RU2313149C1 - Способ получения радионуклида никель-63 - Google Patents

Способ получения радионуклида никель-63 Download PDF

Info

Publication number
RU2313149C1
RU2313149C1 RU2006121735/06A RU2006121735A RU2313149C1 RU 2313149 C1 RU2313149 C1 RU 2313149C1 RU 2006121735/06 A RU2006121735/06 A RU 2006121735/06A RU 2006121735 A RU2006121735 A RU 2006121735A RU 2313149 C1 RU2313149 C1 RU 2313149C1
Authority
RU
Russia
Prior art keywords
nickel
target
enrichment
isotopes
reactor
Prior art date
Application number
RU2006121735/06A
Other languages
English (en)
Inventor
Алексей Антонович Пустовалов (RU)
Алексей Антонович Пустовалов
Андрей Викторович Тихомиров (RU)
Андрей Викторович Тихомиров
Лев Алексеевич Цветков (RU)
Лев Алексеевич Цветков
Original Assignee
Федеральное государственное учреждение Российский научный центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение Российский научный центр "Курчатовский институт" filed Critical Федеральное государственное учреждение Российский научный центр "Курчатовский институт"
Priority to RU2006121735/06A priority Critical patent/RU2313149C1/ru
Application granted granted Critical
Publication of RU2313149C1 publication Critical patent/RU2313149C1/ru

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к области получения радиоактивных изотопов, а более конкретно - к технологии получения радиоактивного изотопа никель-63 в реакторе из мишени. Способ получения радионуклида никель-63 включает получение обогащенной по никелю-62 никелевой мишени, облучение мишени в реакторе, обогащение облученного продукта по никелю-63, при этом в обогащенной по никелю-62 никелевой мишени содержание никеля-64 не превосходит 2%, и при обогащении продукта по никелю-63 изотоп никель-64 извлекают из облученного продукта. Изобретение позволяет обеспечить возможность крупномасштабного производства никеля-63. 2 табл.

