RU2640479C2 - Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата - Google Patents

Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата Download PDF

Info

Publication number
RU2640479C2
RU2640479C2 RU2016112085A RU2016112085A RU2640479C2 RU 2640479 C2 RU2640479 C2 RU 2640479C2 RU 2016112085 A RU2016112085 A RU 2016112085A RU 2016112085 A RU2016112085 A RU 2016112085A RU 2640479 C2 RU2640479 C2 RU 2640479C2
Authority
RU
Russia
Prior art keywords
extraction
earth metals
rare
rare earth
concentration
Prior art date
Application number
RU2016112085A
Other languages
English (en)
Other versions
RU2016112085A (ru
Inventor
Ольга Владимировна Черемисина
Татьяна Евгеньевна Литвинова
Василий Валерьевич Сергеев
Денис Сергеевич Луцкий
Ольга Леонидовна Лобачева
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный унивеситет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный унивеситет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный унивеситет"
Priority to RU2016112085A priority Critical patent/RU2640479C2/ru
Publication of RU2016112085A publication Critical patent/RU2016112085A/ru
Application granted granted Critical
Publication of RU2640479C2 publication Critical patent/RU2640479C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к выделению РЗМ из производственных растворов, полученных при переработке апатитового концентрата серной кислотой. Может быть использовано на предприятиях горно-перерабатывающей промышленности. Редкоземельные металлы извлекают экстракцией с использованием экстрагента ди-2-этилгексилфосфорной кислоты (Д2ЭГФК) с поэтапным разделением РЗМ на три концентрата лантаноидов, включающие тяжелый, содержащий Yb, Er, Y, Dy, Но, Tb, средний, содержащий Gd, Eu, Sm, и легкий, содержащий Nd, Pr, Се, La. Д2ЭГФК используют с концентрацией для тяжелой группы - 0,54М, для средней - 1,35М и для легкой группы - 2,8М. Экстракционный процесс проводят при отношении водной и органических фаз 2-4, времени контакта фаз не более 2 минут, при постоянной скорости перемешивания 900 об/мин и температуре 298K. Полученные экстракты направляют на реэкстракцию для очистки от примесных ионов железа 3+ органической фазы растворами серной кислоты концентрацией от 20 до 40% с получением концентратов редкоземельных металлов трех упомянутых групп. Степень извлечения по Yb, Er, Y, Dy, Но, Nd, Pr, Се составляет не менее 99%, по Gd, La не менее 90% и по Eu, Sm, Tb не менее 75%. 3 ил., 3 табл., 3 пр.

