0-1 в FDD 0-9 для TDD Индексы 637-1023 являются зарезервированными
Индексы сигнала SRS
В вышеупомянутом способе, рассматривая когерентность для LTE FDD и TDD LTE, конфигурация в обеих системах должна оставаться той же самой. Детальный способ для TDD LTE оптимизируется. Если допустимо использование различных таблиц для LTE TDD и LTE FDD, Таблицы с 1 по 4 могут быть использованы только в TDD LTE, и достижимым является другое проектирование для LTE FDD. Основное различие состоит в том, что в LTE FDD только два индекса заняты в периоде 2 мс.
Вышеупомянутое описание является способом конфигурирования SRS, основанным на повторном определении периода, равного 5 мс и 2 мс в TDD LTE. Для повторного определения периода, равного 2 мс конфигураций с 0 по 2 и 6, фактический период равен 5 мс. Для повторного определения периода, равного 2 мс конфигураций с 3 по 5, фактический период равен 10 мс. При использовании значения периода SRS для вычисления для периода 2 мс конфигураций с 0 по 2 и 6, 5 мс используются в качестве периода, и для периода 2 мс конфигураций с 3 по 5, 10 мс используются в качестве периода.
Если повторное определение периода 5 мс и 2 мс в TDD LTE не используется, в некоторых ситуациях, без поддержки периода 5 мс и на 2 мс, система определяет те два SRS, которые конфигурируются в 5 мс или 10 мс. При использовании периода SRS значение периода используется для прямого вычисления. Таблицы 5 и 6 являются двумя возможными подробными способами конфигурирования. Значение периода в Таблице 5 или 6 является фактическим значением периода. Предполагается, что поддерживаются все C(5,2)=10 способов выбора двух символов SRS в полукадре.
В таблице 5, когда индекс находится между 0 и 9, два SRS конфигурируются в периоде 5 мс. Соответствующее смещение от 0 до 9 является индексом для способов для выбора двух символов SRS из полукадра по существу. Когда индекс находится между 10 и 14, один SRS конфигурируется в периоде 5 мс, и смещение представляет позицию присвоенного SRS. Когда индекс находится между 15 и 24, два SRS конфигурируются в периоде 10 мс. Соответствующее смещение от 0 до 9 является индексом для способов для выбора двух символов SRS из полукадра по существу. Когда индекс находится между 25 и 34, один SRS конфигурируется в периоде 10 мс, и смещение представляет позицию присвоенного SRS.
Таблица 5
Индекс Đ Период Смещение Описание
0-9 5 0-9 Смещение является индексом способа, который используется для выбора двух символов SRS из полукадра
10-14 5 0-4 Đ
15-24 10 0-9 Смещение является индексом способа, который используется для выбора двух символов SRS из полукадра
25-34 10 0-9 Đ
35-54 20 0-19 Đ
55-94 40 0-39 Đ
95-174 80 0-79 Đ
175-334 160 0-159 Đ
335-654 320 0-319 Đ
655-1023 Đ Đ Зарезервировано
Индексы сигнала SRS
Таблица 6 имеет тот же самый эффект, что и таблица 5, за исключением порядка строк для реализации нового варианта осуществления. Изобретение ограничивается порядком периода SRS в таблице.
В таблице 6, когда индекс находится между 0 и 9, два SRS конфигурируются в периоде 5 мс. Соответствующее смещение от 0 до 9 является индексом для способов для выбора двух символов SRS из полукадра по существу. Когда индекс находится между 10 и 19, два SRS конфигурируются в периоде 10 мс. Соответствующее смещение от 0 до 9 является индексом для способов для выбора двух символов SRS из полукадра по существу. Когда индекс находится между 20 и 24, один SRS конфигурируется в периоде 5 мс, и смещение представляет позицию присвоенного SRS. Когда индекс находится между 25 и 34, один SRS конфигурируется в периоде 10 мс, и значение смещения представляет позицию присвоенного SRS.
Таблица 6
Индекс Đ Период Смещение Описание
0-9 5 0-9 Смещение является индексом способа, который используется для выбора двух символов SRS из полукадра
10-19 10 0-9 Смещение является индексом способа, который используется для выбора двух символов SRS из полукадра
20-24 5 0-4 Đ
25-34 10 0-9 Đ
35-54 20 0-19 Đ
55-94 40 0-39 Đ
95-174 80 0-79 Đ
175-334 160 0-159 Đ
335-654 320 0-319 Đ
655-1023 Đ Đ Зарезервировано
Индексы сигнала SRS
Если повторное определение периода 5 мс и 2 мс в TDD LTE не используется, определяется период 2 мс, не поддерживаемый в TDD LTE, и два SRS конфигурируются на каждый полукадр (5 мс). Соответственно, при использовании значения периода SRS для вычисления для конфигураций с 0 по 2 и 6, 5 мс используются в качестве периода, и для конфигураций с 3 по 5, 10 мс используются в качестве периода. Таблица 6 является возможным способом конфигурирования. Предполагается, что поддерживаются все C(5,2)=10 способов, используемых для выбора двух символов SRS в полукадре.