Description

Изобретение относится к области получения радиоактивных изотопов, а более конкретно - к технологии получения радиоактивных изотопов в реакторе из мишени, предварительно обогащенной по необходимому стабильному изотопу. Радиоактивные изотопы используют в различных областях. В частности, изотоп никель-63 используют в качестве источника излучения в камерах по детектированию взрывчатых веществ.
Изотопия элемента характеризуется массой имеющихся у него стабильных изотопов и их содержанием в природной смеси. Масса изотопов измеряется в атомных единицах массы [а.е.м.]. У никеля существует пять стабильных (не радиоактивных) изотопа и нижеприведенная таблица показывает их природную распространенность (И.П.Селинов. "Изотопы". Справочник. М.: Наука, 1970).
Таблица 1
Изотоп 58 60 61 62 64
% 68,07 26,22 1,14 3,63 0,93
При помещении никеля в ядерный реактор нейтроны взаимодействуют с изотопами никеля, и из никеля-62 образуется радиоактивный никель-63. Однако малое природное содержание никеля-62 не позволяет достичь высокой удельной активности по никелю-63.
Для увеличения выхода используют мишени, обогащенные по нужному стартовому стабильному изотопу. Известен процесс получения изотопов никеля, в котором в качестве мишени используется никель, обогащенный по никелю-62 (А.С.Герасимов, Т.С.Зарицкая, А.П.Рудик. Справочник по образованию нуклидов в ядерных реакторах. М., Энергоатомиздат, 1989 г.) Разработка центробежной технологии получения изотопов никеля позволяет получать изотопы никеля в достаточных количествах. (L.J.Sosnin, I.A.Suvorov, A.N.Tcheltsov, A.I.Rudnev. Investigation of centrifuge enrichment of stable nickel isotopes. Nuclear Instruments and Methods in Physics Research, 1993, v.A334, p.41-42.)
Известный и используемый процесс газового центрифугирования в промышленных масштабах был разработан для разделения изотопов урана (см., например, "Обогащение урана", ред. С.Виллани. М.: Энергоатомиздат, 1983). Для осуществления разделения летучее соединение элемента подают в быстро вращающийся ротор и более тяжелые молекулы, включающие более тяжелые изотопы, концентрируются на периферии, благодаря чему достигается разделительный эффект (см., например, М.Шемля, Ж.Перье "Разделение изотопов", М., Атомиздат, 1980). Для достижения эффекта разделения в газовой фазе применяются специальные высокоскоростные центрифуги, чьи скорости вращения многократно превосходят другие аналоги.
Помимо разделения изотопов урана, центробежную технологию развили в приложении к разделению стабильных изотопов других химических элементов - железа, вольфрама, ксенона, серы, молибдена и др. («Атомная энергия», том 67, №4, окт.1989, стр.255). Главным условием применимости метода является наличие у элемента летучего химического соединения с достаточной упругостью паров. Для разделения изотопов никеля используют тетрафторфосфин никеля - Ni(PF3)4.
Однако применение даже обогащенной мишени не всегда позволяет получить достаточную удельную активность радиоизотопа в исходном материале. В случае никеля-63 это вызвано как не очень высокой скоростью его накопления, так и выгоранием никеля-63, поскольку он при воздействии нейтронов переходит в стабильный никель-64.
Действующие в нашей стране центробежные технологии позволяют произвести обогащение и радиоактивного изотопа. Центробежным методом повышали удельную активность железа-55, олова-119m и др. радиоизотопов. При этом содержание радиоизотопа может быть доведено близким к 100%, и это соответствует наивысшей удельной активности радиоактивного материала.
Известная последовательность операций, включающая в себя получение обогащенного по целевому изотопу исходного материала, облучение его в реакторе, конверсию в летучее соединение и последующее обогащение по радиоизотопу применительно к никелю-63 приведена в работе «Получение 63Ni высокой удельной активности» (L.J.Sosnin, I.A.Suvorov, A.N.Tcheltsov, B.I.Rogozev, V.I.Gudov. Production of 63Ni of high specific activity. Nuclear Instruments and Methods in Physics Research, 1993, v.A334, p.43-44.), которая выбрана в качестве прототипа. Стартовый изотоп никель-62 обогащают до концентрации более 99%, помещают в высокопоточный реактор СМ-2 (поток нейтронов 1,75×1015 н/см2·сек). После накопления никеля-63 осуществляется его обогащение.
Недостатком способа получения радионуклида никель-63 по прототипу являются предельные характеристики двух составляющих - степени обогащения мишени и нейтронного потока. Эти параметры позволяют получить уникальный продукт, который по экономическим показателям не может найти широкого применения.
Одной из сфер применения никеля-63 может стать его использование в автономных источниках электрической энергии на основе бета-вольтаического эффекта. Бета-вольтаический эффект является аналогом фотоэлектрического эффекта, с той разницей, что образование электрон-дырочных пар в полупроводнике с p-n - переходом происходит под действием β-частиц, а не светового излучения. Радиоактивный изотоп никель-63 является чистым β-излучателем (нет сопутствующего вредного гамма-излучения) и имеет период полураспада 100 лет. Поэтому это один из самых перспективных радионуклидов для источников электрической энергии со сроком службы более 30 лет (атомных батареек).