Description

Изобретение относится к способам попутного выделения редкоземельных элементов из производственных растворов экстракционных фосфорных кислот, полученных дигидратным способом при переработке апатитового концентрата серной кислотой, и может быть использовано на предприятиях горно-перерабатывающей промышленности.
Известен способ выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (патент РФ №2509169, опубл. 10.03.2014 г.), получаемой в дигидратном процессе переработки апатитового концентрата. В экстракционную фосфорную кислоту (ЭФК) вводят аммиак в количестве, обеспечивающем мольное соотношение ΝΗ32Ο5=(0,2-1,0):1, после чего добавляют фторид аммония в количестве 20-30 г/л для образования суспензии и перевода основной части РЗЭ и части примесных компонентов в осадок. Осадок концентрата РЗЭ отделяют от фосфорнокислого раствора. Способ позволяет достичь 96,8-99,8% извлечения РЗЭ в концентрат при расходе фторсодержащего реагента-осадителя 10,3-15,4 г/л в пересчете на фторид-ион.
Недостатком способа является близкий диапазон интервалов рН, в котором соосаждаются малорастворимые соединения титана, железа, алюминия с РЗМ и, как следствие, образуются трудно фильтруемые осадки с низким содержанием лантаноидов.
Известен способ кристаллизации фосфатов РЗМ из растворов экстракционной фосфорной кислоты (патент РФ №2529228, опубл. 27.09.2014) на твердом затравочном материале - гранулированном полуводном гидрате фосфата церия, путем создания непрерывного возвратно-поступательного движения затравочного материала в условиях псевдокипящего слоя, создаваемого непрерывным потоком воздуха в направлении «снизу вверх», противоположном движению раствора экстракционной фосфорной кислоты. Относительный привес твердой фазы фосфата суммы РЗМ на затравочном материале в среднем составил 35±3% при содержании фосфатов суммы РЗМ не менее 70%.
Недостатком способа является низкая степень извлечения наиболее ценных РЗМ, основная часть которых остается в растворах ЭФК, а также требующаяся последующая конверсия фосфатов РЗМ в карбонаты или водорастворимые соединения.
Известен способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты (патент РФ №2545337, опубл. 27.03.2015 г.), согласно которому исходную ЭФК пропускают через колонну с сильноосновным анионитом гелевого типа, предварительно переведенным в смешанную ионную форму, до тех пор, пока состав выходящего из колонны раствора не станет равным составу входящей в нее ЭФК.
Сформированный после прохождения через анионит коллоидный раствор, обедненный по кислоте и обогащенный по РЗЭ, направляют на выделение твердого концентрата РЗЭ. При этом степень извлечения РЗЭ составляет 76%. Отмечено, что преимуществом метода является возможность использования разбавленной фосфорной кислоты в качестве десорбирующего агента, что значительно снижает расходы на проведение десорбции.
Недостатком способа являются высокая остаточная концентрация РЗМ в фосфорнокислом растворе, низкое относительное содержание РЗМ в получаемых осадках за счет присутствия значительных количеств примесей железа, кальция, магния, фосфора.
Известен способ извлечения следовых количеств РЗМ из модельных растворов фосфорной кислоты с использованием центробежной экстракции (patent 101824535 CN; Publication 2012-11-14). Способ включает следующие стадии: (1) экстракция РЗМ из модельных растворов фосфорной кислоты с использованием различных кислых фосфорорганических экстрагентов (Р204 (ди-2-этилгексилфосфорной кислоты), Р507 (моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты), Р215 (ди-(1-метилгептил) фосфорной кислоты), Р229 (ди-(2-этилгексил) фосфоновой кислоты), диоктилфенилфосфорной кислоты, динонилфосфорной кислоты, додецилфосфорной кислоты) в центробежном экстракторе и неполное разделение РЗМ от примесей железа при времени контакта фаз до 30 с; (2) реэкстракция органической фазы соляной, серной или азотной кислотами в центробежном экстракторе при времени контакта фаз от 5 до 100 с с извлечением более чем 95% РЗМ и получением раствора, обогащенного РЗМ до 280 г/л.
Недостатками способа являются отсутствие разделения редкоземельных металлов, неучтенное влияние примесных анионов (сульфат- и фторид-ионов), содержащихся в ЭФК, на процесс извлечения и разделения редкоземельных металлов, высокая концентрация примесей железа в концентрате редкоземельных металлов в результате неполного разделения, а также техническая сложность исполнения способа при условии переработки значительных объемов ЭФК (производительность по ЭФК одного завода РФ составляет 45 м3/ч).
Известен способ извлечения и разделения редкоземельных металлов из фосфорнокислых растворов ди-2-этилгексилфосфорной кислотой (Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99/S. Radhika [et al.] // Hydrometallurgy. - 2011. - Vol. 110. - P. 50-55), принятый за прототип. Авторами предложено извлечение семи тяжелых редкоземельных металлов: Tb, Dy, Y, Но, Er, Yb, Lu с попутным разделением на две группы (Yb+Lu) и (Tb, Dy, Y, Но, Er) из растворов модельной фосфорной кислоты концентрацией 3М при использовании экстрагента TOPS 99 (эквивалент Д2ЭГФК чистотой более 95%) различных концентраций. Экстракцию (Yb+Lu) осуществляют 0,1 M TOPS 99 при отношении объемов фаз водная/органическая = 2 в 3 ступени со степенью извлечения 91,1%, реэкстракцию проводят в 2 ступени 4M HCl при отношении объемов фаз водная/органическая = 3. Экстракцию (Tb, Dy, Y, Но, Er) осуществляют 1M TOPS 99 при отношении объемов фаз водная/органическая = 3 в 3 ступени со степенью извлечения 94,4%, реэкстракцию проводят в 2 ступени 7M НС1 при соотношении объемов фаз водная/органическая = 3.
