RU2634371C1 - Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов - Google Patents

Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов Download PDF

Info

Publication number
RU2634371C1
RU2634371C1 RU2016135336A RU2016135336A RU2634371C1 RU 2634371 C1 RU2634371 C1 RU 2634371C1 RU 2016135336 A RU2016135336 A RU 2016135336A RU 2016135336 A RU2016135336 A RU 2016135336A RU 2634371 C1 RU2634371 C1 RU 2634371C1
Authority
RU
Russia
Prior art keywords
generator
radiation
amplifier
laser
diaphragm
Prior art date
Application number
RU2016135336A
Other languages
English (en)
Inventor
Лев Семенович Гликин
Original Assignee
Лев Семенович Гликин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лев Семенович Гликин filed Critical Лев Семенович Гликин
Priority to RU2016135336A priority Critical patent/RU2634371C1/ru
Application granted granted Critical
Publication of RU2634371C1 publication Critical patent/RU2634371C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/227Metal vapour

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)

Abstract

Изобретение относится к области лазерной техники, в частности к способам формирования лазерного излучения в системе генератор - усилитель на парах металлов, и может быть использовано в лазерной обработке материалов, лазерного сканирования и других областях, где необходимо использование лазерного излучения на уровне дифракционной расходимости. Согласно способу формирования излучения в лазерной системе генератор-усилитель на парах металлов, содержащей генератор с оптическим резонатором и усилитель, выполненные на активных лазерных элементах на парах металлов, выполняют пространственную фильтрацию излучения генератора с помощью пространственного фильтра, в фокальной плоскости фильтра устанавливают непрозрачную пластину и формируют в ней отверстие диафрагмы посредством собственного излучения генератора. Техническим результатом предлагаемого изобретения является формирование лазерного излучения в системе генератор-усилитель на уровне дифракционной расходимости, уменьшение габаритов системы, а также снижение трудоемкости изготовления диафрагмы и ее юстировки. 1 з.п. ф-лы, 3 ил.

