RU2628472C1 - Нагревающее устройство для текучей среды - Google Patents

Нагревающее устройство для текучей среды Download PDF

Info

Publication number
RU2628472C1
RU2628472C1 RU2016129722A RU2016129722A RU2628472C1 RU 2628472 C1 RU2628472 C1 RU 2628472C1 RU 2016129722 A RU2016129722 A RU 2016129722A RU 2016129722 A RU2016129722 A RU 2016129722A RU 2628472 C1 RU2628472 C1 RU 2628472C1
Authority
RU
Russia
Prior art keywords
fuel
fluid
fuel mixture
briquette
catalyst
Prior art date
Application number
RU2016129722A
Other languages
English (en)
Inventor
Андреа РОССИ
Original Assignee
Андреа РОССИ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55218222&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2628472(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Андреа РОССИ filed Critical Андреа РОССИ
Application granted granted Critical
Publication of RU2628472C1 publication Critical patent/RU2628472C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Resistance Heating (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Processing Of Solid Wastes (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Pipe Accessories (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Gas Burners (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Устройство для нагрева текучей среды содержит резервуар для удержания текучей среды, подлежащей нагреву, и топливный брикет в гидравлической связи с текучей средой, причем топливный брикет содержит топливную смесь, содержащую реагенты и катализатор, и источник зажигания в тепловой связи с топливной смесью и катализатором. Источник зажигания выбирают из группы, состоящей из индукционного нагревательного устройства, электрического резистора, нагревательного устройства, которое использует сжигание природного газа, и нагревательного устройства, которое использует сжигание топлива. Топливный брикет выполнен с возможностью обеспечения тепловой связи с указанной текучей средой. Резистор выполнен с возможностью соединения с источником напряжения. Устройство дополнительно содержит контроллер, связанный с указанным источником напряжения, и температурный датчик. Топливная смесь содержит литий и алюмогидрид лития. Катализатор содержит элемент 10 группы. Контроллер выполнен с возможностью отслеживания температуры с температурного датчика и на основании по меньшей мере частично указанной температуры повторно разгонять реакцию в топливной смеси. Повторный разгон указанной реакции включает изменение напряжения указанного источника напряжения. Изобретение направлено на получение высокой выходной температуры. 9 з.п. ф-лы, 7 ил.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет заявки США № 61/999582 от 1 августа 2014 г., содержимое которой включено в данный документ с помощью ссылки.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к системам теплопередачи, в частности к устройствам для передачи тепла текучей среде.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Многие системы передачи применяют горячие текучие среды в качестве среды теплопередачи. Такие системы содержат генератор тепла для генерации тепла, среду теплопередачи в тепловой связи с источником энергии и насос для перемещения нагретой среды, где бы ни потребовалось тепло. Вследствие ее высокой теплоемкости и изобилия, обычной текучей средой теплопередачи является вода, в ее как жидкой, так и газообразной фазе.
На практике применяют множество генераторов тепла. Например, в атомных станциях для нагрева воды энергию обеспечивает ядерное деление. Также существуют солнечные устройства нагрева воды, которые используют солнечную энергию. Однако большинство источников теплопередачи используют экзотермическую химическую реакцию и, в частности, сжигание некоторого топлива.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном аспекте настоящее изобретение представляет устройство для нагрева текучей среды, устройство содержит резервуар для удержания текучей среды, подлежащей нагреву, и топливный брикет в гидравлической связи с текучей средой, топливный брикет содержит топливную смесь, содержащую реагенты и катализатор, и источник тепла или источник зажигания в тепловой связи с топливной смесью и катализатором. Источник тепла или источник зажигания может представлять собой электрический резистор или источник тепла, который использует либо тепло от сгорания, такое как сжигание природного газа, или источник тепла, который использует индукционный нагрев.
Среди вариантов осуществления имеются те, в которых топливная смесь содержит литий и алюмогидрид лития, те, в которых катализатор содержит элемент 10 группы, такой как никель в порошковой форме, или любое их сочетание.
В других вариантах осуществления катализатор в порошковой форме обработан для улучшения его пористости. Например, катализатор может представлять собой никелевый порошок, который был обработан для улучшения его пористости. Устройство также может содержать источник электроэнергии, такой как источник напряжения и/или источник тока в электрической связи с источником тепла.
Среди других вариантов осуществления имеются те, в которых топливный брикет содержит многослойную структуру, имеющую слой топливной смеси в тепловой связи со слоем, содержащим источник тепла.
В еще других вариантах осуществления топливный брикет содержит центральную нагревающую вставку и пару топливных вставок, расположенных на каждой стороне нагревающей вставки.