Недостатками способа являются: отсутствие извлечения легкой группы РЗМ (La, Ce, Pr, Nd), при этом нет данных по экстракции редкоземельных металлов средней группы: Sm, Gd, Eu; высокое содержание редкоземельных элементов одной группы (Y и Er выше 15%) в концентрате другой группы (Yb+Lu), что свидетельствует о неполном разделении на заявляемые группы РЗМ; использование высококонцентрированной соляной кислоты в процессе реэкстракции, значительно повышающей затраты на производство концентратов РЗМ. Кроме того, следует отметить, что экстракционное извлечение и разделение РЗМ осуществляли из модельных растворов фосфорной кислоты без учета влияния примесных компонентов, в том числе ионов железа(3+), присутствующих в производственных растворах ЭФК в количестве, превышающем содержание РЗМ в десятки и сотни раз.
Техническим результатом является попутное извлечение и разделение РЗМ из производственных растворов ЭФК, получаемых при переработке апатитового концентрата, на три группы (концентрата): тяжелой (Yb, Er, Y, Dy, Ho, Tb), средней (Gd, Eu, Sm) и легкой (Nd, Pr, Ce, La) групп со степенью извлечения не менее 99% по Yb, Er, Y, Dy, Ho, Nd, Pr, Се, не менее 90% по Gd, La и не менее 75% по Eu, Sm, Tb, с содержанием РЗМ разных групп не более 10% и остальных примесных ионов металлов (железа, алюминия, кальция и магния) менее 5%.
Технический результат достигается тем, что экстракцию РЗМ осуществляют с использованием экстрагента ди-2-этилгексилфосфорной кислоты (Д2ЭГФК) с поэтапным разделением РЗМ на три концентрата лантаноидов, включающие тяжелый, содержащий Yb, Er, Y, Dy, Ho, Tb, средний, содержащий Gd, Eu, Sm, и легкий, содержащий Nd, Pr, Ce, La, при этом используют Д2ЭГФК с концентрацией для тяжелой группы - 0,54М, для средней - 1,35М и для легкой группы - 2,8М, экстракционный процесс для каждой группы лантаноидов проводят при отношении водной и органических фаз 2-4, времени контакта фаз не более 2 минут, при постоянной скорости перемешивания 900 об/мин и температуре 298K, после чего полученные экстракты направляют на стадию реэкстракции для очистки от примесных ионов железа 3+ органической фазы растворами серной кислоты концентрацией от 20 до 40% с получением концентратов редкоземельных металлов трех упомянутых групп.
Способ извлечения и разделения редкоземельных металлов из экстракционной фосфорной кислоты поясняется следующими фигурами:
фиг. 1 - схема процесса экстракционного извлечения и разделения РЗМ из растворов оборотной ЭФК (ОЭФК),
фиг. 2 - зависимость степени извлечения индивидуальных РЗМ и Fe от концентрации экстрагента Д2ЭГФК,
фиг. 3 - зависимость степени извлечения Y, Sm и Fe от времени контакта фаз.
Способ осуществляется следующим образом (фиг. 1). Технологический раствор ОЭФК (табл. 1 и 2) направляют на стадию экстракции. Экстракцию РЗМ проводят с использованием экстрагента ди-2-этилгексилфосфорной кислоты (Д2ЭГФК), в качестве инертного разбавителя Д2ЭГФК используют керосин марки «ч» с массовой долей предельных углеводородов не менее 95%.
Таблица 1 - состав растворов ОЭФК
Figure 00000001
Таблица 2 - относительное содержание РЗМ в растворах ЭФК в пересчете на оксиды (Ln2O3)
Figure 00000002
Контакт фаз и их разделение осуществляли в лабораторных экстракторах ES-8110 с фторопластовой мешалкой и скоростью перемешивания 900 об/мин. Анализ на содержание суммы РЗМ в водной фазе выполняли спектрофотометрическим методом с индикатором арсеназо III и рентгенофлуоресцентным методом с использованием энергодисперсионного рентгенофлуоресцентного спектрометра PANalyticalEpsilon. Для анализа состава водных растворов и органических сред использованы методы РАМАН и инфракрасной спектроскопии.
В процессе экстракции основными факторами, влияющими на извлечение РЗМ из фосфорнокислых растворов, иллюстрируемыми фиг. 3, являются концентрации производственных растворов экстракционных фосфорных кислот по Р2О5 и экстрагента Д2ЭГФК, а также наличие в ЭФК примесных компонентов, в особенности сульфат-ионов и ионов железа, существенно влияющих на степень извлечения РЗМ. Влияние катионов магния, алюминия и кальция незначительно ввиду низкой степени извлечения металлов. Степень извлечения в органическую фазу алюминия и магния составляет менее 1%, а степень извлечения кальция - менее 3%.
На основании полученных зависимостей степени извлечения РЗМ и железа по рассчитанным коэффициентам разделения предложено экстракционное извлечение РЗМ из технологических растворов фосфорной кислоты концентрацией 16-22% (P2O5), соответствующих оборотной ЭФК (табл. 2) технологического процесса ООО «БМУ и разделение РЗМ на три группы с использованием различных концентраций Д2ЭГФК в керосине.
