RU2629014C2 - Способ получения радионуклида никель-63 - Google Patents

Способ получения радионуклида никель-63 Download PDF

Info

Publication number
RU2629014C2
RU2629014C2 RU2015157389A RU2015157389A RU2629014C2 RU 2629014 C2 RU2629014 C2 RU 2629014C2 RU 2015157389 A RU2015157389 A RU 2015157389A RU 2015157389 A RU2015157389 A RU 2015157389A RU 2629014 C2 RU2629014 C2 RU 2629014C2
Authority
RU
Russia
Prior art keywords
nickel
target
copper
reactor
isotope
Prior art date
Application number
RU2015157389A
Other languages
English (en)
Other versions
RU2015157389A (ru
Inventor
Юрий Геннадиевич Мокров
Михаил Васильевич Логунов
Original Assignee
Федеральное государственное унитарное предприятие "Производственное объединение "Маяк"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" filed Critical Федеральное государственное унитарное предприятие "Производственное объединение "Маяк"
Priority to RU2015157389A priority Critical patent/RU2629014C2/ru
Publication of RU2015157389A publication Critical patent/RU2015157389A/ru
Application granted granted Critical
Publication of RU2629014C2 publication Critical patent/RU2629014C2/ru

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к способу производства радиоактивных изотопов технического назначения. В заявленном способе изготовление стартовой мишени осуществляют из меди естественного изотопного состава или обогащенной по изотопу медь-63, облучение мишени проводят в потоке быстрых нейтронов (в ядерном реакторе на быстрых нейтронах), а переработку облученной медной мишени проводят радиохимическим методом с извлечением и очисткой соединений никеля (смесь изотопов никеля с преобладающим содержанием никеля-63). Техническим результатом является обеспечение возможности крупномасштабного производства изотопа никель-63 с высокой удельной активностью, упрощение аппаратурного оформления технологического процесса за счет организации радиохимической переработки облученной мишени. 2 з.п. ф-лы, 3 табл.

