RU2633438C1 - Способ напыления титанового покрытия на частицы гидрида титана - Google Patents

Способ напыления титанового покрытия на частицы гидрида титана Download PDF

Info

Publication number
RU2633438C1
RU2633438C1 RU2016125735A RU2016125735A RU2633438C1 RU 2633438 C1 RU2633438 C1 RU 2633438C1 RU 2016125735 A RU2016125735 A RU 2016125735A RU 2016125735 A RU2016125735 A RU 2016125735A RU 2633438 C1 RU2633438 C1 RU 2633438C1
Authority
RU
Russia
Prior art keywords
titanium
titanium hydride
fraction
hydride
coating
Prior art date
Application number
RU2016125735A
Other languages
English (en)
Inventor
Вячеслав Иванович Павленко
Наталья Игоревна Черкашина
Роман Николаевич Ястребинский
Олег Вячеславович Демченко
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова"
Priority to RU2016125735A priority Critical patent/RU2633438C1/ru
Application granted granted Critical
Publication of RU2633438C1 publication Critical patent/RU2633438C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к области модифицирования металлогидридных материалов, в частности к способу напыления титанового покрытия на частицы из гидрида титана , и может быть использовано для изготовления радиационно-защитных материалов биологической защиты в ядерной индустрии. Частицы из гидрида титана изготавливают в виде дроби, которую предварительно очищают с минимальной выдержкой в ультразвуковой ванне с ацетоном в течение 10 мин. Далее дробь гидрида титана обрабатывают ионизированной водой и сушат сухим азотом. В камере в течение не менее 7 мин при ускоряющем напряжении 2200 В и токе 110 мА выполняют ионную очистку поверхности дроби гидрида титана, которую размещают на предметном столе на расстоянии до магнетрона не более 110 мм. Напыление титанового покрытия проводят методом ионно-плазменного вакуумного магнетронного напыления в течение 24-37 мин с частотой вращения предметного стола до 25 об/мин и одновременным вращением самой дроби гидрида титана. Технический результат заключается в повышении термической стойкости гидрида титана за счет улучшения качества покрытия. 5 ил.