Могут быть использованы разнообразные резервуары. Например, в некоторых вариантах осуществления резервуар содержит углубление для приема в него топливного брикета. Среди них имеются варианты осуществления, в которых резервуар дополнительно содержит дверцу для уплотнения углубления. В еще других вариантах осуществления резервуар содержит теплозащитный экран. Также среди вариантов осуществления имеются те, которые дополнительно содержат контроллер, связанный с источником напряжения. Среди них имеются контроллеры, которые выполнены с возможностью изменения напряжения под действием температуры текучей среды, подлежащей нагреву.
В другом аспекте настоящее изобретение представляет устройство для нагрева текучей среды, устройство содержит средство для содержания текучей среды и средство для удержания топливной смеси, содержащей катализатор и реагент, и средство для запуска последовательности реакций посредством катализатора для вызова экзотермической реакции.
Другой аспект настоящего изобретения представляет соединение вещества для генерации тепла, соединение содержит смесь никелевого порошка с улучшенной пористостью, литиевого порошка и литий-алюминиевого порошка. Источник тепла в тепловой связи со смесью может быть использован для запуска катализированной никелем экзотермической реакции.
Еще один аспект представляет соединение для генерации тепла. Соединение содержит топливную смесь и катализатор. Катализатор содержит элемент 10 группы.
Варианты осуществления включают те, в которых катализатор содержит никель. Среди них имеются варианты осуществления, в которых никель имеет форму никелевого порошка, и те, в которых никелевый порошок был обработан для улучшения его пористости.
Другим аспектом настоящего изобретения является способ нагрева текучей среды, способ включает расположение смеси никелевого порошка, литиевого порошка и алюмогидрида лития в тепловой связи с текучей средой и нагрев смеси, таким образом запуская экзотермическую реакцию в смеси.
Эти и другие признаки настоящего изобретения будут понятны из следующего подробного описания и сопутствующих графических материалов.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг. 1 - изображение системы теплопередачи, имеющей источник тепла;
фиг. 2 - вид с частичным разрезом источника тепла, представленного на фиг. 1;
фиг. 3 - изображение в поперечном сечении брикета для применения с источником тепла, представленным на фиг. 2;
фиг. 4 - изображение иллюстративного резистора в центральном слое брикета, представленного на фиг. 3;
фиг. 5 - изображение источника тепла, представленного на фиг. 1, работающего с обычной печью;
фиг. 6 - изображение нескольких источников тепла, наподобие представленного на фиг. 2, соединенных последовательно;
фиг. 7 - изображение нескольких источников тепла, наподобие представленного на фиг. 2, соединенных параллельно.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Обращаясь к фиг. 1, система 10 теплопередачи содержит трубу 12 для перемещения нагретой текучей среды в замкнутом контуре между источником 14 тепла и тепловой нагрузкой 16. В большинстве случаев, например, когда необходимо преодолеть гидравлическое сопротивление, нагретую текучую среду прокачивает насос 18. Однако в некоторых случаях, например, когда нагретая текучая среда является паром, для продвижения текучей среды достаточно собственного давления текучей среды. Обычная тепловая нагрузка 16 содержит батареи, такие как обычно применяют для нагрева внутренних пространств.
Как представлено на фиг. 2, источник 14 тепла представляет собой резервуар 20, имеющий свинцовый композитный экран, впускное отверстие 22 и выпускное отверстие 24, каждое из которых соединено с трубой 12. Внутренняя часть резервуара 20 содержит текучую среду, подлежащую нагреву. Во многих случаях текучая среда представляет собой воду. Однако могут быть использованы и другие текучие среды. Кроме того, текучая среда не обязана быть жидкой текучей средой, но также может быть газом, таким как воздух.
Резервуар 20 также содержит дверцу 26, которая ведет в приемник 28, входящий в резервуар 20. Радиаторные ребра 30 выступают из стенок приемника 28 в резервуар 20. Для максимального увеличения теплопередачи приемник 28 и ребра 30, как правило, изготавливают из материала, имеющего большую теплопроводность, такого как металл. Подходящим металлом является металл, не подвергающийся коррозии, такой как нержавеющая сталь.
Приемник 28 удерживает многослойный брикет 32 для генерации тепла. Источник 33 напряжения соединен с брикетом 32 и с контроллером 35 для управления источником 33 напряжения под действием температуры текучей среды в резервуаре 12, как измерено датчиком 37.
Как представлено на фиг. 3, многослойный топливный брикет 32 содержит нагревательную секцию 34, зажатую между двумя топливными секциями 36, 38. Нагревательная секция 34 отличается тем, что содержит центральный слой 40, изготовленный из изоляционного материала, такого как слюда, который поддерживает резистор 42. Следует отметить, что могут быть применены другие источники тепла, включая источники тепла, которые используют сжигание, например, природного газа, а также источники тепла, которые используют электрическую индукцию. Применение газа, таким образом, устраняет потребность в наличии источника электроэнергии для запуска реакции.
Фиг. 4 представляет иллюстративный центральный слой 40, имеющий отверстия 44, через которые продет провод 42 сопротивления. Этот провод 42 сопротивления соединен с источником 33 напряжения. Первый и второй изоляционные слои 46, 48, такие как слои слюды, охватывают центральный слой 40 для обеспечения электрической изоляции от смежных топливных секций 36, 38.