Использование Д2ЭГФК концентрацией 0,54 М обеспечит извлечение и, соответственно, отделение «тяжелой» группы РЗМ (Yb, Er, Y, Dy, Ho, Tb), при отношении водной и органической фаз Vaq/Vorg=4, температуре 298K и времени контакта фаз 2 мин, от «средней» (Gd, Eu, Sm) и «легкой» (Nd, Pr, Се, La) групп (фиг. 2).
Извлечение «средней» группы РЗМ (Gd÷Sm) и отделение от «легкой» обеспечивается использованием Д2ЭГФК концентрацией 1,35 М (фиг. 2) при отношении Vaq/Vorg=2, температуре 298K и времени контакта фаз 2 мин.
Дальнейшее увеличение концентрации Д2ЭГФК приводит к повышению степени извлечения только «легких» РЗМ. Обедненный РЗМ тяжелой и средней групп раствор ЭФК пропускают через слой Д2ЭГФК марки «ч» концентрацией 2,8 М. На третьем этапе извлекается легкая группа РЗМ (La, Се, Pr, Nd) при отношении Vaq/Vorg=2, температуре 298K и времени контакта фаз 2 мин.
Проведение экстракционного процесса в течение 2 минут, обеспечивающих снижение степени извлечения примесных ионов железа(3+) в органическую фазу экстрагента, установлено при исследовании экстракционного равновесия Д2ЭГФК - индивидуальный РЗМ в совместном присутствии с ионами железа(3+) при постоянной скорости перемешивания 900 об/мин, температуре 298K, концентрации Д2ЭГФК от 0,27 М до 3 М и отношении объемов водной Vaq и органической Vorg фаз: Vaq/Vorg=2-4 (фиг. 3).
По экспериментальным данным были построены зависимости степени извлечения ионов иттрия, самария и железа (фиг. 3) экстрагентом Д2ЭГФК концентрацией 0,27, 0,54 и 2 М из растворов ОЭФК от времени контакта органической и водной фаз. Время достижения экстракционного равновесия для РЗМ составило: 2 мин для иттрия, 5 мин для самария и 15 мин для железа(3+). Установленное существенное различие в значениях времени достижения равновесия является условием отделения РЗМ от примесей железа непосредственно в процессе проведения экстракции.
Дальнейшая доочистка от примесных ионов железа(3+) производится на стадии реэкстракции растворами серной кислоты концентрацией от 20 до 40% (таблица 3). Полученные экстракты направляют на стадию реэкстракции для очистки органической фазы и получения концентратов РЗМ трех заявляемых групп.
Таблица 3 - экспериментальные результаты по реэкстракции целевых компонентов
Figure 00000003
Далее очищенную органическую фазу возвращают в оборот, а реэкстракты направляют на получение карбонатных РЗМ концентратов. Обедненный по РЗМ технологический раствор ЭФК направляют на производство минеральных фосфорных удобрений.
Пример 1. Исходную оборотную ЭФК (табл. 2) производства ООО «БМУ» пропускают через слой Д2ЭГФК производства ООО «Волгоградпромпроект» марки «D», с концентрацией Д2ЭГФК 0,54 М способом многоступенчатой противоточной экстракции. На этом этапе происходит отделение тяжелой группы РЗМ (Yb÷Tb) при отношении водной и органической фаз Vaq/Vorg=4, температуре 298K и времени контакта фаз 2 мин. Используя каскад из 5 экстракторов, степень извлечения в органическую фазу для Yb, Er и Y составит 99,99%, для Но - 99,7%, Dy - 96,3% и Tb - 77,5%. Реэкстракцию осуществляют 4М серной кислотой в 3 ступени с отношением водной и органической фаз Vaq/Vorg=2 для достижения степени реэкстракции 99,9% по сумме РЗМ и не более 5% по железу. Далее осуществляют осаждение Na2CO3 и последующую фильтрацию карбонатного концентрата тяжелых РЗМ. При этом суммарная доля РЗМ средней группы в концентрате тяжелых лантаноидов составит не более 11% и менее 1% железа и других примесных компонентов.
Пример 2. Обедненную РЗМ тяжелой группы ЭФК пропускают через слой Д2ЭГФК производства ООО «Волгоградпромпроект» марки «D», с концентрацией Д2ЭГФК 1,35 М. На этом этапе осуществляется экстракционное отделение средней группы РЗМ (Gd÷Sm) при отношении Vaq/Vorg=2, температуре 298K и времени контакта фаз 2 мин с использованием каскада из 6 экстракторов. Степень извлечения в органическую фазу для Gd, Eu, Sm составит 94,7%, 82,1%, 77,4% соответственно. Реэкстракцию осуществляют 4М серной кислотой в 3 ступени с отношением водной и органической фаз Vaq/Vorg=3 для достижения степени реэкстракции 99,9% по РЗМ и не более 3% по железу. Далее осуществляют осаждение Na2CO3 и последующую фильтрацию карбонатного концентрата средних РЗМ. При этом суммарная доля легких РЗМ в концентрате составит не более 13% и менее 10% железа и других примесных компонентов.
Пример 3. Обедненную РЗМ тяжелой и средней групп ЭФК пропускают через слой Д2ЭГФК марки «ч» с концентрацией Д2ЭГФК 2,8 М. На третьем этапе отделяется легкая группа РЗМ (La, Се, Pr, Nd) при отношении Vaq/Vorg=2, температуре 298K и времени контакта фаз 2 мин. Используя каскад из 4 экстракторов, степень извлечения в органическую фазу металлов составит 90% по La и 99% по Се÷Nd. Реэкстракцию осуществляют 2М серной кислотой в 3 ступени с отношением водной и органической фаз Vaq/Vorg=3 для достижения степени реэкстракции 99,9% по РЗМ и не более 3% по железу. Далее осуществляют осаждение Na2CO3 и последующую фильтрацию карбонатного концентрата легких РЗМ. При этом суммарная доля РЗМ средней группы в концентрате составит не более 15% и менее 10% железа и других примесных компонентов.