Description

Изобретение относится к области модифицирования металлогидридных материалов и может быть использовано для увеличения термической стойкости гидрида титана, используемого в качестве радиационно-защитных материалов биологической защиты в ядерной индустрии.
Известен способ получения гидрида титана [Маккей. К. Водородные соединения металлов. - М: Мир, 1968, С. 99-127], имеющий высокую термическую стойкость, согласно которому титан прогревают (активируют) при температуре выше 1000°С, затем его температуру снижают до 400°С, при этой температуре осуществляют подачу водорода к титану и последующую его выдержку в водороде в течение нескольких часов. Затем производят медленное охлаждение титана в среде водорода.
Недостатком данного способа является низкая термическая стойкость гидрида титана (до 450°С) и повышенная скорость выделения водорода при температуре свыше 500°С.
Наиболее близким, принятым за прототип, к предлагаемому решению является способ нанесения медного покрытия на частицы порошка гидрида титана [Патент RU №2459685, 14.02.2011], который заключается в напылении медного покрытия и создании на поверхности порошкообразных частиц гидрида титана диффузионного барьера в виде покрытия, которое наносят из раствора, содержащего, г/л: сульфат меди 15-35, сигнетова соль 60-170, гидроксид натрия 15-50, карбонат натрия 3-35, формалин 6-16, тиосульфат натрия 0,003-0,01, хлорид никеля 2-3. Порошок гидрида титана заливается свежеприготовленным раствором, перемешивается магнитной мешалкой, фильтруется, промывается (очищается) и сушится. Заявляемый способ увеличивает температуру термического разложения гидрида титана приблизительно на 60°С (без нанесения медного покрытия максимальной скорости разложения отвечает температура, равная 460,5°, а с нанесением температура 526,9°С) при сохранении удельного содержания водорода, при этом снижается скорость выделения водорода.
Недостатком данного способа является низкая температура начала выделения водорода из гидрида титана с медным покрытием (соответствует температуре 503,3°С), что незначительно увеличивает температуру термического разложения гидрида титана приблизительно на 60°С. Использование порошка гидрида титана в нейтронно-защитных изделиях атомной энергетики нежелательно, так как в его составе присутствует до 5% мелкой пылевидной фракции (менее 0,2 мм), которая является пожаро- и взрывоопасной. Кроме того, при транспортировке, затаривании и изготовлении смеси количество мелкой фракции может увеличиваться.
Задачей предлагаемого изобретения является повышение термической стойкости гидрида титана за счет улучшения качества покрытия.
Это достигается тем, что способ напыления титанового покрытия на частицы гидрида титана включает очистку, сушку, напыление покрытия и создание на поверхности частиц гидрида титана диффузионного барьера для выхода водорода. В предложенном решении гидрид титана используется в виде дроби, которая предварительно очищается с минимальной выдержкой в ультразвуковой ванне с ацетоном в течение 10 мин. Далее дробь гидрида титана обрабатывается ионизированной водой и сушится сухим азотом. В камере в течение не менее 7 мин при ускоряющем напряжении 2200 В и токе 110 мА происходит ионная очистка поверхности дроби гидрида титана, которая устанавливается на расстоянии до магнетрона не более 110 мм. Напыление титанового покрытия проводят методом ионно-плазменного вакуумного магнетронного напыления в течение 24-37 мин с частотой вращения предметного стола до 25 об/мин и одновременным вращением самой дроби гидрида титана.
Изобретение поясняется чертежами, где на фиг. 1 изображен скол дроби гидрида титана с напыленным титановым покрытием, на фиг. 2 - кривая дифференциально-термического анализа (ДТА) термодесорбции водорода для исходной дроби гидрида титана, на фиг. 3 - кривая дифференциально-термического анализа (ДТА) десорбции водорода для дроби гидрида титана с напыленным титановым покрытием, на фиг. 4 - микрофотография поверхности исходной дроби гидрида титана после термической обработки до 1000°С, на фиг. 5 - микрофотография поверхности дроби гидрида титана с напыленным титановым покрытием после термической обработки до 1000°С.
Разработанная ОАО «ВНИИНМ» по техническому задания ОАО «НИКИЭТ» опытно-промышленная технология позволяет получать гидрид титана в виде дроби диаметром ~0,2-2,5 мм, ее использование исключает пожаро- и взрывоопасность, упрощает процесс монтажа биологической защиты ядерного реактора. Частицы дроби гидрида титана могут использоваться как заполнитель для безусадочной смеси, как компонент заливочного материала для заполнения конструкций защиты сложной конфигурации и для изготовления блоков. Проведенные исследования показали, что гидрид титана в виде дроби более прочен, не имеет микротрещин, не растрескивается в процессе работы, не образует мелкой взрывоопасной фракции.
Способ напыления титанового покрытия осуществляется, например, в вакуумной установке QUADRA 500 ТМ, оснащенной несбалансированной магнетронной распылительной системой. В качестве рабочего газа подается аргон.
Предварительно перед напылением титанового покрытия дробь гидрида титана тщательно очищается от загрязнения путем помещения в ультразвуковую ванну с ацетоном с минимальной выдержкой в течение 10 мин. Благодаря тщательному очищению от загрязнения полученное титановое покрытие будет иметь однородную структуру по всей поверхности дроби. После дробь гидрида титана обрабатывается ионизированной водой и сушится сухим азотом. Благодаря этому напыленное титановое покрытие будет плотно прилегать к дроби гидрида титана.