Каждая топливная секция 36, 38 отличается тем, что имеет пару теплопроводных слоев 50, 52, таких как стальные слои. Между каждой парой проводящих слоев 50, 52 зажат топливный слой 54, который содержит топливную смесь, содержащую никель, литий и алюмогидрид лития LiAlH4 ("LAH"), все в порошковой форме. Предпочтительно никель обработан для увеличения его пористости, например, путем нагрева никелевого порошка в течение такого времени и до таких температур, которые выбраны для перегрева любой воды, имеющейся в микрополостях, которые присущи каждой частице никелевого порошка. Давление возникающего в результате пара приводит к взрывам, которые создают более крупные полости, а также дополнительные более мелкие частицы никеля.
Весь набор слоев сваривается вместе со всех сторон для образования запаянного элемента. Размер брикета 32 не имеет значения для его функциональности. Однако с брикетом 32 легче работать, если он приблизительно 1/3 дюйма в толщину и по 12 дюймов с каждой стороны. Стальные слои 50, 52, как правило, имеют толщину 1 мм, а слои слюды 40, 48, которые покрыты защитным полимерным покрытием, имеют толщину порядка 0,1 мм. Однако могут быть применены и другие толщины.
В работе источником 33 напряжения прикладывается напряжение для нагрева резистора 42. Тепло от резистора 42 затем передается проводимостью на топливные слои 54, где оно запускает последовательность реакций, последняя из которых является обратимой. Эти реакции, которые катализируются наличием никелевого порошка, имеют вид:
3LiAlH4-> Li3AlH6 + 2A1 + 3H2
2Li3AlH6-> 6LiH + 2A1 + 3H2
2LiH + 2A1 -> 2LiAl + H2
После запуска последовательности реакций источник 33 напряжения может быть отключен, поскольку последовательность реакций является самоподдерживающейся. Однако скорость реакции не может быть постоянной. Поэтому может быть желательно включать источник 33 напряжения в определенное время для повторного разгона реакции. Чтобы определить включать или не включать источник 33 напряжения, температурный датчик 37 подает сигнал на контроллер 35, который затем определяет, прикладывать или не прикладывать напряжение в качестве ответной реакции на температурный сигнал. Было обнаружено, что после того, как реакция сгенерирует приблизительно 6 киловатт-час энергии, желательно прикладывать приблизительно 1 киловатт-час электроэнергии для повторного разгона последовательности реакций.
В конце концов, эффективность брикета 32 будет падать до точки, в которой непрерывно повторно разгонять последовательность реакций становится экономически невыгодно. В этой точке брикет 32 можно просто заменить. Как правило, до того как понадобится замена, брикет 32 выдержит приблизительно 180 дней непрерывной работы.
Порошок в топливной смеси состоит в основном из сферических частиц, имеющих диаметры в диапазоне от нанометров до микрометров, например, от 1 нанометра до 100 микрометров. Изменения в соотношении реагентов и катализатора обычно обуславливают скорость реакции и не являются критически важными. Однако было обнаружено, что подходящая смесь содержит начальную смесь из 50% никеля, 20% лития и 30% LAH. В этой смеси никель действует как катализатор для реакции и сам не является реагентом. Хотя никель является особо полезным вследствие своей относительной распространенности, его функция также может быть выполнена другими элементами из столбца 10 периодической системы, такими как платина или палладий.
На фиг. 5—7 представлены разные способы присоединения источника 14 тепла, представленного на фиг. 1.
На фиг. 5 источник 14 тепла расположен ниже по потоку относительно обычной печи 56. В этом случае контроллер 35 необязательно присоединен для управления обычной печью. В результате обычная печь 56 будет оставаться выключенной, пока выходная температура источника 14 тепла не упадет ниже некоторого порогового значения, при котором печь 56 будет запущена. В этой конфигурации обычная печь 56 работает как резервный элемент.
На фиг. 6 первый и второй источники 58, 60 тепла, наподобие представленных на фиг. 1—4, соединены последовательно. Эта конфигурация обеспечивает более высокую выходную температуру, чем та, которая может быть обеспечена только одним источником 58 тепла. Дополнительные источники тепла могут быть добавлены последовательно для последующего повышения температуры.
На фиг. 7 первый и второй источники 62, 64 тепла, наподобие представленных на фиг. 1—4, соединены параллельно. В этой конфигурации выходной объем может быть сделан больше, чем тот, который мог бы быть обеспечен одним элементом теплопередачи. Дополнительные элементы теплопередачи могут быть добавлены параллельно, чтобы еще более увеличить объем.
В одном варианте осуществления реагенты размещают в реакционной камере при давлении 3—6 бар и температуре от 400 до 600°C. Анод размещают на одной стороне реактора, и катод размещают на другой стороне реактора. Это ускоряет электроны между ними до степени, достаточной для наличия очень высокой энергии, более 100 кэВ. Регулирование энергии электронов может быть выполнено путем регулирования электрического поля между катодом и анодом.
После описания настоящего изобретения и его предпочтительного варианта осуществления далее представлена формула изобретения, содержащая новые признаки и определяющая объем охраны.