Claims (1)

  1. Способ извлечения редкоземельных металлов (РЗМ) при переработке апатитового концентрата, включающий экстракцию с использованием экстрагента ди-2-этилгексилфосфорной кислоты (Д2ЭГФК) с поэтапным разделением РЗМ на три группы концентрата лантаноидов, включающие тяжелую, содержащую Yb, Er, Y, Dy, Ho и Tb, среднюю, содержащую Gd, Eu и Sm, и легкую, содержащую Nd, Pr, Ce и La, при этом используют Д2ЭГФК с концентрацией для тяжелой группы - 0,54М, для средней - 1,35М и для легкой группы - 2,8М, экстракционный процесс для каждой группы лантаноидов проводят при отношении водной и органических фаз 2-4, времени контакта фаз не более 2 минут, при постоянной скорости перемешивания 900 об/мин и температуре 298K, после чего полученные экстракты направляют на стадию реэкстракции для очистки от примесных ионов железа 3+ органической фазы растворами серной кислоты концентрацией от 20 до 40% с получением концентратов редкоземельных металлов трех упомянутых групп.
RU2016112085A 2016-03-30 2016-03-30 Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата RU2640479C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016112085A RU2640479C2 (ru) 2016-03-30 2016-03-30 Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016112085A RU2640479C2 (ru) 2016-03-30 2016-03-30 Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата

Publications (2)

Publication Number Publication Date
RU2016112085A RU2016112085A (ru) 2017-10-03
RU2640479C2 true RU2640479C2 (ru) 2018-01-09

Family

ID=60047600

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016112085A RU2640479C2 (ru) 2016-03-30 2016-03-30 Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата

Country Status (1)

Country Link
RU (1) RU2640479C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109517983A (zh) * 2018-12-20 2019-03-26 清远市嘉禾稀有金属有限公司 一种HoY溶液除二价铁离子的方法
RU2697128C1 (ru) * 2019-03-14 2019-08-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ разделения редкоземельных металлов иттрия и иттербия от примесей железа (3+)
RU2747574C2 (ru) * 2019-05-21 2021-05-07 Общество С Ограниченной Ответственностью "Минералс Ресайклинг" Способ разделения рзм тяжелой группы (иттрия, иттербия, эрбия и диспрозия) в процессе их экстракции из фосфорнокислых растворов
RU2752770C1 (ru) * 2021-01-27 2021-08-03 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Способ извлечения редкоземельных металлов (рзм) при переработке апатитового концентрата
RU2796309C2 (ru) * 2018-09-26 2023-05-22 Коммиссариат А Л`Энержи Атомик Э О Энержи Альтернатив Применение синергетической смеси экстрагентов для извлечения редкоземельных элементов из водной среды, содержащей фосфорную кислоту

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047785A1 (en) * 1999-02-12 2000-08-17 Baotou Iron And Steel (Group) Co., Ltd. Processing route for direct production of mixed rare earth metal oxides by selective extraction
RU2528576C1 (ru) * 2013-03-05 2014-09-20 Открытое акционерное общество "Объединенная химическая компания "УРАЛХИМ" Способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата
RU2538863C2 (ru) * 2013-03-05 2015-01-10 Открытое акционерное общество "Объединенная химическая компания "УРАЛХИМ" Способ реэкстракции редкоземельных металлов из органических растворов и получение концентрата редкоземельных металлов
RU2544731C2 (ru) * 2013-07-17 2015-03-20 Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН) Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047785A1 (en) * 1999-02-12 2000-08-17 Baotou Iron And Steel (Group) Co., Ltd. Processing route for direct production of mixed rare earth metal oxides by selective extraction
RU2528576C1 (ru) * 2013-03-05 2014-09-20 Открытое акционерное общество "Объединенная химическая компания "УРАЛХИМ" Способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата
RU2538863C2 (ru) * 2013-03-05 2015-01-10 Открытое акционерное общество "Объединенная химическая компания "УРАЛХИМ" Способ реэкстракции редкоземельных металлов из органических растворов и получение концентрата редкоземельных металлов
RU2544731C2 (ru) * 2013-07-17 2015-03-20 Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН) Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RADHIKA S. Solvent extraction and separation of rare-earths from phosphoric acid solutions with TOPS 99. Hydrometallurgy. 2011. Vol. 110. p. 50-55. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796309C2 (ru) * 2018-09-26 2023-05-22 Коммиссариат А Л`Энержи Атомик Э О Энержи Альтернатив Применение синергетической смеси экстрагентов для извлечения редкоземельных элементов из водной среды, содержащей фосфорную кислоту
CN109517983A (zh) * 2018-12-20 2019-03-26 清远市嘉禾稀有金属有限公司 一种HoY溶液除二价铁离子的方法
RU2697128C1 (ru) * 2019-03-14 2019-08-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ разделения редкоземельных металлов иттрия и иттербия от примесей железа (3+)
RU2747574C2 (ru) * 2019-05-21 2021-05-07 Общество С Ограниченной Ответственностью "Минералс Ресайклинг" Способ разделения рзм тяжелой группы (иттрия, иттербия, эрбия и диспрозия) в процессе их экстракции из фосфорнокислых растворов
RU2752770C1 (ru) * 2021-01-27 2021-08-03 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Способ извлечения редкоземельных металлов (рзм) при переработке апатитового концентрата