Затем осуществляется ионная очистка дроби гидрида титана. В вакуумную камеру на предметный стол помещают дробь гидрида титана, остаточное давления газов в камере составляет 9⋅10-3 Па. С помощью устройств автоматического газонапуска, имеющего обратную связь с прибором контроля вакуума, в камеру подается рабочий газ, например аргон до давления 6⋅10-2 Па. Включается вращение предметного стола, ионный источник выводится в режим травления: ускоряющее напряжение 2200 В, ток 110 мА, и проводится ионная очистка поверхности частиц дроби гидрида титана в течение не менее 7 мин. Ионная очистка поверхности частиц дроби гидрида титана позволяет удалить микрозагрязнения, препятствующие образованию прочных связей поверхностных атомов подложки с осаждаемыми атомами покрытия. Причем предварительная обработка поверхности дроби гидрида титана в вакуумной камере значительно улучшает адгезию защитной пленки.
После предварительного очищения с помощью устройств дозирующего газонапуска устанавливается постоянное натекание аргона (особой чистоты 99,999%) с относительным парциальным давлением 0,22 Па. Включается магнетрон с параметрами работы - 500 В и 5 А. Расстояние от дроби гидрида титана до магнетрона не более 110 мм, время напыления титанового покрытия - 24-37 мин, частота вращения предметного стола до 25 об/мин. При большем 110 мм расстоянии от дроби гидрида титана до магнетрона толщина титанового покрытия будет недостаточно плотной, что не позволит увеличить термостабильность дроби. Оптимальное время напыления титанового покрытия - 24-37 мин выбрано таким образом, что при меньшем времени толщины титанового покрытия будет недостаточно для увеличения термостабильности, а при большем времени толщина титанового покрытия будет слишком большой, что негативно скажется на сцеплении с дробью, а также может привести к полному отколу от дроби гидрида титана. При большей 25 об/мин частоте вращения предметного стола титановое покрытие будет нанесено неравномерно по поверхности дроби гидрида титана, что заметно снизит заявленную термостабильность дроби.
Одновременно с вращением предметного стола производилось вращение самой дроби гидрида титана, что позволяло равномерно наносить покрытие на частицы дроби гидрида титана.
Таким образом, плотное прилегание титанового покрытия к дроби гидрида титана, улучшение адгезии защитной пленки, равномерное нанесение покрытия на дробь гидрида титана улучшает качество покрытия.
Толщина полученного напыленного титанового покрытия при заявленных параметрах практически одинакова по всей поверхности дроби гидрида титана и составляет ~0,275 мкм. Граница раздела напыленного титанового покрытия и дроби гидрида титана прослеживается на всем участке скола (фиг. 1). Напыленное титановое покрытие имеет однородную структуру, плотно прилегает к поверхности дроби гидрида титана. В химический состав дроби гидрида титана и напыленного титанового покрытия входит титан, который обеспечивает хорошее сцепление полученного напыленного титанового покрытия с поверхностью дроби гидрида титана, благодаря возможности встраивания титана в кристаллическую решетку дроби гидрида титана.
Спектры термодесорбции водорода из образцов исходной дроби гидрида титана и дроби гидрида титана с напыленным титановым покрытием свидетельствуют о различной термической устойчивости сравниваемых материалов в интервале температур от 550 до 860°С (фиг. 2, фиг. 3). Анализ полученных спектров свидетельствует об эндотермическом эффекте разложения, наблюдаемом на спектрах термодесорбции обоих исследуемых материалов.
Начало процесса разложения исходной дроби гидрида титана соответствует температуре в 552°С, а окончание в 875,3°С. Максимальная скорость разложения исходной дроби гидрида титана достигается при температуре 681,4°С. Эндотермический эффект для исходной дроби гидрида титана наблюдается при температуре выше 550°С, что связано с его разложением.
Качественное напыление на частицы дроби гидрида титана титанового покрытия значительно повышает его температуру начала разложения. Так, начало разложения приходится на температуру в 695°С, а температура окончания разложения более 1000°С. Пик термодесорбции водорода в дроби гидрида титана с напыленным титановым покрытием соответствует 799,3°С.
Анализ кривых дифференциального термического анализа показал, что начало термодесорбции водорода дроби гидрида титана с напыленным титановым покрытием, соответствующее началу выделения водорода, по сравнению с началом термодесорбции водорода из исходной дроби гидрида титана без напыления смещено на 143°С в сторону более высоких температур.
Также можно сделать вывод, что пик термодесорбции водорода из дроби гидрида титана с напыленным титановым покрытием, соответствующий максимальной скорости выделения водорода, по сравнению с пиком термодесорбции водорода из исходной дроби гидрида титана без напыления титанового покрытия смещен на 117,9°С в сторону более высоких температур.
По сравнению с прототипом использование данного способа позволяет увеличить начало термодесорбции водорода, соответствующее началу выделения водорода на 192°С (начало термодесорбции водорода для прототипа - 503,3°С, для данного способа - 695°С); а пик термодесорбции водорода, соответствующий максимальной скорости выделения водорода на 272°С (пик термодесорбции водорода для прототипа 526,9°С, для данного способа 799,3°С).
На микрофотографии поверхности исходной дроби гидрида титана после термической обработки до 1000°С заметны образовавшиеся микротрещины, через которые и происходит выделение водорода, а на микрофотографии поверхности дроби гидрида титана с напыленным титановым покрытием после термической обработки до 1000°С микротрещины отсутствуют, а структура поверхности дроби гидрида титана достаточно ровная, без повреждений, что также показывает значительное увеличение термической стойкости дроби гидрида титана с применением заявленного способа (фиг. 4, фиг. 5).
Таким образом, заявляемый способ напыления титанового покрытия на частицы гидрида титана придает ему новые, более высокие показатели термической стойкости за счет улучшения качества покрытия.