Description

Изобретение относится к реакторной и радиохимической технологии получения радионуклидов, конкретно - к технологии получения радиоактивного изотопа никель-63 (63Ni). Этот изотоп считается наиболее перспективным для использования в качестве источника бета-излучения при создании миниатюрных автономных источников электрической энергии («атомных» батареек) с длительным сроком службы (около 50 лет) на основе бета-вольтаического эффекта. (Ю.Д. Акульшин, М.С. Лурье, Е.Н. Пятышев, А.В. Глуховской, А.Н. Казакин. БЕТА-ВОЛЬТАИЧЕСКИЙ МЭМС-ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ. St. Petersburg State Polytechnical University Journal 5' (205) 2014. Computer Science. Telecommunications and Control Systems).
Максимальное теоретически возможное значение удельной активности чистого никеля-63 составляет 2,1⋅1012 Бк/г. Теоретические расчеты и экспериментальные исследования показывают, что для производства миниатюрных энергоисточников необходимо использовать никель-63 с обогащением по массе не менее 80%, то есть с удельной активностью более 1,7⋅1012 Бк/г, что позволяет достичь эффективности использования энергии радиоактивного распада до 20-25%. (A. Kostylev, I. Ryzhov, S. Filimonov et al. «Preparation of enriched nickel-63 for nuclear β-voltaic batteries» - Booklet of Abstracts. 17th Radiochemical Conference "RadChem2014", 11-16 May 2014, Marianske Lazne, Czech Republik).
Известен способ получения изотопа никель-63, включающий изготовление мишени и облучение мишени в реакторе, в котором в качестве стартовой мишени используют никель, обогащенный по никелю-62 (А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик. Справочник по образованию нуклидов в ядерных реакторах. М.: Энергоатомиздат, 1989 г.). Изготовление мишени проводят путем изотопного обогащения природного никеля по никелю-62, содержание которого в естественной смеси составляет всего 3,59%. Для этого металлический никель природного изотопного состава сначала переводят в тетрафторфосфин никеля - Ni(PF3)4 и направляют его на каскад центрифуг. Содержание никеля-62 в смеси естественных изотопов никеля увеличивают до 98%, а затем соединение никеля (металл, соль, газ) направляют на облучение в ядерный реактор. Облучение проводят в реакторе с использованием реакции радиационного захвата на стабильном никеле-62, когда при поглощении нейтрона ядром-мишенью масса ядра мишени увеличивается на единицу (массу нейтрона), заряд ядра не изменяется, а избыточная энергия ядра снимается путем испускания гамма-кванта. Этот тип реакций наиболее эффективно (с большой вероятностью) протекает на нейтронах тепловых энергий (с энергией нейтронов около 0,025 эВ), поэтому для наработки полезных радионуклидов используют ядерные реакторы на тепловых нейтронах. Для получения значимых количеств (массы) целевого изотопа можно использовать или высокопоточные исследовательские реакторы с плотностью потока тепловых нейтронов до 1015 нейтр./(см2⋅с), или серийные энергетические реакторы АЭС (типа ВВЭР, РБМК и др.) с плотностью потока тепловых нейтронов около (1-5)⋅1013 нейтр./(см2⋅с). В первом случае удается получить максимальную удельную активность целевого изотопа, но при этом масса (объем) стартовой мишени размещаемой в реакторе, а значит, и масса получаемого целевого изотопа, будет существенно ограничена техническими (конструкционными) и физическими особенностями исследовательских реакторов (обычно до 1 кг). Для того чтобы получить никель-63 с высокой удельной активностью, необходимо облучить обогащенную по никелю-62 мишень в ядерном реакторе на тепловых нейтронах в течение не менее одного года. Однако даже при оптимальных условиях облучения, например при использовании обогащенной до 99% по никелю-62 мишени в высокопоточном реакторе СМ-3 при плотности потока нейтронов более 1015 нейтр./(см2⋅с), достичь требуемого обогащения мишени по радионуклиду никель-63, необходимого для производства миниатюрных энергоисточников (с удельной активностью более 1,7⋅1012 Бк/г), невозможно, поскольку при длительном облучении начинает сказываться эффект «выгорания» накопленного никеля-63 и превращение его в никель-64 по реакции радиационного захвата.
Таким образом, недостатком данного способа является невозможность организации промышленного (масштабного) производства никеля-63 с высокой удельной активностью.