Claims (10)

1. Устройство для нагрева текучей среды, причем указанное устройство содержит резервуар для удержания текучей среды, подлежащей нагреву, и топливный брикет в гидравлической связи с указанной текучей средой, причем указанный топливный брикет содержит топливную смесь, содержащую реагенты и катализатор, и источник зажигания в тепловой связи с указанной топливной смесью и указанным катализатором, отличающееся тем, что источник зажигания выбирают из группы, состоящей из индукционного нагревательного устройства, электрического резистора, нагревательного устройства, которое использует сжигание природного газа, и нагревательного устройства, которое использует сжигание топлива, причем указанный топливный брикет выполнен с возможностью обеспечения тепловой связи с указанной текучей средой, причем указанный резистор выполнен с возможностью соединения с источником напряжения, причем указанное устройство дополнительно содержит контроллер, связанный с указанным источником напряжения, и температурный датчик, причем указанная топливная смесь содержит литий и алюмогидрид лития, причем указанный катализатор содержит элемент 10 группы, причем указанный контроллер выполнен с возможностью отслеживания температуры с указанного температурного датчика и на основании по меньшей мере частично указанной температуры повторно разгонять реакцию в указанной топливной смеси, причем повторный разгон указанной реакции включает изменение напряжения указанного источника напряжения.
2. Устройство по п. 1, отличающееся тем, что указанный катализатор содержит никелевый порошок.
3. Устройство по п. 2, отличающееся тем, что указанный никелевый порошок обработан для улучшения его пористости.
4. Устройство по п. 1, отличающееся тем, что указанный топливный брикет содержит многослойную структуру, имеющую слой указанной топливной смеси в тепловой связи со слоем, содержащим указанный электрический резистор.
5. Устройство по п. 1, отличающееся тем, что указанный топливный брикет содержит центральную нагревательную вставку и пару топливных вставок, расположенных на каждой стороне указанной нагревательной вставки.
6. Устройство по п. 1, отличающееся тем, что указанный резервуар содержит углубление для приема указанного топливного брикета в него.
7. Устройство по п. 6, отличающееся тем, что указанный резервуар дополнительно содержит дверцу для уплотнения указанного углубления.
8. Устройство по п. 1, отличающееся тем, что указанный резервуар содержит теплозащитный экран.
9. Устройство по п. 1, отличающееся тем, что указанная реакция в указанной топливной смеси по меньшей мере частично обратима.
10. Устройство по п. 9, отличающееся тем, что указанная реакция включает реагирование гидрида лития с алюминием для получения газа водорода.
RU2016129722A 2014-08-01 2015-07-28 Нагревающее устройство для текучей среды RU2628472C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461999582P 2014-08-01 2014-08-01
US61/999,582 2014-08-01
PCT/US2015/042353 WO2016018851A1 (en) 2014-08-01 2015-07-28 Fluid heater