В таблице 7, когда индекс находится между 0 и 9, два SRS конфигурируются в периоде 5 мс. Соответствующее смещение от 0 до 9 является индексом способов для выбора двух символов SRS из полукадра. Когда индекс находится между 10 и 14, один SRS конфигурируется в периоде 5 мс, и смещение указывает на позицию присвоенного SRS. Когда индекс находится между 15 и 24, один SRS конфигурируется в периоде 10 мс, и смещение представляет позицию присвоенного SRS.
Таблица 7
Индекс Đ Период Смещение Описание
0-9 5 0-9 Смещение является индексом способа, который используется
для выбора двух символов SRS из полукадра
10-14 5 0-4 Đ
15-24 10 0-9 Đ
25-44 20 0-19 Đ
45-84 40 0-39 Đ
85-164 80 0-79 Đ
165-324 160 0-159 Đ
325-644 320 0-319 Đ
645-1023 Đ Đ Зарезервировано
Индексы сигнала SRS
C(5,2)=10 индексов используются для достижения полной гибкости для передачи двух SRS в периоде. Способ отображения индексов на два выбранных символа SRS следующий:
I. Когда UpPTS включает в себя два символа SRS, первый символ SRS указывается смещением 0 подкадра SRS, и второй символ SRS указывается смещением 1 подкадра SRS.
II. Когда UpPTS включает в себя один символ SRS, символ SRS указывается смещением 1 подкадра SRS. Символ SRS в другом подкадре указывается соответствующим смещением (то есть 2, 3 или 4).
Таким образом, возможный способ отображения от C(5,2)=10 индексов на два выбранных символа SRS показан в Таблице 8.
Таблица 8
Индекс Đ Смещение
0 0,1
1 0,2
2 1,2
3 0,3
4 1,3
5 0,4
6 1,4
7 2,3
8 2,4
9 3,4
Отображение от 10 индексов на два выбранных символа SRS
Сеть использует сигнал управления радиоресурсом (RRC) для передачи сгенерированного сигнала SRS.
Сгенерированная информация SRS отображается на канал передачи и физический канал и затем передается к UE через антенну, будучи обработанной соответствующим образом.
Устройство для передачи SRS назначенного пользователя иллюстрируется на фиг.3. Устройство включает в себя модуль (301) генератора SRS для генерирования информации SRS. Информация SRS отображается на модуль (302) канала передачи, передается к модулю (303) отображения физического канала, и SRS назначенного пользователя передается через антенну (304).
Устройство для передачи SRS в LTE UE иллюстрируется на фиг.4. Устройство включает в себя генератор (401) последовательности SRS, который генерирует последовательность SRS на основе информации SRS назначенного пользователя, принятой модулем (402), и другой информации (такой как циклическое смещение, используемое для передачи SRS, сотовая структура, ширина полосы пропускания и так далее), принятой модулем (403). Под управлением контроллера (404) передачи последовательности мощность корректируется модулем (405) в физическом ресурсе, выделенном при надлежащей синхронизации, и SRS назначенного пользователя передается с использованием антенны (407).
Два примера для передачи SRS в системе TDD LTE согласно вариантам осуществления настоящего изобретения описываются ниже. Подробные описания известных функций и компонентов опускаются, когда они могут затенить описание настоящего изобретения ненужными деталями.
Первый пример
В примере, показанном на фиг.6, применяется конфигурация 1 (602) в TDD LTE.
Информация сигнала, указывающая передачу SRS назначенного пользователя, сгенерирована сетью LTE. Согласно таблице 1, выбирается индекс 635. Для TDD LTE индекс указывает, что период равен 2 мс, дополнительно указывая, что назначенный пользователь передает SRS в первом и втором символе в UpPTS (601 или 604). Для LTE FDD индекс указывает, что назначенный пользователь может использовать доступный символ OFDM в первом подкадре в кадре 2 мс для передачи SRS. Затем через отображение канала передачи и отображение физического канала система передает информацию индекса назначенному пользователю.
Второй пример
В примере, показанном на фиг.7, применяется конфигурация 3 (704) в TDD LTE.
Информация сигнала, указывающая передачу SRS назначенного пользователя, сгенерирована сетью LTE. Согласно таблице 1, выбирается индекс 637, который указывает, что период равен 2 мс. Для TDD LTE индекс указывает, что назначенный пользователь передает SRS в первом символе (701) и первом нормальном подкадре восходящей линии связи (подкадр 2) (702). Для LTE FDD индекс резервируется системой, и система не использует индекс для передачи информации SRS назначенного пользователя. Затем, после отображения канала передачи и отображения физического канала, система передает информацию индекса назначенному пользователю.
Хотя настоящее изобретение показано и описано со ссылкой на определенные варианты осуществления настоящего изобретения, специалистам в данной области техники следует понимать, что в форме и деталях могут быть произведены различные изменения, не отступая от сути и объема настоящего изобретения, определенных приложенной формулой изобретения и ее эквивалентами.