Claims (1)

  1. Способ напыления титанового покрытия на частицы из гидрида титана, включающий очистку и сушку частиц, напыление покрытия на частицы из гидрида титана и создание на поверхности частиц гидрида титана диффузионного барьера для выхода водорода, отличающийся тем, что частицы гидрида титана изготавливают в виде дроби, которую предварительно очищают с минимальной выдержкой в ультразвуковой ванне с ацетоном в течение 10 мин, обрабатывают ионизированной водой и сушат сухим азотом, затем в течение не менее 7 мин при ускоряющем напряжении 2200 В и токе 110 мА осуществляют ионную очистку поверхности дроби гидрида титана, которую размещают на предметном столике на расстоянии до магнетрона не более 110 мм и проводят напыление титанового покрытия методом ионно-плазменного вакуумного магнетронного напыления в течение 24-37 мин с частотой вращения предметного стола до 25 об/мин с одновременным вращением дроби гидрида титана.
RU2016125735A 2016-06-27 2016-06-27 Способ напыления титанового покрытия на частицы гидрида титана RU2633438C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016125735A RU2633438C1 (ru) 2016-06-27 2016-06-27 Способ напыления титанового покрытия на частицы гидрида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016125735A RU2633438C1 (ru) 2016-06-27 2016-06-27 Способ напыления титанового покрытия на частицы гидрида титана

Publications (1)

Publication Number Publication Date
RU2633438C1 true RU2633438C1 (ru) 2017-10-12

Family

ID=60129329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125735A RU2633438C1 (ru) 2016-06-27 2016-06-27 Способ напыления титанового покрытия на частицы гидрида титана

Country Status (1)