Для этой области применения никель-63 должен производиться в достаточном количестве и по приемлемой стоимости. Высокопоточный реактор СМ-2 использован быть не может, поскольку объем для размещения мишеней невелик (несколько литров), а стоимость нейтронного потока слишком высока. Другим недостатком прототипа является высокая стоимость обогащения мишени с 99% никеля-62.
Задачей, на решение которой направлено данное изобретение, является обеспечение возможностей по крупномасштабному производству никеля-63.
Для решения поставленной задачи предложен способ получения радионуклида никель-63, включающий получение обогащенной по никелю-62 никелевой мишени, облучение мишени в реакторе и последующее обогащение облученного продукта по никелю-63, при этом в обогащенной по никелю-62 никелевой мишени содержание никеля-64 не превосходит 2% и при обогащении продукта по никелю-63 изотоп никель-64 извлекают из облученного продукта.
Крупномасштабное производство никеля-63 требует более доступных и дешевых составляющих технологии. Для облучения лучше использовать не высокообогащенный (97-99%) никель-62, а никель среднего обогащения 50-80%. Стоимость такого мишенного никеля при значительном его производстве заметно ниже. Облучение большого количества более дешевого никелевого сырья следует производить нейтронными потоками среднего уровня, порядка (2÷5)×1013...2×1014. Такие мишени можно ставить на многомесячное облучение в уран-графитовые реакторы типа РБМК, в промышленные реакторы, где облучение не такое дорогое, как в ядерном реакторе типа СМ-2. Данный подход позволит облучать практически постоянно большое количество (сотни кг) никелевых мишеней, не нарушая плановых режимов работы ядерных реакторов.
Снижение требований к величине обогащения никеля-62 в мишенном продукте, тем не менее, должно обеспечить возможность реализации процесса послереакторного обогащения по никелю-63 так, чтобы содержание никеля-63 в продукте стало превалирующим, т.е. не менее 50%. Наличие в способе ограничения на содержание никеля-64 в мишенном никеле, а также извлечение никеля-64 из облученного продукта в ходе послереакторного обогащения как раз и являются такими условиями.
Пример реализации способа
Нижерасположенная таблица характеризует изменения в изотопии, происходящие на всех стадиях процесса.
Никель природного изотопного состава в форме тетрафторфосфина никеля - Ni(PF3)4 (строка 1) направляют на изотопное обогащение. Процесс обогащения осуществляют так, чтобы содержание никеля-64 было не более 2% (строка 2). Это ограничение допускает обогащение никеля до 50% и более, но основной изотопной примесью должны быть более легкие, чем никель-62 изотопы. Обогащенный по никелю-62 тетрафторфосфин никеля переводят в металл и направляют на облучение в реакторе. После 2-летнего облучения в реакторе накапливается 6,4% никеля-63, а содержание никеля-64 возрастает до 1,5% за счет выгорания никеля-63 (строка 3). Облученный металлический никель переводят в тетрафторфосфин никеля и направляют на обогащение. Обогащение никеля-63 осуществляют в тяжелую фракцию, и при этом никель-64 извлекается из облученного материала (строка 4). Именно невысокое содержание никеля-64 и позволяет достигать обогащения никеля-63 до 50% и более. Тетрафторфосфин никеля переводят в металлическую форму и используют, например, в бета-вольтаических источниках тока. В остающейся легкой фракции (строка 5) содержится никель-62, остатки никеля-63 и нет никеля-64. Этот продукт может быть вновь направлен в реактор на облучение.
Таблица 2
Продукт Изотопы никеля
58 59 60 61 62 63 64
1 исходный никель до обогащения по никелю-62 68,07 - 26,22 1,14 3,63 - 0,93
2 мишень, полученная после обогащения и направляемая на облучение 0,1 - 10,0 9,9 79,0 - 1,0
3 после 2-х лет облучения 0,097 0,002 9,8 9,93 72,3 6,4 1,5
4 обогащение никеля-63 в тяжелую фракцию 0,4 74,9 24,7
5 остающаяся легкая фракция 0,104 0,002 10,5 10,6 77,1 1,7 0,003
Получение мишенного никеля с ограничением на содержание никеля-64 позволяет производить значительные количества мишенного продукта для крупномасштабного производства никеля-63, который возможно использовать в автономных источниках электрической энергии на основе бета-вольтаического эффекта, в детекторах взрывчатых веществ и пр.
Осуществимость технического решения вытекает из разработанности и практического действия различных методов разделения изотопов как урана, так и всех стабильных изотопов (см., например, сборник "Изотопы в СССР", Москва, Атомиздат, 1980). Воспроизводимость результатов определяется высоким достигнутым уровнем анализа изотопного состава элементов известными методами масс-спектрометрии.