Publications (1)

Publication Number Publication Date
RU2628472C1 true RU2628472C1 (ru) 2017-08-17

Family

ID=55218222

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129722A RU2628472C1 (ru) 2014-08-01 2015-07-28 Нагревающее устройство для текучей среды

Country Status (22)

Country Link
EP (1) EP3049733B1 (ru)
JP (1) JP6145808B1 (ru)
CN (1) CN106133457B (ru)
AU (1) AU2015296800B2 (ru)
BR (1) BR112016013488B1 (ru)
CA (1) CA2920500C (ru)
CL (1) CL2016001856A1 (ru)
CY (1) CY1119675T1 (ru)
DK (1) DK3049733T3 (ru)
ES (1) ES2652548T3 (ru)
HR (1) HRP20171960T1 (ru)
HU (1) HUE036258T2 (ru)
LT (1) LT3049733T (ru)
MX (1) MX348291B (ru)
NO (1) NO2788577T3 (ru)
PL (1) PL3049733T3 (ru)
PT (1) PT3049733T (ru)
RS (1) RS56749B1 (ru)
RU (1) RU2628472C1 (ru)
SI (1) SI3049733T1 (ru)
WO (1) WO2016018851A1 (ru)
ZA (1) ZA201604152B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709009C1 (ru) * 2019-01-31 2019-12-13 Борис Александрович Астахов Устройство для нагрева теплоносителя

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083526A (en) * 1958-12-19 1963-04-02 Phillips Petroleum Co Hybrid method of rocket propulsion using tetranitromethane
SU954735A1 (ru) * 1971-04-02 1982-08-30 Хутни Друховыроба,Генерални Ржедителстви (Инопредприятие) Способ нагревани жидкостей
SU1697280A1 (ru) * 1989-07-27 1991-12-07 Государственный научно-исследовательский и проектный институт лакокрасочной промышленности Индукционный нагреватель текучей среды

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958625A (en) * 1974-07-01 1976-05-25 General Electric Company Transport of heat as chemical energy
US4288346A (en) * 1978-07-18 1981-09-08 Johnson Matthey Inc. Catalyst for catalytic heat exchange
JPH08277207A (ja) * 1995-04-05 1996-10-22 G C:Kk 歯科レジン複合材料用接着剤
US5770838A (en) * 1996-09-11 1998-06-23 Drever Company Induction heaters to improve transitions in continuous heating system, and method
US20040065314A1 (en) * 2000-07-20 2004-04-08 Layer James H. Apparatus, systems, and methods for warming materials
JP3835368B2 (ja) * 2002-07-23 2006-10-18 株式会社デンソー 水素消費機器における加熱装置
US20040234699A1 (en) * 2003-05-21 2004-11-25 Alexza Molecular Delivery Corporation Methods of controlling uniformity of substrate temperature and self-contained heating unit and drug-supply unit employing same
US7867441B2 (en) * 2006-12-05 2011-01-11 Lawrence Livermore National Security, Llc Low to moderate temperature nanolaminate heater
JP5265158B2 (ja) * 2007-09-05 2013-08-14 キネテイツク・リミテツド 水素発生器及び燃料スティック
ITMI20080629A1 (it) * 2008-04-09 2009-10-10 Pascucci Maddalena Processo ed apparecchiatura per ottenere reazioni esotermiche, in particolare da nickel ed idrogeno.
JP4869375B2 (ja) * 2009-03-27 2012-02-08 中国電力株式会社 温水システム
US9055841B2 (en) * 2009-04-07 2015-06-16 Heatgenie, Inc. Package heating apparatus
AU2010281658A1 (en) * 2009-08-07 2012-02-02 Blacklight Power, Inc. Heterogeneous hydrogen-catalyst power system
DE102009055026A1 (de) * 2009-12-18 2011-06-22 Heete, Lars Christian, 46240 Verfahren und Vorrichtung zum Temperieren einer exothermen Reaktion
DE102012023257B4 (de) * 2012-11-29 2014-10-09 C-Nox Gmbh & Co. Kg Verfahren und Vorrichtung zur thermischen Nachverbrennung von Kohlenwasserstoffe enthaltenden Gasen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083526A (en) * 1958-12-19 1963-04-02 Phillips Petroleum Co Hybrid method of rocket propulsion using tetranitromethane
SU954735A1 (ru) * 1971-04-02 1982-08-30 Хутни Друховыроба,Генерални Ржедителстви (Инопредприятие) Способ нагревани жидкостей
SU1697280A1 (ru) * 1989-07-27 1991-12-07 Государственный научно-исследовательский и проектный институт лакокрасочной промышленности Индукционный нагреватель текучей среды