Country Link
RU (1) RU2633438C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761099C1 (ru) * 2021-04-19 2021-12-03 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Способ нанесения титаново-медного покрытия на частицы порошкообразного гидрида титана
RU2786559C1 (ru) * 2022-02-11 2022-12-22 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ напыления металлического покрытия на частицы из органических материалов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316429C2 (ru) * 2002-03-28 2008-02-10 Гизеке Унд Девриент Гмбх Защитный элемент и способ его изготовления
RU2459685C1 (ru) * 2011-02-14 2012-08-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Способ нанесения медного покрытия на частицы порошка гидрида титана
US20130175159A1 (en) * 2010-09-15 2013-07-11 Hon Hai Precision Industry Co., Ltd. Method of making coated articles
RU2549813C1 (ru) * 2013-10-15 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ" Московский энергетический институт, МЭИ) Способ формирования жаростойкого нанокомпозитного покрытия на поверхности изделий из жаропрочных никелевых сплавов.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316429C2 (ru) * 2002-03-28 2008-02-10 Гизеке Унд Девриент Гмбх Защитный элемент и способ его изготовления
US20130175159A1 (en) * 2010-09-15 2013-07-11 Hon Hai Precision Industry Co., Ltd. Method of making coated articles
US8980065B2 (en) * 2010-09-15 2015-03-17 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Method of making coated articles
RU2459685C1 (ru) * 2011-02-14 2012-08-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Способ нанесения медного покрытия на частицы порошка гидрида титана
RU2549813C1 (ru) * 2013-10-15 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ" Московский энергетический институт, МЭИ) Способ формирования жаростойкого нанокомпозитного покрытия на поверхности изделий из жаропрочных никелевых сплавов.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761099C1 (ru) * 2021-04-19 2021-12-03 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Способ нанесения титаново-медного покрытия на частицы порошкообразного гидрида титана
RU2786559C1 (ru) * 2022-02-11 2022-12-22 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ напыления металлического покрытия на частицы из органических материалов

Similar Documents

Publication Publication Date Title
CN103952664B (zh) 一种类金刚石镀膜工件表面预处理工艺
CN106811724A (zh) 一种镁合金表面耐腐蚀高熵合金涂层及其制备方法
RU2633438C1 (ru) Способ напыления титанового покрытия на частицы гидрида титана
CN108411242A (zh) 一种具有抗粒子冲刷表面层的热障涂层及其制备方法
CN102094173B (zh) 原位等离子体涂镀Ti/Cu复合涂层工艺
KR20130074647A (ko) 도금강판 및 이의 제조방법
CN108085651A (zh) 一种耐电子束轰击的二次电子发射复合薄膜及其制备方法
FR2665185A1 (fr) Revetement anti-usure sur un substrat a base titane.
RU2566232C1 (ru) Способ комбинированной ионно-плазменной обработки изделий из алюминиевых сплавов
US9580830B2 (en) Method of preparing a magnesium alloy substrate for a surface treatment
RU2705834C1 (ru) Способ нанесения покрытий на изделия из материалов, интенсивно окисляющихся в атмосфере воздуха, и установка для его реализации
CN107974663A (zh) 新能源汽车逆变器散热片pvd镀膜工艺
JPH07113182A (ja) 金属基板を金属又は金属合金の被覆層で被覆する方法及び 装置
RU2386723C2 (ru) Способ диффузионного цинкования металлических деталей
RU2781873C1 (ru) Способ формирования металлооксидных пористых покрытий на титановых изделиях
CN103596380A (zh) 一种在绝缘导热板上镀铜的方法
JP2506162B2 (ja) 耐食性溶射材料およびその製造方法と、耐食性皮膜の形成方法
Akiyama et al. Atmospheric pressure plasma liquid deposition of copper nanoparticles onto poly (4-vinylpyrdine)-grafted-poly (tetrafluoroethylene) surface
TW201229270A (en) Electromagnetic shielding treatment for magnesium alloy articles and magnesium alloy articles
WO2010109685A1 (ja) 成膜装置用部品および該成膜装置用部品に付着した付着膜の除去方法
Zibrov et al. Development of protective metal coatings on aluminum by magnetron sputtering
TW201326441A (zh) 殼體及其製作方法
JP2012026013A (ja) 成膜装置用部品および該成膜装置用部品に付着した付着膜の除去方法
RU2506344C1 (ru) Способ получения покрытия нитрида титана
JPH0723531B2 (ja) アルミニウム材の表面処理方法