Claims (1)

  1. Способ получения радионуклида никель-63, включающий получение обогащенной по никелю-62 никелевой мишени, облучение мишени в реакторе и последующее обогащение облученного продукта по никелю-63, отличающийся тем, что в обогащенной по никелю-62 никелевой мишени содержание никеля-64 не превосходит 2% и при обогащении продукта по никелю-63 изотоп никель-64 извлекают из облученного продукта.
RU2006121735/06A 2006-06-20 2006-06-20 Способ получения радионуклида никель-63 RU2313149C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006121735/06A RU2313149C1 (ru) 2006-06-20 2006-06-20 Способ получения радионуклида никель-63

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006121735/06A RU2313149C1 (ru) 2006-06-20 2006-06-20 Способ получения радионуклида никель-63

Publications (1)

Publication Number Publication Date
RU2313149C1 true RU2313149C1 (ru) 2007-12-20

Family

ID=38917341

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006121735/06A RU2313149C1 (ru) 2006-06-20 2006-06-20 Способ получения радионуклида никель-63

Country Status (1)

Country Link
RU (1) RU2313149C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556891C1 (ru) * 2014-01-23 2015-07-20 Алексей Антонович Пустовалов Способ получения искусственного изотопа никель-63
RU2561378C1 (ru) * 2014-09-19 2015-08-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклида никель-63
RU2569543C1 (ru) * 2014-07-08 2015-11-27 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока
RU2614021C1 (ru) * 2016-02-29 2017-03-22 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклида никель-63
WO2017116274A1 (ru) * 2015-12-31 2017-07-06 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока
RU2629014C2 (ru) * 2015-12-31 2017-08-24 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Способ получения радионуклида никель-63
RU2654535C1 (ru) * 2017-08-14 2018-05-21 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ получения радионуклида никель-63
RU2720703C1 (ru) * 2019-12-30 2020-05-12 Акционерное общество «Государственный научный центр-Научно-исследовательский институт атомных реакторов» Способ выделения Ni-63 из облученной мишени и очистки его от примесей
RU2748573C1 (ru) * 2020-10-26 2021-05-27 Акционерное Общество "Производственное Объединение "Электрохимический завод" (АО "ПО ЭХЗ") Способ получения радионуклида никель-63

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L.J.SOSNIN et al. Production of 63 Ni of high specific activity. Nuclear Instruments and Methods in Physics Research Section A, Vol.334, Iss.1, p.43-44, 15.09.1993. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556891C1 (ru) * 2014-01-23 2015-07-20 Алексей Антонович Пустовалов Способ получения искусственного изотопа никель-63
RU2569543C1 (ru) * 2014-07-08 2015-11-27 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока
RU2561378C1 (ru) * 2014-09-19 2015-08-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклида никель-63
WO2017116274A1 (ru) * 2015-12-31 2017-07-06 Федеральное государственное унитарное предприятие "Горно-химический комбинат" Способ получения радионуклида никель-63 для бета-вольтаических источников тока
RU2629014C2 (ru) * 2015-12-31 2017-08-24 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Способ получения радионуклида никель-63
RU2614021C1 (ru) * 2016-02-29 2017-03-22 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклида никель-63
RU2654535C1 (ru) * 2017-08-14 2018-05-21 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ получения радионуклида никель-63
WO2019035736A1 (ru) 2017-08-14 2019-02-21 Федеральное Государственное Унитарное Предприятие "Горно- Химический Комбинат" (Фгуп "Гхк") Способ получения радионуклида никель-63
RU2720703C1 (ru) * 2019-12-30 2020-05-12 Акционерное общество «Государственный научный центр-Научно-исследовательский институт атомных реакторов» Способ выделения Ni-63 из облученной мишени и очистки его от примесей
RU2748573C1 (ru) * 2020-10-26 2021-05-27 Акционерное Общество "Производственное Объединение "Электрохимический завод" (АО "ПО ЭХЗ") Способ получения радионуклида никель-63

Similar Documents

Publication Publication Date Title
RU2313149C1 (ru) Способ получения радионуклида никель-63
Lutz Photon activation analysis-review
Clark et al. Iodine, uranium and tellurium contents in meteorites
Meinke et al. Artificial chains collateral to the heavy radioactive families
Rosenberg Non-conventional measurement techniques for the determination of some long-lived radionuclides produced in nuclear fuel a literature survey
Wierczinski et al. Liquid-scintillation spectroscopy of α-particle emitters and detection of spontaneous fission events for on-line studies of actinide and transactinide elements
Denschlag Independent fission yield measurements
Inghram et al. Mass spectrometric study of fission element 43
Hashimoto et al. Simultaneous determination of uranium and plutonium isotopes in soils by means of single alpha-spectrometry
Hemmick et al. Search for low-Z nuclei containing massive stable particles
McIsaac et al. Levels in 183Ta from the decay of 183Hf
Artyukhov et al. Measurement of 99 Mo Yield in 100 Mo (p, x) with 30 MeV Proton Irradiation of Multicomponent Submicron Particles
Girgis et al. The decay of 76Br
Bemis Jr et al. Thermal-neutron capture and fission cross sections and resonance integrals for curium-243
Fry et al. Discovery of isotopes of the transuranium elements with 93≤ Z≤ 98
Karras et al. Radioactive nucleides 79Ge and 82As
RU2561378C1 (ru) Способ получения радионуклида никель-63
Laeter et al. Relative yields of stable tin isotopes in neutron-induced fission
Diamond et al. Nuclear properties of 251Bk
Viola Jr et al. Alpha decay of natural 186Os
Picciotto Measurement of the radioactivity of the air in the Antarctic
RU2688196C9 (ru) Способ получения радиоизотопа молибден-99
Crane et al. New Isotope Protactinium-237
Mastromarco et al. The 154Gd neutron capture cross section measured at the n_TOF facility and its astrophysical implications
Banham et al. The use of lithium-drifted germanium diodes for the γ-spectrometric determination of radioactive fission-product nuclides

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20151224