RU2625230C2 - Прозрачный мерзлый грунт, способ его получения и применения - Google Patents

Прозрачный мерзлый грунт, способ его получения и применения Download PDF

Info

Publication number
RU2625230C2
RU2625230C2 RU2015144375A RU2015144375A RU2625230C2 RU 2625230 C2 RU2625230 C2 RU 2625230C2 RU 2015144375 A RU2015144375 A RU 2015144375A RU 2015144375 A RU2015144375 A RU 2015144375A RU 2625230 C2 RU2625230 C2 RU 2625230C2
Authority
RU
Russia
Prior art keywords
transparent
frozen soil
model
soil
fluorine
Prior art date
Application number
RU2015144375A
Other languages
English (en)
Other versions
RU2015144375A (ru
Inventor
Гантсиан КУН
Original Assignee
Хохай Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410177674.9A external-priority patent/CN103926125A/zh
Priority claimed from CN201410179108.1A external-priority patent/CN103926127B/zh
Priority claimed from CN201410180405.8A external-priority patent/CN103926128B/zh
Application filed by Хохай Юниверсити filed Critical Хохай Юниверсити
Publication of RU2015144375A publication Critical patent/RU2015144375A/ru
Application granted granted Critical
Publication of RU2625230C2 publication Critical patent/RU2625230C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F224/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2806Means for preparing replicas of specimens, e.g. for microscopal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/227Explosives, e.g. combustive properties thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром ≤0,074 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм. Бесцветная поровая жидкость представлена водой. Смешивают сначала фторсодержащий полимер и кубиковый лед, равномерно перемешивают в криогенной лаборатории при температуре от -6,0°С до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу помещают в плотномер для затвердевания со значением степени переуплотнения 0,8-3 и загружают в криогенный бокс при температуре -20°С, где замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта, в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 5 з.п. ф-лы, 2 ил.

Description

Область техники
Настоящее изобретение относится к прозрачному грунту, в частности к прозрачному мерзлому грунту, способу его получения и применению.
Уровень техники
В модельных испытаниях в рамках инженерной геологии исследования закона внутреннего преобразования и механизма грунтовых массивов имеют огромное значение в изучении проблем инженерной геологии. В частности, регионы с вечномерзлым, сезонно-мерзлым и временно мерзлым грунтом на Земле занимают приблизительно 50% суши, причем область распространения вечномерзлого грунта составляет 35000000 км2, что примерно равно 2% суши. Мерзлый грунт является грунтовым массивом, чрезвычайно чувствительным к температуре. По мере повышения температуры его прочность явно снижается, а прочность после оттаивания грунтового массива падает в геометрической прогрессии по сравнению с замерзанием. Результаты связанных исследований показали, что холмистые участки абдоминальных зон регионов с вечномерзлым грунтом на Цинхай-Тибетском нагорье и т.п. могут вызывать оползание на уклоне более 3° в процессе оттаивания. Когда мерзлый грунт поверхностного слоя оттаивает из-за повышения температуры окружающей среды в условиях высокой льдистости, сползающий грунтовый массив представляет собой смесь кусков твердой породы и жидкой грязи и легко может привести к тому, что плоскость скольжения будет практически параллельной поверхности откоса. К примеру, в районе между Вудаолян и Тотохе возле мильного столба мильного участка К3035 Цинхай-Тибетского шоссе с углом откоса приблизительно 7° наблюдается местное явление оползания вследствие оттаивания с продольным направлением 95 м и максимальной шириной 72 м. Таким образом, необходимо разработать исследования характеристик оттаивания/оползания и механизма откосов под малым углом.