Claims (36)

1. Способ передачи зондирующего опорного сигнала (SRS) восходящей линии связи в системе связи, содержащий этапы, на которых:
принимают, пользовательским оборудованием (UE), информацию, относящуюся к периоду SRS и по меньшей мере одному смещению для передачи SRS;
генерируют, посредством UE, по меньшей мере один SRS; и
передают, посредством UE, по меньшей мере один SRS в двух символах множественного доступа с частотным разделением с одной несущей (SCFDMA) во временном интервале пилот-сигнала восходящей линии связи (UpPTS), если UpPTS содержит два символа SCFDMA, информация указывает период SRS, равный 2 мс, смещение 0 и смещение 1.
2. Способ по п. 1, в котором смещение 0 соответствует первому символу SCFDMA из двух символов SCFDMA, и смещение 1 соответствует второму символу SCFDMA из двух символов SCFDMA.
3. Способ по п. 1 или 2, дополнительно содержащий:
передачу, посредством UE, по меньшей мере одного SRS в одном символе SCFDMA в UpPTS, если UpPTS содержит один символ SCFDMA, информация указывает период SRS, равный 2 мс, и по меньшей мере смещение 1, причем смещение 1 соответствует одному символу SCFDMA.
4. Способ по п. 1 или 2, в котором смещение 2 указывает символ во 2-ом подкадре, смещение 3 указывает символ в 3-ем подкадре и смещение 4 указывает символ в 4-ом подкадре.
5. Способ по п. 1 или 2, в котором информация, относящаяся к периоду SRS и по меньшей мере одному смещению для передачи SRS, определяется посредством следующей таблицы:
Индекс Смещение 0 0,1 1 0,2 2 1,2 3 0,3 4 1,3 5 0,4 6 1,4 7 2,3 8 2,4 9 3,4
6. Пользовательское оборудование (UE) для передачи зондирующего опорного сигнала (SRS) восходящей линии связи в системе связи, содержащее:
приемник, сконфигурированный для приема информации, относящейся к периоду SRS и по меньшей мере одному смещению для передачи SRS;
контроллер, сконфигурированный для генерации по меньшей мере одного SRS; и
передатчик, сконфигурированный для передачи по меньшей мере одного SRS в двух символах множественного доступа с частотным разделением с одной несущей (SCFDMA) во временном интервале пилот-сигнала восходящей линии связи (UpPTS), если UpPTS содержит два символа SCFDMA, информация указывает период SRS, равный 2 мс, смещение 0 и смещение 1.
7. UE по п. 6, в котором смещение 0 соответствует первому символу SCFDMA из двух символов SCFDMA, и смещение 1 соответствует второму символу SCFDMA из двух символов SCFDMA.
8. UE по п. 6 или 7, в котором передатчик передает по меньшей мере один SRS в одном символе SCFDMA в UpPTS, если UpPTS содержит один символ SCFDMA, информация указывает период SRS, равный 2 мс, и по меньшей мере смещение 1, причем смещение 1 соответствует одному символу SCFDMA.
9. UE по п. 6 или 7, в котором смещение 2 указывает символ во 2-ом подкадре, смещение 3 указывает символ в 3-ем подкадре, и смещение 4 указывает символ в 4-ом подкадре.
10. UE по п. 6 или 7, в котором информация, относящаяся к периоду SRS и по меньшей мере одному смещению для передачи SRS, определяется посредством следующей таблицы:
Индекс Смещение 0 0,1 1 0,2 2 1,2 3 0,3 4 1,3 5 0,4 6 1,4 7 2,3 8 2,4 9 3,4
11. Способ приема зондирующего опорного сигнала (SRS) восходящей линии связи в системе связи, содержащий этапы, на которых:
передают, к пользовательскому оборудованию (UE), информацию, относящуюся к периоду SPS и по меньшей мере одному смещению для передачи SRS; и