Наиболее близким по технической сущности к заявляемому решению является способ получения изотопов никеля-63, включающий изготовление мишени, облучение мишени в реакторе и переработку мишени (Пустовалов А.А., Тихомиров А.В., Цветков Л.А. Способ получения радионуклида никель-63. - Патент РФ №2313149), который выбран в качестве прототипа. Переработка мишени в указанном способе предполагает дополнительное обогащение уже извлеченного из реактора мишенного материала по никелю-63 (отделение от никеля-64). Для этого облученный металлический никель переводят в тетрафторфосфин никеля и направляют на обогащение. Недостатком этого способа является невозможность разделения изотопа-мишени и образующегося изотопа-продукта ядерной реакции радиохимическим способом, поскольку при протекании реакций радиационного захвата образующийся продукт ядерной реакции и ядро-мишень являются изотопами одного и того же исходного элемента. Для повышения удельной активности целевого продукта необходимо использовать сложные по аппаратурному оформлению физические методы разделения (например, диффузионный или центрифужный). Следствием такой организации процесса является радиационная опасность эксплуатации центробежных каскадов с газообразным радиоактивным соединением никеля, образование больших количеств радиоактивных отходов (категории ВАО), в том числе газообразных.
Задачей настоящего технического решения является обеспечение возможности крупномасштабного производства изотопа никель-63 с высокой удельной активностью, упрощение аппаратурного оформления технологического процесса за счет организации радиохимической переработки облученной мишени.
Указанная задача достигается тем, что изготовление стартовой мишени осуществляют из меди естественного изотопного состава или обогащенной по изотопу медь-63, облучение мишени проводят в потоке быстрых нейтронов (в ядерном реакторе на быстрых нейтронах), а переработку облученной медной мишени проводят радиохимическим методом с извлечением и очисткой соединений никеля (смесь изотопов никеля с преобладающим содержанием никеля-63), при этом продолжительность облучения мишени в реакторе составляет не более 3 лет, а время выдержки не превышает 2-3 месяцев.
Технология осуществления способа заключается в следующем. В реакторной части предлагаемого технического решения используется другой по сравнению с аналогом и прототипом тип ядерных реакций. Эти реакции, когда избыточная энергия составного ядра снимается не путем испускания гамма-квантов, а путем испускания заряженных частиц (протоны, альфа-частицы и др.), как правило, имеют пороговый характер и протекают только на быстрых нейтронах (с энергией нейтрона выше пороговой, характерной для данной реакции, обычно несколько МэВ). Существенная особенность пороговых ядерных реакций с испусканием заряженных частиц заключается в том, что в результате реакции образуется новый (другой) элемент Периодической системы, который может быть выделен из вещества мишени и очищен от паразитных нуклидов радиохимическим методом.
Накопление никеля-63 в веществе мишени происходит из стабильного изотопа медь-63 (69,2% в естественной смеси) по пороговой реакции на быстрых нейтронах 63Cu (n,p) 63Ni. Для ядерных реакторов на быстрых нейтронах (БН) характерен высокий поток быстрых нейтронов (более 1015 нейтр./(см2⋅с)), незначительная доля промежуточных и практически полное отсутствие тепловых нейтронов в спектре. Для организации производства никеля-63 с высокой удельной активностью облучение целесообразно проводить на быстром энергетическом реакторе, например на реакторах Белоярской АЭС (БН-600 или БН-800). При этом для получения максимальной удельной активности никеля-63 (наилучшего качества), продолжительность облучения мишени в реакторе должна составлять не более 3 лет, а время выдержки не превышать 2-3 месяцев. Облучение можно проводить в любом месте активной зоны (или за ее пределами) ядерного реактора. Выполненные расчеты показывают, что при облучении 100 кг меди в течение 1 года в реакторе БН-600 можно получить 150 грамм чистого никеля-63 с удельной активностью, близкой к теоретически возможной (см. пример).
Масштабное производство никеля-62 на реакторах БН можно организовать при использовании в БН смешанного уран-плутониевого топлива. Как известно, БН-800 при пуске будет иметь гибридную зону с последующим замещением уранового топлива и переходом на зону, полностью сформированную из смешанного топлива. Реактор БН-600 сейчас планируется перевести на гибридную зону. Особенность использования смешанного топлива в реакторах БН состоит в том, что в активной зоне наблюдается значительно больший выход (на 20-27%) вторичных нейтронов. Для поглощения вторичных быстрых нейтронов на реакторе БН-600 после его перевода на гибридную зону предполагается создать стальной экран.
В рамках предлагаемого технического решения предлагается использовать «лишние» нейтроны (то есть нейтроны, не участвующие в цепной реакции) для производства никеля-63, заменив стальной экран на экран из меди природного изотопного состава. При реализации такого режима эксплуатации в реакторе БН-600 будет возможно облучать несколько тонн меди, что позволит дополнительно существенно снизить стоимость облучения и не нарушить режим эксплуатации атомной станции.