В документе «Исследование на модельном опыте оползания вследствие оттаивания в районе вечной мерзлоты Цинхай-Тибетского нагорья» (Цзинь Дэу и соавт. Инженерные изыскания, 2006 г., 9: с. 1-6) спроектирована физическая модель (сжата до масштаба 1:10), схожая с геометрией и структурой откоса таящего оползневого массива на мильном участке К3035 Цинхай-Тибетского шоссе; процесс испытания был разделен на несколько этапов обработки ледника и изготовления ледяного слоя, раскатки и получения проб грунта; корректировку и калибровку контрольно-измерительных приборов, изготовление модели масштаба откоса в опытном боксе с погружением приборов; специальный ледяной слой использовался в процессе испытания для контроля температуры, температура была установлена на -1°C, другой слой использовался для контроля температуры грунтового массива; всего было выполнено четыре периодических цикла замораживания/оттаивания, и благодаря предварительно заложенным стандартным датчикам температуры, датчикам смещения и тензометрам можно было измерить поле смещения и поле температуры откоса. Несмотря на то что стандартный способ измерения деформации грунтового массива заключается в установке нескольких датчиков в грунтовый массив и смещении некоторых дискретных точек, датчики легко подвергаются воздействию нарушения внешней среды, результаты измерения зачастую неточны, а поле смещения при непрерывной деформации грунтового массива невозможно представить в полной мере. Современные технологии цифрового изображения предусматривают измерение только макроскопической или предельной деформации грунтового массива и не могут наглядно показать его внутреннюю деформацию; несмотря на то что для измерения непрерывной деформации грунтового массива можно использовать технологии рентгеновского, γ-лучевого, компьютерного томографического сканирования (САТ-сканирование) и магнитно-резонансной томографии (МРТ), большие расходы ограничивают широкое применение этих технологий.
Управляемое взрывание - это метод взрывания, который предотвращает общие опасности падающих предметов, землетрясения, воздушной ударной волны, дыма, шума и т.д., которые образуются из-за взрыва объекта, который подлежит подрыву с помощью взрывчатки и определенных технических средств, и широко применяется в инженерном строительстве, например направленное взрывание, контурное взрывание, гладкое взрывание, взрывание пробки в породе, миллисекундное управляемое взрывание; взрывание для демонтажа, статическое взрывание, взрывание с заполнением, свободное взрывание, взрывание с использованием горючего вещества и т.д. Направленное взрывание - это метод взрывания, в котором используется взрывное действие взрывчатки для отбрасывания грунта и породы с определенного участка на другой участок и образования определенной формы. Оно преимущественно используется для ремонта дамб (водозадерживающих или хвостовых дамб), дорожно-строительных работ (дорожные насыпи и дорожное полотно) и планировки местности (строительство на землях для промышленной застройки и сельскохозяйственных землях). В частности, оно подходит для рабочих зон с дефицитом рабочей силы, неудобной транспортной развязкой и отсутствием строительных площадок.
В документе 1 «Исследование воронки взрывания мерзлого грунта и модельное испытание взрываемости мерзлого грунта» (Ма Циньюн. Журнал Китайского угольного сообщества, 1997, 22 (3): 288-293) раскрыта программа модельных испытаний с взрыванием воронок в мерзлом глинистом и песчаном грунте при разных температурах; в документе 2 «Предварительное исследование параметров взрывания для проходки шахтного ствола в мерзлом грунте» (Цзун Ци, Ян Луцзюнь, Инженерное взрывание, 1999, 5 (2): 25-29) и документе 3 «Исследование гладкого взрывания в мерзлом грунте шахтного ствола путем моделирования» (Цзянь Юйсун, Журнал Хуайнаньского технологического института, 2001, 21 (4): 31-34) раскрыта программа модельных испытаний взрывания с врубом и гладкого взрывания мерзлого песчаного грунта; а в документе 4 «Исследование путем испытаний и способов взрывания вечномерзлых и искусственно замороженных грунтов» (Ма Циньюн, Журнал гражданского строительства, 2004, 37 (9): 75-78) комплексно представлены исследовательские наработки и достижения испытаний по взрыванию воронок, взрыванию с врубом и гладкому взрыванию мерзлого грунта. Все эти программы модельных испытаний основаны на стандартных средствах испытаний и не могут эффективно достичь особой морфологии излома мерзлого грунта после взрывных испытаний. Несмотря на то что стандартный способ измерения деформации грунтового массива заключается в установке нескольких датчиков в грунтовый массив и смещении некоторых дискретных точек, датчики легко подвергаются воздействию нарушения внешней среды, результаты измерения зачастую неточны, а поле смещения при непрерывной деформации грунтового массива невозможно представить в полной мере. Современные технологии цифрового изображения предусматривают измерение только макроскопической или предельной деформации грунтового массива и не могут наглядно показать его внутреннюю деформацию; несмотря на то что для измерения непрерывной деформации грунтового массива можно использовать технологии рентгеновского, γ-лучевого, компьютерного томографического сканирования (САТ-сканирование) и магнитно-резонансной томографии (МРТ), большие расходы ограничивают широкое применение этих технологий.