принимают, от UE, по меньшей мере один SRS в двух символах множественного доступа с частотным разделением с одной несущей (SCFDMA) во временном интервале пилот-сигнала восходящей линии связи (UpPTS), если UpPTS содержит два символа SCFDMA, информация указывает период SRS, равный 2 мс, смещение 0 и смещение 1.
12. Способ по п. 11, в котором смещение 0 соответствует первому символу SCFDMA из двух символов SCFDMA, и смещение 1 соответствует второму символу SCFDMA из двух символов SCFDMA.
13. Способ по п. 11 или 12, дополнительно содержащий:
прием, от UE, по меньшей мере одного SRS в одном символе SCFDMA в UpPTS, если UpPTS содержит один символ SCFDMA, информация указывает период SRS, равный 2 мс, и по меньшей мере смещение 1, причем смещение 1 соответствует одному символу SCFDMA.
14. Способ по п. 11 или 12, в котором смещение 2 указывает символ во 2-ом подкадре, смещение 3 указывает символ в 3-ем подкадре, и смещение 4 указывает символ в 4-ом подкадре.
15. Способ по п. 11 или 12, в котором информация, относящаяся к периоду SRS и по меньшей мере одному смещению для передачи SRS, определяется посредством следующей таблицы:
Индекс Смещение 0 0,1 1 0,2 2 1,2 3 0,3 4 1,3 5 0,4 6 1,4 7 2,3 8 2,4 9 3,4
16. Базовая станция (BS) для приема зондирующего опорного сигнала (SRS) восходящей линии связи в системе связи, содержащая:
передатчик, сконфигурированный для передачи, к пользовательскому оборудованию (UE), информации, относящейся к периоду SPS и по меньшей мере одному смещению для передачи SRS; и
приемник, сконфигурированный для приема, от UE, по меньшей мере одного SRS в двух символах множественного доступа с частотным разделением с одной несущей (SCFDMA) во временном интервале пилот-сигнала восходящей линии связи (UpPTS), если UpPTS содержит два символа SCFDMA, информация указывает период SRS, равный 2 мс, смещение 0 и смещение 1.
17. Базовая станция по п. 16, в которой смещение 0 соответствует первому символу SCFDMA из двух символов SCFDMA, и смещение 1 соответствует второму символу SCFDMA из двух символов SCFDMA.
18. Базовая станция по п. 16 или 17, в которой приемник принимает, от UE, по меньшей мере один SRS в одном символе SCFDMA в UpPTS, если UpPTS содержит один символ SCFDMA, информация указывает период SRS, равный 2 мс, и по меньшей мере смещение 1, причем смещение 1 соответствует одному символу SCFDMA.
19. Базовая станция по п. 16 или 17, в которой смещение 2 указывает символ во 2-ом подкадре, смещение 3 указывает символ в 3-ем подкадре, и смещение 4 указывает символ в 4-ом подкадре.
20. Базовая станция по п. 16 или 17, в которой информация, относящаяся к периоду SRS и по меньшей мере одному смещению для передачи SRS, определяется посредством следующей таблицы:
Индекс Смещение 0 0,1 1 0,2 2 1,2 3 0,3 4 1,3 5 0,4 6 1,4 7 2,3 8 2,4 9 3,4
RU2013155824A 2008-06-25 2013-12-16 Способ передачи зондирующего опорного сигнала в системе lte tdd RU2641665C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810124888.4 2008-06-25
CN200810124888 2008-06-25
CN200810134019.XA CN101615928B (zh) 2008-06-25 2008-07-22 Lte系统中传输srs信令的方法和装置
CN200810134019.X 2008-07-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2010152825/07A Division RU2510575C2 (ru) 2008-06-25 2009-06-24 Способ передачи зондирующего опорного сигнала в системе lte tdd

