RU2626604C1 - Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека - Google Patents

Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека Download PDF

Info

Publication number
RU2626604C1
RU2626604C1 RU2016131737A RU2016131737A RU2626604C1 RU 2626604 C1 RU2626604 C1 RU 2626604C1 RU 2016131737 A RU2016131737 A RU 2016131737A RU 2016131737 A RU2016131737 A RU 2016131737A RU 2626604 C1 RU2626604 C1 RU 2626604C1
Authority
RU
Russia
Prior art keywords
silicon
solution
temperature
hours
dried
Prior art date
Application number
RU2016131737A
Other languages
English (en)
Inventor
Ольга Александровна Голованова
Альберт Викторович Зайц
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского"
Priority to RU2016131737A priority Critical patent/RU2626604C1/ru
Application granted granted Critical
Publication of RU2626604C1 publication Critical patent/RU2626604C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к области медицины. Описан способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1÷5 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре T4=20÷25°С в течение 24 часов. Способ направлен на получение кремний-замещенного гидроксиапатита, а кремний играет важную роль в физиологических процессах роста и перестройки костной и хрящевой ткани. 3 ил., 1 табл.

Description

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кремний-содержащих кальций-фосфатных (Si-ГА) покрытий на имплантатах, при создании композитов на основе фосфатов кальция и сплавах титана.
Известен способ нанесения покрытий на изделия из титана (патент RU 2453630), технический результат, в котором достигается за счет обработки поверхности титана углекислым газом, образующимся при реакции разложения гидрокарбоната кальция в водном растворе при соблюдении следующих условий: раствор гидрокарбоната натрия (ч.д.а.) приливают к раствору нитрата или хлорида кальция (х.ч.), соблюдая стехиометрическое соотношение реагентов 2:1. После начала выделения углекислого газа в реакционную смесь помещают титановые или с титановым покрытием изделия, например пластины или штифты. Для устранения концентрационных потоков при формировании кристаллов смесь периодически перемешивают, при этом начинается более интенсивное выделение пузырьков углекислого газа. Толщина и адгезия покрытия, а также размер образующихся на титане кристаллов карбоната кальция изменяются в зависимости от времени протекания реакции и температуры. Прочные покрытия можно получить как минимум через десять минут после начала реакции при 20°С. Промытые пленки оставляют как минимум на сутки в контакте с раствором 0.6 М (NH4)2HPO4, затем как минимум на сутки в растворе одномолярного Са(NO3)2, затем как минимум на сутки в растворе 0.6 М (NH4)2HPO4. Образцы промывают дистиллированной водой, сушат на воздухе при температуре 20°С. Для получения композиционных покрытий, содержащих биополимеры, титан с полученным кальцитным покрытием погружают в раствор желатина и/или хондроитинсульфата. Другие модификаторы вводят в систему с самого начала синтеза кальциевого покрытия.
Наиболее близким по технической сущности к заявляемому является способ получения биомитического покрытия в среде синтетической жидкости (SBF), (Xiaohua Yu, Mei Wei Controlling Bovine Serum Albumin Release from Biomimetic Calcium Phosphate Coatings // Journal of Biomaterials and Nanobiotechnology, 2011, 2, 28-35). По данному способу пластинки титана вертикально помещают в 1,5 мл пробирку, содержащую 1,0 мл M-SBF, затем инкубировали в водяной бане при 42°С в течение 24 час. Затем в каждую пробирку, после того как пластинка была погружена, добавляли бычий сывороточный альбумин (BSA) в течение 0, 4, 6 и 8 ч соответственно. В результате чего конечная концентрация бычего сывороточного альбумина (BSA) соответствовала 50 мкг/мл. После 24 ч инкубации в SBF все пластинки вынимают, тщательно промывают деионизированной водой и сушат при комнатной температуре.
Задачей заявляемого изобретения является разработка способа получения биомиметического кремний-содержащего кальций-фосфатное покрытие на сплавах титана из модельного раствора межклеточной жидкости человека. Ввиду того что кремний играет важную роль в физиологических процессах роста и перестройки костной и хрящевой ткани, получение кремний-замещенного гидроксилапатита (Si-ГА) и синтез покрытий на его основе представляют собой перспективную и актуальную физико-химическую задачу.