Искусственный синтез прозрачного грунта в сочетании с технологиями оптического наблюдения и обработки изображений используется для того, чтобы наглядно показать внутреннюю деформацию грунтового массива, имеет низкие расходы, прост в эксплуатации и может широко применяться в модельных испытаниях в рамках инженерной геологии для исследования внутреннего закона и механизма грунтового массива, что имеет огромное значение в изучении проблем инженерной геологии. Предпосылкой является получение искусственно синтезированного грунта с высокой прозрачностью и свойствами, схожими с естественным грунтовым массивом. В настоящее время для получения прозрачного грунта применяются различные материалы, и появились некоторые достижения в этой области. Тем не менее, текущие технические данные показывают, что в твердых частицах для получения прозрачного грунта зачастую используются кварц с коэффициентом преломления твердых частиц 1,44-1,46 и боросиликатное стекло с коэффициентом преломления твердых частиц 1,46-1,48, что намного выше коэффициента преломления воды 1,33 и льда 1,31. Таким образом, применение существующих твердых частиц для получения прозрачного грунта не дает возможность создать пробу насыщенного прозрачного мерзлого грунта.
Фторсодержащий полимер представлен тефлоном AF 1600 производства American DuPont Company с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3. Он устойчив к действию высоких и низких температур, химической коррозии, не вязок, не токсичен, не загрязняет окружающую среду, имеет высокую прозрачность и низкий коэффициент преломления, газопроницаемую структуру, гидрофобность и химическую инертность, а по своим свойствам подобен естественному грунтовому массиву. Тефлон AF 1600 можно растворять во фтористых растворителях, преобразовывать в пленку или формовать путем плавкого сжатия. В настоящее время он преимущественно используется в облицовке или пропитке, либо преобразуется в волокна, а готовое жидкое ядро также применяется в различных сферах абсорбции, флуоресценции, рамановском спектральном анализе, датчиках газа и т.д. Фторсодержащий полимер имеет высокую прозрачностью и коэффициент преломления, как у льда, поэтому его можно использовать как прозрачный твердый материал при приготовлении прозрачного мерзлого грунта.
Сущность изобретения
Цель изобретения: для решения технических проблем на предшествующем уровне техники настоящее изобретение предусматривает прозрачный мерзлый грунт, способ его получения и применение таким образом, чтобы готовый прозрачный мерзлый грунт мог имитировать свойства естественной прозрачной мерзлой глины.
Техническое содержание: чтобы достичь вышеуказанной технической цели, данное изобретение предусматривает прозрачный мерзлый грунт, отличающийся тем, что его получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости на этапах приготовления материалов, смешивания, вакуумирования, затвердевания и замораживания, а количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб; бесцветная поровая жидкость представлена водой, фторсодержащий полимер представлен частицами диаметром ≤0,074 мм с неправильной формой и является тефлоном AF 1600 производства American DuPont Company с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, диаметр частиц кубикового льда составляет ≤0,074 мм; физические свойства прозрачного мерзлого грунта следующие: плотность - 1,63-2,1 г/см3, удельная масса - 15-20 кН/м3 и значение степени переуплотнения - 0,8-3; механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3.
Для снижения влияния на коэффициент преломления в качестве жидкости используется очищенная вода.
Изобретение также предусматривает способ получения вышеуказанного прозрачного мерзлого грунта, отличающийся тем, что он включает следующие этапы:
(1) приготовление материалов: количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб; фторсодержащий полимер представлен частицами диаметром ≤0,074 мм, подвергается очистке от примесей, сушится в сушильном шкафу, причем его частицы имеют неправильную форму, и является тефлоном AF 1600 производства American DuPont Company с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3; кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм; бесцветная поровая жидкость представлена водой;
(2) смешивание: сначала фторсодержащий полимер и кубиковый лед равномерно перемешивают в криогенной лаборатории при температуре от -6,0°C до -8,0°C, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем; затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом;
(3) вакуумирование: устройство вакуумирования используется для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния; и
(4) затвердевание: проба помещается в плотномер со значением степени переуплотнения 0,8-3; и
(5) замораживание: проба загружается в криогенный бокс при температуре -20°C и замораживается на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3.
На этапе (1) в качестве жидкости используется очищенная вода.
Данное изобретение также предусматривает применение вышеуказанного прозрачного мерзлого грунта в модельном испытании направленного взрывания мерзлого грунта.