Publications (2)

Publication Number Publication Date
RU2013155824A RU2013155824A (ru) 2015-06-27
RU2641665C2 true RU2641665C2 (ru) 2018-01-19

Family

ID=41119394

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2010152825/07A RU2510575C2 (ru) 2008-06-25 2009-06-24 Способ передачи зондирующего опорного сигнала в системе lte tdd
RU2013155824A RU2641665C2 (ru) 2008-06-25 2013-12-16 Способ передачи зондирующего опорного сигнала в системе lte tdd

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2010152825/07A RU2510575C2 (ru) 2008-06-25 2009-06-24 Способ передачи зондирующего опорного сигнала в системе lte tdd

Country Status (7)

Country Link
US (3) US8259700B2 (ru)
EP (2) EP2139151B1 (ru)
JP (2) JP5508410B2 (ru)
CN (1) CN101615928B (ru)
ES (1) ES2604124T3 (ru)
RU (2) RU2510575C2 (ru)
WO (1) WO2009157699A2 (ru)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2176999T3 (pl) 2007-08-08 2018-01-31 Ericsson Telefon Ab L M Sondowanie z wykorzystaniem różnych konfiguracji sondujących
CN101505485B (zh) 2008-02-05 2014-11-05 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN103051437B (zh) * 2008-08-01 2015-08-12 中兴通讯股份有限公司 一种时分双工系统上行信道测量参考信号的发送方法
CN104202811B (zh) * 2009-03-17 2018-08-28 交互数字专利控股公司 用于探测参考信号(srs)传输的功率控制的方法和设备
KR101128817B1 (ko) 2009-05-15 2012-03-23 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
US20120093119A1 (en) * 2009-06-18 2012-04-19 So Yeon Kim Method and apparatus for transmitting sounding reference signal in wireless communication system
KR20110051969A (ko) * 2009-11-11 2011-05-18 주식회사 팬택 협력형 다중 안테나 송수신 시스템에서 참조신호 및 참조신호 정보의 전송 방법 및 장치
JP2013516816A (ja) * 2010-01-08 2013-05-13 聯發科技股▲ふん▼有限公司 Lteサウンディングのリソース割り当てとシグナル伝達
KR101781854B1 (ko) 2010-02-04 2017-09-26 엘지전자 주식회사 사운딩 참조 신호를 전송하는 방법 및 장치
KR101797494B1 (ko) * 2010-02-05 2017-11-15 엘지전자 주식회사 사운딩 참조신호 전송방법 및 장치
CN101795145B (zh) * 2010-02-08 2014-11-05 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102088303B (zh) * 2010-02-11 2014-11-05 电信科学技术研究院 Srs信号发送方法及其触发方法以及设备
KR101327131B1 (ko) * 2010-02-12 2013-11-07 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
CN102812745A (zh) * 2010-03-30 2012-12-05 夏普株式会社 基站装置、移动站装置以及通信控制方法
JP5514954B2 (ja) 2010-04-02 2014-06-04 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンクサウンディング基準信号の構成および送信
US8611442B2 (en) 2010-04-06 2013-12-17 Motorola Mobility Llc Method and apparatus for channel sounding in an orthogonal frequency division multiplexing communication system
US9055535B2 (en) 2010-04-30 2015-06-09 Panasonic Intellectual Property Corporation Of America Wireless communication device and method for controlling transmission power
KR101868621B1 (ko) * 2010-06-04 2018-06-18 엘지전자 주식회사 단말의 비주기적 사운딩 참조신호 트리거링 기반 srs 전송 방법 및 비주기적 srs를 전송하기 위한 상향링크 전송 전력을 제어 방법
JP5866124B2 (ja) 2010-06-04 2016-02-17 エルジー エレクトロニクス インコーポレイティド 端末の非周期的サウンディング参照信号トリガリングベースのsrs伝送方法及び非周期的srsを伝送するためのアップリンク伝送電力制御方法
JP5547572B2 (ja) * 2010-07-09 2014-07-16 京セラ株式会社 無線基地局および無線通信方法
WO2012008153A1 (ja) * 2010-07-15 2012-01-19 京セラ株式会社 無線通信システム、移動局、及び無線通信方法