Also Published As

Publication number Publication date
RU2016112085A (ru) 2017-10-03

Similar Documents

Publication Publication Date Title
RU2640479C2 (ru) Способ извлечения и разделения редкоземельных металлов при переработке апатитового концентрата
Krea et al. Liquid–liquid extraction of uranium and lanthanides from phosphoric acid using a synergistic DOPPA–TOPO mixture
El-Nadi Effect of diluents on the extraction of praseodymium and samarium by Cyanex 923 from acidic nitrate medium
CN104131164B (zh) 中性磷酰胺萃取剂用于萃取分离钍的用途和方法
US9896743B2 (en) Method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals
CN103773954B (zh) 中性磷酰胺萃取剂用于萃取分离Ce4+的用途
Reddy et al. Liquid-liquid extraction processes for the separation and purification of rare earths
CN105734288B (zh) 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法
CN105734289B (zh) 含氨基中性膦萃取剂用于萃取分离钍的用途和方法
Acharya et al. Studies on extraction and separation of La (III) with DEHPA and PC88A in petrofin
Belova et al. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants
FI3833789T3 (en) Use of a synergistic mixture of extractants for extracting rare earth elements from an aqueous medium comprising phosphoric acid
Roy et al. Synergistic extraction of Nd (III) with mixture of 8-hydroxyquinoline and its derivative with di-2-ethyl hexyl phosphoric acid in different diluents
Cheremisina et al. Thermodynamic investigation into extraction of cerium (III) by tributyl phosphate from phosphoric acid solutions
Eskandari Nasab et al. Extractive separation of Th (IV), U (VI), Ti (IV), La (III) and Fe (III) from zarigan ore
RU2747574C2 (ru) Способ разделения рзм тяжелой группы (иттрия, иттербия, эрбия и диспрозия) в процессе их экстракции из фосфорнокислых растворов
Cheremisina et al. Study of iron stripping from DEHPA solutions during the process of rare earth metals extraction from phosphoric acid
RU2518619C2 (ru) Способ выделения гадолиния экстракцией фосфорорганическими соединениями
RU2697128C1 (ru) Способ разделения редкоземельных металлов иттрия и иттербия от примесей железа (3+)
Seyyed Alizadeh Ganji et al. Investigation of performances of solvents D2EHPA, Cyanex272, and their mixture system in separation of some rare earth elements from a Nitric Acid solution
RU2584626C1 (ru) Способ извлечения гольмия (iii) из растворов солей
WO2015087845A1 (ja) 配位高分子化を利用するレアメタルの水系分別沈殿法
Mishra Comprehensive Outlook for Liquid–Liquid Separation of Rare Earth Elements
CN107287419B (zh) 中性膦萃取剂用于萃取分离铈(iv)或钍(iv)的用途和方法
Takip et al. Solvent extraction of light rare earths from acidic medium by Di-(2-ethylhexyl) phosphoric acid in kerosene

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210331