Description

Техническое решение относится к области лазерной техники, в частности к способам формирования лазерного излучения в системе генератор-усилитель на парах металлов и может быть использовано в лазерной обработке материалов, лазерного сканирования и других областях, где необходимо использование лазерного излучения на уровне дифракционной расходимости.
Известен метод лазерной обработки [1], в котором излучение генератора направляют на пространственный фильтр, содержащий фокусирующую линзу, диафрагму пространственной фильтрации, помещенную в минимальном сечении сфокусированного лазерного пучка, линзу-коллиматор, восстанавливающую лазерный луч, прошедший через диафрагму в параллельный лазерный пучок, который направляется в фокусирующий объектив для выполнения обработки. Метод позволяет уменьшить диаметр сфокусированного лазерного пятна на объекте обработки за счет удаления фонового излучения и шумовых компонент света. Недостатком аналога является то, что мощность излучения ограничена мощностью генератора.
Известен пространственный фильтр для лазерного излучения и устройство для формирования лазерного излучения дифракционного качества с его использованием [2]. Пространственный фильтр содержит коллиматор с диафрагмой пространственной фильтрации. Устройство для формирования лазерного излучения дифракционного качества содержит генератор, коллиматор с диафрагмой с профилированным отверстием, расположенной в области фокуса коллиматора, а также двухпроходовый усилитель мощности лазерного излучения, выходное излучение которого выделятся за счет поляризационной развязки. Аналог обеспечивает повышение качественных характеристик лазерного излучения за счет использования пространственной фильтрации, а также повышение мощности излучения за счет использования усилителя. Недостатком аналога является сложность изготовления диафрагмы с профилированным отверстием для получения лазерного излучения дифракракционного качества, сложность ее юстировки в области фокуса коллиматора, а также сложность оптической системы лазера, кроме того, при высокой мощности излучения диафрагма имеет ограниченный срок эксплуатации.
Известен способ возбуждения импульсных лазерных систем на самоограниченных переходах [3]. Лазерная система содержит генератор, формирующий лазерный пучок в режиме работы с неустойчивым резонатором, и усилитель. Генератор и усилитель выполнены на одинаковых активных элементах лазера на парах меди. Особенностью способа возбуждения генератора и усилителя является подача импульсов возбуждения на генератор и усилитель с временным сдвигом. При оптимальном подборе времени отставания импульса возбуждения усилителя от импульса возбуждения генератора можно добиться максимальной концентрации энергии лазерного пучка в центральном сечении. Недостатком способа является невозможность получения лазерного пучка с дифракционной расходимостью.
В качестве прототипа выбрана система генератор-усилитель на основе лазерных активных элементов на парах меди [4]. Система содержит лазерные активные элементы генератора и усилителя на парах меди. Генератор содержит неустойчивый телескопический резонатор. Разогрев и возбуждение лазерных активных элементов осуществляется от импульсного источника питания. Для подавления фоновой составляющей излучения генератора на входе усилителя установлен пространственный фильтр с фокусирующим зеркалом, зеркалом коллиматора и диафрагмой, расположенной по оси выходного луча генератора в точке фокусировки зеркал. В прототипе длина оптического пути от генератора до усилителя составляет 7 метров, диаметр диафрагмы 0.5 мм. Недостатком прототипа являются большие размеры пространственного фильтра, что приводит к нестабильности выходного излучения из-за воздействия возмущающих факторов - вибрации и воздушных тепловых потоков, что не позволяет уменьшить диаметр диафрагмы для снижения уровня фона на выходе системы и получение выходного лазерного излучения с дифракционной расходимостью. Кроме того, требуются трудоемкие операции изготовления диафрагмы требуемого диаметра и ее юстировки по оси выходного луча генератора в точке фокусировки пространственного фильтра.
Задачей технического решения является получение выходного лазерного излучения в системе генератор-усилитель на уровне дифракционной расходимости, уменьшение длины оптического пути от генератора до усилителя, а также снижение трудоемкости изготовления диафрагмы и ее юстировки в точке фокусировки пространственного фильтра.
Поставленная задача решается благодаря тому, что в способе формирования излучения в лазерной системе генератор-усилитель на парах металлов, заключающемся в том, что сформированное в генераторе, содержащем неустойчивый телескопический резонатор, излучение направляют на пространственный фильтр, выполненный в виде телескопической системы с диафрагмированием пучка в плоскости совмещенного фокуса, и пропускают через усилитель, предусмотрены следующие отличия, в плоскости совмещенного фокуса линз телескопической системы пространственного фильтра устанавливают пластину из материала, не прозрачного для излучения системы, и формируют в ней диафрагмирующее отверстие воздействием собственного излучения генератора.
Кроме того, предложенный способ формирования излучения в лазерной системе генератор-усилитель на парах металлов отличается тем, что пластину перемещают в плоскости установки и формируют в ней новое диафрагмирующее отверстие перед каждым включением системы.