JP5596452B2 (ja) * 2010-07-22 2014-09-24 京セラ株式会社 無線基地局および無線通信方法
JP5583512B2 (ja) * 2010-08-06 2014-09-03 京セラ株式会社 無線基地局および無線通信方法
CN102404074B (zh) * 2010-09-17 2014-06-18 电信科学技术研究院 Tdd系统中的非周期srs的传输方法和设备
CN103190100B (zh) 2010-10-28 2016-06-15 Lg电子株式会社 发送探测基准信号的方法和设备
WO2012060641A2 (ko) * 2010-11-05 2012-05-10 (주)팬택 비주기적 참조신호를 송수신하는 방법 및 장치
BR112013011934B1 (pt) 2010-11-15 2021-06-01 Nokia Solutions And Networks Oy Configuração subframe
CN102761968B (zh) * 2011-04-27 2017-03-01 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN103636149B (zh) * 2011-06-28 2016-12-07 Lg电子株式会社 无线通信系统中用户设备收发信号的方法
CN103503523B (zh) 2011-07-13 2018-01-23 太阳专利信托公司 终端装置和发送方法
KR101758592B1 (ko) 2011-07-29 2017-07-14 후지쯔 가부시끼가이샤 파워 제어 방법 및 단말 장치
US8873435B2 (en) * 2012-02-02 2014-10-28 Qualcomm Incorporated Short random access channel (RACH) disabling in TDD-LTE
CN103458513B (zh) 2012-06-01 2016-09-14 华为技术有限公司 无线通信方法和基站及终端
US9252866B2 (en) 2012-08-02 2016-02-02 Sony Corporation Relay node aggregation of data transfers in a wireless telecommunication system
US9271234B2 (en) 2012-08-03 2016-02-23 Sony Corporation Terminal requested base station controlled terminal transmission throttling
CN104053212B (zh) * 2013-03-14 2018-02-23 电信科学技术研究院 一种d2d发现信号的传输方法和设备
US9872259B2 (en) * 2013-06-24 2018-01-16 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
US9455772B2 (en) * 2013-06-28 2016-09-27 Huawei Technologies Co., Ltd. System and method for network uplink measurement based operation using UE centric sounding
US20150163036A1 (en) * 2013-12-11 2015-06-11 Nokia Solutions And Networks Oy High Resolution Channel Sounding for FDD Communications
US20150365257A1 (en) * 2014-06-12 2015-12-17 Huawei Technologies Co., Ltd. System and Method for OFDMA Resource Allocation
WO2016028103A1 (ko) * 2014-08-20 2016-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN106664193B (zh) * 2015-04-10 2020-12-29 Lg电子株式会社 无线通信系统中发送或者接收探测参考信号的方法和装置
US10299284B2 (en) * 2015-08-31 2019-05-21 Qualcomm, Incorporated Inter-access terminal unblocking and enhanced contention for co-existence on a shared communication medium
EP3484056A4 (en) * 2016-08-11 2019-06-26 Huawei Technologies Co., Ltd. INFORMATION TRANSMISSION PROCEDURE, BASIC STATION AND USER DEVICE
IL269392B2 (en) 2017-03-20 2023-10-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless communication method and device
KR102430292B1 (ko) 2017-07-05 2022-08-05 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 장치
EP3883321B1 (en) * 2018-12-07 2024-02-14 Huawei Technologies Co., Ltd. Method and device for sending and receiving srs
US11563611B1 (en) 2020-09-21 2023-01-24 Sprint Spectrum Lp Adjusting reference signal reporting based on uplink channel conditions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005125045A (ru) * 2003-01-07 2006-01-27 Квэлкомм Инкорпорейтед (US) Схема передачи пилот-сигналов для систем радиосвязи с передачей на несколько несущих
WO2008057412A1 (en) * 2006-11-07 2008-05-15 Nextel Communications, Inc. Systems and methods of supporting multiple wireless communication technologies