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709009C1 (ru) * 2019-01-31 2019-12-13 Борис Александрович Астахов Устройство для нагрева теплоносителя

Also Published As

Publication number Publication date
MX2016002006A (es) 2016-08-03
MX348291B (es) 2017-06-05
AU2015296800A1 (en) 2016-04-07
EP3049733A1 (en) 2016-08-03
WO2016018851A1 (en) 2016-02-04
NO2788577T3 (ru) 2018-07-28
CA2920500C (en) 2016-09-06
CN106133457A (zh) 2016-11-16
ES2652548T3 (es) 2018-02-05
BR112016013488B1 (pt) 2018-06-12
AU2015296800B2 (en) 2016-05-05
CA2920500A1 (en) 2016-02-04
ZA201604152B (en) 2016-11-30
CY1119675T1 (el) 2018-04-04
EP3049733A4 (en) 2017-03-22
CL2016001856A1 (es) 2017-03-24
SI3049733T1 (en) 2018-02-28
EP3049733B1 (en) 2017-09-27
CN106133457B (zh) 2018-07-27
PT3049733T (pt) 2017-12-22
LT3049733T (lt) 2018-02-12
PL3049733T3 (pl) 2018-03-30
JP2017523369A (ja) 2017-08-17
BR112016013488A2 (pt) 2017-03-21
HUE036258T2 (hu) 2018-06-28
DK3049733T3 (en) 2018-01-02
HRP20171960T1 (hr) 2018-02-23
RS56749B1 (sr) 2018-03-30
JP6145808B1 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
US9115913B1 (en) Fluid heater
Li et al. Numerical modeling and performance study of a tubular SOFC
JP2009176660A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP2009295380A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
Bonanno et al. Evaluation of the efficiency of an elevated temperature proton exchange membrane water electrolysis system
AU2006215925A1 (en) Method for operating fuel cells for systems that are restricted by exposure to thermal stress and fuel cell stack for carrying out said method
RU2628472C1 (ru) Нагревающее устройство для текучей среды
Godart et al. Kilowatt-scale fuel cell systems powered by recycled aluminum
JP2009238599A (ja) 燃料電池システムの負荷追従運転方法
WO2011065320A1 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
US20190123370A1 (en) Adaptive electrical heater for fuel cell systems
JP5461834B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
WO1994005055A1 (en) Generator
JP5325641B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5940470B2 (ja) 燃料電池モジュール、及びこれを備えている燃料電池システム
Schiller et al. Solid oxide steam electrolysis with integration of solar heat
JP2009277374A (ja) 固体酸化物形燃料電池
JP5325662B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
WO2014200004A1 (ja) 熱電発電装置
JP5281996B2 (ja) 燃料電池システムの負荷追従運転方法
RU2608053C1 (ru) Модуль отведения и распределения тепловой энергии энергоустановки на твердооксидных топливных элементах
TR201816072A2 (tr) Su Reforming Kullanılarak Fosil Yakıt Yakma Sistemi
RU2492333C2 (ru) Биогазовый барогальванический электротеплогенератор
JP5325661B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5325660B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法