Указанный технический результат достигается тем, что предложен способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРО4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05, в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°С в течение 24 часов.
Возможность достижения технического результата обеспечивается тем, что в предложенном способе предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре Т1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80-85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капилляром с диаметром d=0,2÷0,7 мм тонким слоем на сплав титана ВТ 1-00, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав титана ВТ 1-00 с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°С в течение 24 часов.
Используют результаты измерения краевого угла смачивания и поверхностного натяжения приготовленных суспензий с разным содержанием кремний-содержащего агента. На основании уравнения Юнга - Дюпре была рассчитана энергию адгезии наносимой суспензии кремний-содержащего фосфата кальция к твердой поверхности титановых образцов
Wa01(1+cosΘ), (19)
где Wa - энергия адгезии, σ01 - поверхностное натяжение на границе газ – жидкость,
cosΘ - косинус краевого угла смачивания.
В таблице 1 представлены адгезионные характеристики высушенной и нанесенной суспензии кремний-содержащего фосфата кальция на сплаве титана ВТ 1-00.
Figure 00000001
Установлено, что с увеличением концентрации силикат-иона, для образцов, синтезированных с неорганическим носителем иона SiO4 4-, происходит падение поверхностного натяжения и краевого угла смачивания, это обусловлено частичным растворением полученного фосфата кальция и образованием в растворе неорганических ПИВ. Для характеристики получаемых покрытий важным является соотношение значений энергии адгезии и когезии. Для установления соотношения между энергии адгезии и когезии (Wk) преобразуем уравнения Юнга- Дюпре:
Figure 00000002
Figure 00000003
так как
Figure 00000004
, то
Figure 00000005
Известно, что если это соотношение близко к единице, то наблюдается хорошее смачивание и т.д.
Figure 00000006
Для оценки параметров смачивания обычно используют соотношение этих двух энергий, при этом если оно близко к 1, то наблюдается смачивание и т.д. Таким образом, использование суспензии при концентрации С=1% масс. кремний-содержащего (Na2SiO3)) фосфата кальция является оптимальным.
Полученные покрытия были проанализированы с помощью оптической микроскопии. При изучении поверхностных и морфологических характеристик полученных кальций- фосфатных покрытий, модифицированных силикат ионами, получено, что осаждение Si-ГА на поверхности титановых подложек происходит по-разному, в зависимости от времени выдерживания в растворе.
На фиг. 1 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 3 суток.
На фиг. 2 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 6 суток.
На фиг. 3 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 12 суток.
При продолжительности времени выдерживания в модельном растворе трое суток получается равномерное, плотное, высокодисперсное покрытие и наблюдается рост кристаллов гидроксилапатита в виде объемных каплеобразных агрегатов Si-ГА, фиг. 1. Отмечается выравнивание роста кристаллов в более структурированную форму. Такие структуры соответствуют биогенному апатиту.
Увеличение времени выдерживания титанового образца в модельном растворе приводит к неравномерному росту кристаллов в виде столбчатой формы, что говорит о начале структурирования поверхности Si-ГА. На данном этапе наблюдается разная высота сформировавшихся агрегатов, фиг. 2.
Дальнейшее увеличение времени выдерживания в течение 6 суток в модельном растворе характеризуется образованием неравномерного покрытия, при этом отмечен рост кристаллов в виде дендритов. Зафиксировано начало роста кристаллов в виде цилиндрических столбцов, что характеризует начало структурирования Si-ГА на поверхности подложки, фиг. 3.
Таким образом, заявляемый способ позволяет получить качественное равномерное, плотное, высокодисперсное покрытие в виде объемных каплеобразных агрегатов Si-ГА, при использовании суспензии Si-ГА с 1% содержанием Na2SiO3 и времени выдерживания в модельном растворе 3 суток.