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US81737A (en) * 1868-09-01 Improvement in shafts for vehicles
US82307A (en) * 1868-09-22 Benjamin h
KR101358469B1 (ko) * 2006-02-07 2014-02-06 엘지전자 주식회사 무선 네트워크(network) 안에서 상향(uplink)및 하향(downlink) 대역폭(bandwidth)의선택 및 신호 방법
US8417248B2 (en) * 2006-08-14 2013-04-09 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101154989B (zh) * 2006-09-27 2011-06-15 电信科学技术研究院 增强上行控制信道的发送方法
KR100943619B1 (ko) * 2006-10-02 2010-02-24 삼성전자주식회사 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 하향링크 동기채널의 송수신 방법 및 장치
TW200824474A (en) 2006-10-28 2008-06-01 Interdigital Tech Corp Method and apparatus for scheduling uplink transmissions for real time services during a silent period
JP4978384B2 (ja) * 2006-10-31 2012-07-18 日本電気株式会社 移動通信システム、送信装置、および送信信号生成方法
US7957759B2 (en) * 2006-12-08 2011-06-07 Texas Instruments Incorporated Wideband reference signal transmission in SC-FDMA communication systems
CN101247171A (zh) * 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 使用约定资源发送控制信道的设备和方法
US8599819B2 (en) * 2007-06-19 2013-12-03 Lg Electronics Inc. Method of transmitting sounding reference signal
US8055301B2 (en) * 2007-08-06 2011-11-08 Mitsubishi Electric Research Laboratories, Inc. Wireless networks incorporating implicit antenna selection based on received sounding reference signals
PL2176999T3 (pl) * 2007-08-08 2018-01-31 Ericsson Telefon Ab L M Sondowanie z wykorzystaniem różnych konfiguracji sondujących
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
CN101426268B (zh) * 2007-11-02 2010-08-25 大唐移动通信设备有限公司 导频资源分配方法、系统和设备
US8780790B2 (en) * 2008-01-07 2014-07-15 Qualcomm Incorporated TDD operation in wireless communication systems
CN101505485B (zh) 2008-02-05 2014-11-05 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
PL2294771T3 (pl) * 2008-03-20 2013-11-29 Nokia Solutions & Networks Oy Wzór i rozkład przeskoków częstotliwości dla referencyjnego sygnału sondującego
US10028299B2 (en) * 2008-03-21 2018-07-17 Blackberry Limited Providing a time offset between scheduling request and sounding reference symbol transmissions
US7990916B2 (en) * 2008-04-29 2011-08-02 Texas Instruments Incorporated Cell specific sounding reference signal sub-frame configuration
US9363054B2 (en) * 2008-04-29 2016-06-07 Texas Instruments Incorporated Sounding reference signal user equipment specific sub-frame configuration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005125045A (ru) * 2003-01-07 2006-01-27 Квэлкомм Инкорпорейтед (US) Схема передачи пилот-сигналов для систем радиосвязи с передачей на несколько несущих
WO2008057412A1 (en) * 2006-11-07 2008-05-15 Nextel Communications, Inc. Systems and methods of supporting multiple wireless communication technologies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nokia, Nokia Siemens Networks, SRS configuration for LTE TDD, 3GPP TSG-RAN WG1 Meeting #53, R1-081862, Kansas City, MO, USA, 05-09 May, 2008. *
Samsung, SRS indication for TDD, TSG-RAN WG1 #52bis, R1-081211, Shenzhen, China, Mar. 31 April 04, 2008. *

Also Published As

Publication number Publication date
EP2139151B1 (en) 2015-04-01
EP2139151A3 (en) 2012-05-23
US10411855B2 (en) 2019-09-10
WO2009157699A2 (en) 2009-12-30
WO2009157699A3 (en) 2010-04-15
US9787447B2 (en) 2017-10-10
JP5508410B2 (ja) 2014-05-28
RU2010152825A (ru) 2012-06-27
JP5889942B2 (ja) 2016-03-22
RU2510575C2 (ru) 2014-03-27
EP2720400A1 (en) 2014-04-16
US8259700B2 (en) 2012-09-04
EP2139151A2 (en) 2009-12-30
US20090323664A1 (en) 2009-12-31
US20160013907A1 (en) 2016-01-14
ES2604124T3 (es) 2017-03-03
JP2014112971A (ja) 2014-06-19
CN101615928A (zh) 2009-12-30
RU2013155824A (ru) 2015-06-27
JP2011526117A (ja) 2011-09-29
US20120327860A1 (en) 2012-12-27
EP2720400B1 (en) 2016-10-12
CN101615928B (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
RU2641665C2 (ru) Способ передачи зондирующего опорного сигнала в системе lte tdd
US9166756B2 (en) Method and apparatus for transmitting SRS in LTE TDD system
CN101366200A (zh) 用于导频信号传输的方法和装置
KR20190018390A (ko) 통신 시스템에서 슬롯 설정 정보의 송수신 방법