Переработка облученного материала, заключающаяся в растворении мишени и селективном выделении никеля из раствора, будет проводиться на радиохимическом производстве. В данном варианте годовое производство никеля-63 с высокой удельной активностью может составить десятки килограмм.
Сравнительный анализ с прототипом позволяет сделать вывод, что в заявляемом техническом решении наработка целевого компонента происходит на пороговых реакциях, а не на реакциях радиационного захвата. Кроме того, переработка облученной мишени проводится не физическим, а радиохимическим методом. Таким образом, заявляемое решение соответствует критерию «новизна».
Из литературных источников известна принципиальная возможность использования пороговых реакций (на быстрых нейтронах) для получения никеля-63 (Сечения пороговых реакций, вызываемых нейтронами: Справочник / В.М. Бычков, В.Н. Манохин, А.Б. Пащенко, В.И. Пляскин - М.: Энергоиздат, 1982. - 216 с.). В то же время вероятность таких реакций (ядерное сечение), как правило, значительно ниже, чем вероятность реакции радиационного захвата. Поэтому этот тип ядерных реакций практически не находит применения для промышленного производства радиоактивных изотопов. Тем не менее, авторам заявляемого технического решения удалось найти такое сочетание задействованных стадий процесса и их технологического оформления - облучение медной мишени быстрыми нейтронами в реакторах типа БН, использование медного экрана для поглощения вторичных нейтронов, радиохимическая переработка медной мишени для селективного выделения никеля, - которое никогда ранее не использовалось и в комплексе дает неожиданный положительный эффект: возможность масштабной наработки никеля-63 с удельной активностью, близкой к теоретически возможной. Это позволяет признать заявляемое техническое решение соответствующим критерию «изобретательский уровень».
Возможность осуществления заявляемого технического решения подтверждается следующим примером.
Пример реализации способа
В таблице 1 приведено сравнение эффективности получения никеля-63 по предлагаемому способу и по прототипу. В качестве параметров сравнения использованы расчетная скорость применяемых ядерных реакций и относительная удельная активность получаемого никеля-63.
Figure 00000001
Figure 00000002
В предлагаемом способе масса (активность) получаемого никеля-63 определяется только флюенсом быстрых нейтронов, а качество получаемого продукта (удельная активность) слабо зависит от продолжительности облучения в реакторе (Т0) и времени выдержки облученной мишени от момента окончания облучения до радиохимического выделения изотопов никеля (Тв). В таблице 2 приведены данные, определяющие качество целевого продукта (скорость накопления стабильных изотопов никеля) в облучаемой мишени под действием быстрых нейтронов.
Figure 00000003
В таблице 3 приведены расчетные данные по относительному содержанию (%) массы никеля-60 по отношению к массе накопленного никеля-63 в облученной мишени в зависимости от продолжительности облучения в реакторе (Т0) и времени выдержки облученной мишени от момента окончания облучения до радиохимического выделения изотопов никеля (Тв).
Figure 00000004
Таким образом, если продолжительность облучения в реакторе Т0 не будет превышать 3 лет, а время выдержки облученной мишени от момента окончания облучения до радиохимического выделения изотопов никеля Тв не будет превышать 3-5 месяцев, то относительное содержание никеля-60 в смеси (после химического выделения) будет менее 1%, а общее содержание суммы всех стабильных изотопов никеля по отношению к никелю-63 не превысит 5%. Это значение (5%) следует считать нижним теоретическим пределом предлагаемого способа при облучении медной мишени естественного изотопного состава. При облучении мишени, обогащенной по содержанию изотопа медь-63, значение нижнего теоретического предела снижается до (1,5-2,0) %, что соответствует удельной активности никеля-63, равной 2,0⋅1012 Бк/г.
Выделение никеля-63 из облученной меди и его очистка от посторонних нуклидов, например кобальта-60, проводится радиохимическим способом. Мишень растворяют в азотной кислоте, дальнейшее выделение никеля и его очистку проводят осадительно-сорбционным способом, используя лабильность окислительно-восстановительных состояний меди и кобальта и стабильность двухвалентного состояния никеля.
Приведенный пример показывает, что при использовании заявляемого технического решения при облучении мишени из меди на ректорах на быстрых нейтронах можно обеспечить крупномасштабное получение изотопа никель-63 с высокой удельной активностью.