Между совокупностью существенных признаков способа формирования излучения в лазерной системе генератор-усилитель на парах металлов и достигаемым техническим результатом существует причинно-следственная связь, а именно выполнение фокусирующей и коллимирующей оптических систем пространственного фильтра в виде линз позволяет существенно сократить длину оптического пути от генератора до усилителя, формирование отверстия диафрагмы в непрозрачной пластине, установленной в плоскости фокуса, посредством воздействия собственного излучения генератора его центральным пучком исключает необходимость изготовления диафрагмы пространственного фильтра, обеспечивающей выделение пучка с дифракционной расходимость из выходного излучения генератора, а также необходимость юстировки отверстия диафрагмы в фокусе пространственного фильтра.
Техническое решение обеспечивает получение лазерного излучения в системе генератор-усилитель на парах металлов на уровне дифракционной расходимости, уменьшение габаритов системы за счет сокращения длины оптического пути от генератора до усилителя, а также снижение трудоемкости изготовления диафрагмы и ее юстировки по оси выходного луча генератора в фокусе пространственного фильтра.
Техническая сущность предложенного технического решения поясняется чертежом, на котором фиг. 1 изображает схему системы генератор-усилитель, фиг. 2 содержит изображение пучков излучения генератора на диафрагмирующей пластине, фиг. З содержит график распределения мощности излучения генератора по сечению и фотографию этого излучения на экране, расположенном в плоскости измерения распределения.
На фиг. 1 изображена схема системы генератор-усилитель, которая содержит зеркала 1 и 3, образующие телескопический резонатор генератора 2, фокусирующую линзу 4, диафрагмирующую пластину 5, коллимирующую линзу 6 и усилитель 7, а также диафрагмирующие отверстия 8. В качестве генератора 2 и усилителя 7 использованы отпаянные лазерные активные элементы на парах меди. Пластина 5 выполнена из материала, непрозрачного для лазерного излучения генератора и усилителя, и установлена в плоскости совмещенного фокуса линз 4 и 6. При включении системы под действием излучения генератора 2, сфокусированного линзой 4 в пластине 5, формируется отверстие 8, которое становится диафрагмой для пространственного фильтра, образованного линзами 4 и 6. За счет того, что интенсивность центральной части пучка генератора существенно больше, чем интенсивность периферийной части, диафрагмирующее отверстие 8 формируется только центральной - наиболее энергетической частью лазерного пучка генератора 2, сфокусированного линзой 4. Отверстие 8 создается в пластине 5 на оптической оси пространственного фильтра диаметром, обеспечивающим выходной луч из пространственного фильтра, подаваемый на усилитель 7, с дифракционной расходимостью.
Если в процессе эксплуатации системы, диаметр диафрагмирующего отверстия 8 из-за вибраций и температурных воздействий изменится, пластину 5 перемещают в плоскости установки и формируют в ней новое дифрагмирующее отверстие 8 собственным излучением генератора. Эту операцию можно при необходимости производить перед каждым включением системы.
Выходное излучение генератора имеет многопучковую структуру: пучки сверхсветимости с расходимостью 50 и 18 мрад, промежуточный пучек с расходимостью, превышающей дифракционную в несколько раз, формируемый за первый проход излучения в резонаторе генератора, и пучок с дифракционной расходимостью 0.07 мрад, формируемый за второй и третий проход излучения в резонаторе генератора.
На фиг. 2 условно показано пятно излучения генератора, сфокусированное линзой 4 на пластине 5. Пучок с дифракционной расходимость 9 концентрируется в центре пятна, затем следует промежуточный пучок 10 и пучки сверхсветимости образуют фоновое излучение 11.
На фиг. 3 показано распределение энергии излучения генератора по сечению. Максимальная энергия лазерного пучка генератора концентрируется в его центре, который формируется пучком 9 с дифракционной расходимость. Энергии промежуточного пучка 10 и пучков сверхсветимости 11 распределяются на значительно больших расстояниях от центра излучения и имеют соответственно меньшую плотность мощности. Данное распределение наглядно демонстрирует фотографией излучения генератора, сделанное на расстоянии 1 м от генератора. На фотографии четко видно наиболее яркое пятно пучка 9 с дифракционной расходимость, значительно менее яркое пятно промежуточного пучка 10 и практически не видное пятно пучков сверхсветимости 11.
Энергии центрального пучка 9 с дифракционной расходимость, при соответствующем выборе материала и толщины пластины 5, достаточно, чтобы в непрозрачной пластине 5 за счет абляции материала сформировать диафрагмирующее отверстие в фокусе пространственного фильтра, которое не пропускает пучки сверхсветимости 11 и промежуточные пучки 10 и пропускает только пучек 9 с дифракционной расходимостью.
Предложенное техническое решение обеспечивает формирование лазерного излучения в системе генератор-усилитель на уровне дифракционной расходимости, уменьшение габаритов системы, а также снижение трудоемкости изготовления диафрагмы и ее юстировки.
Источники информации
1. Патент США 5670069.
2. Патент РФ 2392649.
3. Патент РФ 2264011.
4. В.В. Зубов, Н.А. Лябин, А.Д. Чуреин, Квантовая электроника, том 13, номер 12, 2431-2436, 1986, УДК 621.373.826.038.823 – прототип.