Claims (1)

  1. Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, K2HPO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°C, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°C в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°C в течение 1 часа, затем указанный сплав с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°C в течение 24 часов.
RU2016131737A 2016-08-01 2016-08-01 Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека RU2626604C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016131737A RU2626604C1 (ru) 2016-08-01 2016-08-01 Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016131737A RU2626604C1 (ru) 2016-08-01 2016-08-01 Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека

Publications (1)

Publication Number Publication Date
RU2626604C1 true RU2626604C1 (ru) 2017-07-28

Family

ID=59632349

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016131737A RU2626604C1 (ru) 2016-08-01 2016-08-01 Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека

Country Status (1)

Country Link
RU (1) RU2626604C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702991C1 (ru) * 2018-08-10 2019-10-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Способ получения биомиметического кальций-фосфатного модифицированного желатином покрытия на сплавах титана из модельного раствора межклеточной жидкости человека

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453630C1 (ru) * 2011-01-11 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная медицинская академия им. Н.Н. Бурденко" Министерства здравоохранения и социального развития Российской Федерации Способ нанесения покрытий на изделия из титана
RU2496150C1 (ru) * 2012-04-16 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ моделирования костной кристаллизации при коксартрозе in vitro

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453630C1 (ru) * 2011-01-11 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная медицинская академия им. Н.Н. Бурденко" Министерства здравоохранения и социального развития Российской Федерации Способ нанесения покрытий на изделия из титана
RU2496150C1 (ru) * 2012-04-16 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ моделирования костной кристаллизации при коксартрозе in vitro

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xiaohua Yu, Mei Wei, Controlling Bovine Serum Albumin Release from Biomimetic Calcium Phosphate Coatings, Journal of Biomaterials and Nanobiotechnology, 2011, 2, 28-35. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702991C1 (ru) * 2018-08-10 2019-10-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Способ получения биомиметического кальций-фосфатного модифицированного желатином покрытия на сплавах титана из модельного раствора межклеточной жидкости человека

Similar Documents

Publication Publication Date Title
US6867240B2 (en) Porous composite materials
Ferraz et al. Hydroxyapatite nanoparticles: a review of preparation methodologies
Jalota et al. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions
Xia et al. Effect of Ca/P ratio on the structural and corrosion properties of biomimetic CaP coatings on ZK60 magnesium alloy
Bharati et al. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF
US9517187B2 (en) Implant coated with net-shaped or island-shaped low-crystallized hydroxyapatite and method for coating same
JP5778139B2 (ja) 骨代用材料
Feng et al. Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment
Wang et al. In vitro behavior of fluoridated hydroxyapatite coatings in organic-containing simulated body fluid
Peters et al. Simulating arterial wall calcification in vitro: biomimetic crystallization of calcium phosphates under controlled conditions
RU2626604C1 (ru) Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека
Sasikumar et al. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants
Yousefpour et al. Bioactive layer formation on alkaline-acid treated titanium in simulated body fluid
RU2453630C1 (ru) Способ нанесения покрытий на изделия из титана
JP4595081B2 (ja) リン酸カルシウムコロイド、ドット、アイランド、薄膜または、グラニュール、およびその調製
RU2702991C1 (ru) Способ получения биомиметического кальций-фосфатного модифицированного желатином покрытия на сплавах титана из модельного раствора межклеточной жидкости человека
Borilo et al. Synthesis and properties of bioactive thin-film materials based on the SiO 2–P 2 O 5–СаO and SiO 2–P 2 O 5–CaO–TiO 2 systems
RU2532350C1 (ru) Способ получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека
Liu et al. In vitro surface reaction layer formation and dissolution of calcium phosphate cement–bioactive glass composites
JP5162749B2 (ja) アパタイト複合体及びその製造方法
Jarolimova et al. Mesenchymal stem cell interaction with Ti 6 Al 4 V alloy pre-exposed to simulated body fluid
US8597718B2 (en) Calcium phosphate ultrathin films and a method for preparing them
JP2007246299A (ja) リン酸カルシウム透明体およびその製造方法
Thammarakcharoen et al. Rapid biomimetic coating of calcium phosphate on titanium: effect of soaking time, temperature and solution refreshing
RU2763091C1 (ru) Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190802