Claims (3)

1. Способ получения изотопа никель-63, включающий изготовление мишени, облучение мишени в реакторе и переработку мишени, отличающийся тем, что мишенный материал изготавливают из металлической меди естественного изотопного состава или обогащенной по изотопу медь-63, облучение проводят в энергетическом реакторе на быстрых нейтронах, а переработку облученной медной мишени проводят радиохимическим методом с извлечением и очисткой соединений никеля.
2. Способ по п. 1, отличающийся тем, что при использовании в реакторе смешанного уран-плутониевого топлива мишень из меди устанавливают в боковой радиальный экран, предназначенный для поглощения избыточных нейтронов.
3. Способ по п. 1, отличающийся тем, что продолжительность облучения мишени в реакторе составляет не более 3 лет, а время выдержки не превышает 2-3 месяцев.
RU2015157389A 2015-12-31 2015-12-31 Способ получения радионуклида никель-63 RU2629014C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015157389A RU2629014C2 (ru) 2015-12-31 2015-12-31 Способ получения радионуклида никель-63

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015157389A RU2629014C2 (ru) 2015-12-31 2015-12-31 Способ получения радионуклида никель-63

Publications (2)

Publication Number Publication Date
RU2015157389A RU2015157389A (ru) 2017-07-06
RU2629014C2 true RU2629014C2 (ru) 2017-08-24

Family

ID=59309407

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015157389A RU2629014C2 (ru) 2015-12-31 2015-12-31 Способ получения радионуклида никель-63

Country Status (1)

Country Link
RU (1) RU2629014C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720703C1 (ru) * 2019-12-30 2020-05-12 Акционерное общество «Государственный научный центр-Научно-исследовательский институт атомных реакторов» Способ выделения Ni-63 из облученной мишени и очистки его от примесей
RU2748573C1 (ru) * 2020-10-26 2021-05-27 Акционерное Общество "Производственное Объединение "Электрохимический завод" (АО "ПО ЭХЗ") Способ получения радионуклида никель-63

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2313149C1 (ru) * 2006-06-20 2007-12-20 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ получения радионуклида никель-63
CN103069500A (zh) * 2010-03-10 2013-04-24 南非核能有限公司 生产放射性核素的方法
RU2569543C1 (ru) * 2014-07-08 2015-11-27 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2313149C1 (ru) * 2006-06-20 2007-12-20 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ получения радионуклида никель-63
CN103069500A (zh) * 2010-03-10 2013-04-24 南非核能有限公司 生产放射性核素的方法
RU2569543C1 (ru) * 2014-07-08 2015-11-27 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720703C1 (ru) * 2019-12-30 2020-05-12 Акционерное общество «Государственный научный центр-Научно-исследовательский институт атомных реакторов» Способ выделения Ni-63 из облученной мишени и очистки его от примесей
RU2748573C1 (ru) * 2020-10-26 2021-05-27 Акционерное Общество "Производственное Объединение "Электрохимический завод" (АО "ПО ЭХЗ") Способ получения радионуклида никель-63

Also Published As

Publication number Publication date
RU2015157389A (ru) 2017-07-06

Similar Documents

Publication Publication Date Title
EP2250649B1 (en) Radioisotope production and treatment of solution of target material
RU2629014C2 (ru) Способ получения радионуклида никель-63
US20110272272A1 (en) Method of producing molybdenum-99
RU2654535C1 (ru) Способ получения радионуклида никель-63
Kambali Transmutation of 129I containing nuclear waste by proton bombardment
JP6106892B2 (ja) 放射性廃棄物の処理方法
JP2022062962A (ja) アクチニウム225の生成方法
RU2561378C1 (ru) Способ получения радионуклида никель-63
JP2015161568A (ja) オンサイト型使用済核燃料処理方法
RU2556891C1 (ru) Способ получения искусственного изотопа никель-63
WO2017116274A1 (ru) Способ получения радионуклида никель-63 для бета-вольтаических источников тока
CN110335697B (zh) 一种高丰度98Tc的制备方法
JP6020952B1 (ja) 長寿命核分裂生成物の処理方法
Bulavin et al. About model experiments on production of medical radionuclides at the IBR-2 reactor
RU2688196C9 (ru) Способ получения радиоизотопа молибден-99
WO2017115430A1 (ja) 放射性廃棄物の処理方法
Couture A Simple Correlation for Neutron Capture Rates from Nuclear Masses
Rudychev et al. Studies of thermonuclear neutron usage means for radioactive waste transmutation
Kaur Theoretical Analysis of Nuclear Properties of Pu-Isotopes to Synthesize Sustainable and Clean Fuels
JP2015064247A (ja) ウラン233製造方法、トリウム核燃料製造方法、医療用ラジオアイソトープ製造方法、及び、医療用ラジオアイソトープ製造用ターゲットプレート製造方法
Morgenstern et al. Measurement and modeling of the cross sections for the reaction 230 Th (3 He, 3 n) 230 U
Gorbachenko et al. LiB neutron converter for a neutrino source
Danu et al. GEF calculations for the Mass distribution in 238U (18O, f) reaction
Hemalatha et al. Cross sections of 79Se (p, n) reaction for nuclear transmutation
Stoyer Super-Heavy Element and Other Exotic Nuclei Research at LLNL