Claims (2)

1. Способ формирования излучения в лазерной системе генератор - усилитель на парах металлов, заключающийся в том, что сформированное в генераторе, содержащем неустойчивый телескопический резонатор, излучение направляют на пространственный фильтр, выполненный в виде телескопической системы с диафрагмированием пучка в плоскости совмещенного фокуса, и пропускают через усилитель, отличающийся тем, что в плоскости совмещенного фокуса телескопической системы пространственного фильтра устанавливают пластину из материала, не прозрачного для излучения системы, и формируют в ней диафрагмирующее отверстие воздействием собственного излучения генератора.
2. Способ по п. 1, отличающийся тем, что пластину перемещают в плоскости установки и формируют в ней новое диафрагмирующее отверстие перед каждым включением системы.
RU2016135336A 2016-08-31 2016-08-31 Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов RU2634371C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016135336A RU2634371C1 (ru) 2016-08-31 2016-08-31 Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016135336A RU2634371C1 (ru) 2016-08-31 2016-08-31 Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов

Publications (1)

Publication Number Publication Date
RU2634371C1 true RU2634371C1 (ru) 2017-10-26

Family

ID=60154031

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016135336A RU2634371C1 (ru) 2016-08-31 2016-08-31 Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов

Country Status (1)

Country Link
RU (1) RU2634371C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327449A (en) * 1988-04-22 1994-07-05 Fraunhoefer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Laser resonator
US5406578A (en) * 1992-08-06 1995-04-11 Carl-Zeiss-Stiftung Unstable laser resonator for generating a stable fundamental mode beam profile
RU2177196C1 (ru) * 2000-07-25 2001-12-20 Центр физического приборостроения ИОФ РАН Неустойчивый резонатор

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327449A (en) * 1988-04-22 1994-07-05 Fraunhoefer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Laser resonator
US5406578A (en) * 1992-08-06 1995-04-11 Carl-Zeiss-Stiftung Unstable laser resonator for generating a stable fundamental mode beam profile
RU2177196C1 (ru) * 2000-07-25 2001-12-20 Центр физического приборостроения ИОФ РАН Неустойчивый резонатор

Similar Documents

Publication Publication Date Title
JP3698677B2 (ja) レーザパルス制御方法と装置およびx線発生方法と装置
Kando et al. Enhancement of photon number reflected by the relativistic flying mirror
JP2006032322A (ja) レーザにより誘発されるプラズマを用いたeuv放射線の時間的に安定な生成のための装置
Hernández-García et al. Signature of the transversal coherence length in high-order harmonic generation
CN109041393B (zh) 一种超快硬x射线源的产生装置及方法
JP2009164331A (ja) 原子発振器および発振デバイス
CN102185250A (zh) 一种产生飞秒级时间分辨的x射线源的装置及方法
RU2001121681A (ru) Устройство для элементного анализа путем спектрометрии оптической эмиссии на плазме, полученной с помощью лазера
JP2000299197A (ja) X線発生装置
US20200039005A1 (en) Device and method for laser-based separation of a transparent, brittle workpiece
JP2022518161A (ja) 2色共焦点共局在化顕微鏡法
CN108054623B (zh) 一种使用“飞行聚焦”产生太赫兹波的系统和方法
KR100371125B1 (ko) 저가의 평균 전력과 휘도가 높은 고상 펄스 레이저 시스템
RU2634371C1 (ru) Способ формирования лазерного излучения в системе генератор-усилитель на парах металлов
Feurer Feedback-controlled optimization of soft-X-ray radiation from femtosecond laser-produced plasmas.
TW201924491A (zh) 緊聚焦架構下高次諧波光源產生之最佳化系統及方法
US5832007A (en) Apparatus for and method of generating X-ray laser
JPH08213192A (ja) X線発生装置およびその発生方法
CN114374135A (zh) 一种基于激光相干合成的太赫兹波产生系统
Rublack et al. First results attained with the quasi 3-D ellipsoidal photo cathode laser pulse system at the high brightness photo injector PITZ
CN208045929U (zh) 一种使用“飞行聚焦”产生太赫兹波的系统
JPH0722685A (ja) 光線の焦点合成方法及びその焦点合成装置
JP2022518162A (ja) 誘導放出抑制顕微鏡法用パルス整形
RU2671150C1 (ru) Способ формирования дефектов в объеме образца диэлектрика лазерным излучением
Renard et al. Detailed characterization of electron plasma waves produced by stimulated raman scattering

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190901