Вышеописанное применение включает следующие процессы:
(1) моделирование: согласно требованиям к испытаниям и размерам модели откоса естественного мерзлого грунта выполнены прозрачный опытный бассейн и модель откоса прозрачного мерзлого грунта, которая имитирует модель откоса естественного мерзлого грунта, причем модель откоса прозрачного мерзлого грунта состоит из прозрачного мерзлого грунта и включает шпуры; а прозрачный опытный бассейн выполнен из прозрачного высокопрочного стекла;
(2) монтаж: модель откоса прозрачного мерзлого грунта загружается в прозрачный опытный бассейн, и в соответствии с планом испытания детонаторы и взрывчатка загружаются в отведенные шпуры; цифровые камеры, которые способны полностью охватить пространство прозрачного опытного бассейна, устанавливаются на передней, боковой и верхней смотровой поверхности снаружи прозрачного опытного бассейна, и они соединяются с устройством обработки по линиям передачи данных;
(3) испытание: детонаторы и взрывчатка приводятся в действие, процесс направленного взрывания модели откоса прозрачного мерзлого грунта для образования искусственного откоса снимается и записывается цифровыми камерами, записанные данные передаются на устройство обработки по линиям передачи данных; и
(4) процесс (1) - процесс (3) повторяются, процессы направленного взрывания модели откоса прозрачного мерзлого грунта в условиях разных естественных высот откоса, диаметров шпуров, глубины и количества взрывчатки передаются на устройство обработки, чтобы проанализировать механизм направленного взрывания мерзлого грунта и завершить испытание модели откоса мерзлого грунта направленным взрыванием.
Данное изобретение также предусматривает применение вышеуказанного прозрачного мерзлого грунта в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания.
(1) Моделирование: согласно требованиям к испытаниям и размерам модели мерзлого грунта дорожной насыпи выполнены прозрачный опытный бассейн и модель прозрачного мерзлого грунта дорожной насыпи, которая имитирует модель мерзлого грунта дорожной насыпи, причем модель прозрачного мерзлого грунта дорожной насыпи состоит из прозрачной мерзлой почвенной массы и предварительно оснащена датчиками температуры; а прозрачный опытный бассейн выполнен из органического стекла;
(2) монтаж: в криогенной лаборатории модель прозрачного мерзлого грунта дорожной насыпи загружается в прозрачный опытный бассейн, и источник нагрева помещается на прозрачный опытный бассейн поверх солнечной стороны модели прозрачного мерзлого грунта дорожной насыпи; снаружи прозрачного опытного бассейна одна сторона, параллельная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи, оснащается лазерным источником, а другая сторона, перпендикулярная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи, оснащается цифровой камерой, причем цифровая камера и датчик температуры соединены с устройством обработки по линиям передачи данных; осевая линия цифровой камеры перпендикулярна осевой линии лазерного источника, а точка пересечения осевых линий цифровой камеры и лазерного источника находится внутри прозрачного опытного бассейна; и
(3) испытание: включается лазерный источник, проверяется яркость плоскости касания частиц, образованной внутри модели прозрачного мерзлого грунта дорожной насыпи, и угол лазера регулируется таким образом, чтобы он падал перпендикулярно на плоскость касания и проходил через центр продольного направления модели прозрачного мерзлого грунта дорожной насыпи; включается цифровая камера, и ее объектив регулируется таким образом, чтобы она могла охватывать солнечную и теневую сторону модели прозрачного мерзлого грунта дорожной насыпи; т.е. лазерный источник освещает поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи, и при этом поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи, освещаемое лазерным источником, записывается цифровой камерой; согласно плану опыта источник нагрева периодически включается, процесс оползания на солнечной стороне модели прозрачного мерзлого грунта дорожной насыпи вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровой камерой, а записанные данные передаются на устройство обработки по линии передачи данных.
Предпочтительно, на этапе (2) на солнечной стороне размещается теплоизоляционный материал, а у ее подножия размещается порог; теплоизоляционный материал представлен слоем щебня, который дополнен частицами фторсодержащего полимера толщиной 5-15 мм или полиэтиленовой пенопластовой сеткой, а порог выполнен из органического стекла; на этапе (3) согласно плану опыта источник нагрева периодически включается, процесс оползания на солнечной стороне модели прозрачного мерзлого грунта дорожной насыпи вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровой камерой, записанные данные передаются на устройство обработки по линии передачи данных, и оценивается влияние мер по обработке на устранение явления оттаивания/оползания.
Преимущества: по сравнению с предыдущим уровнем техники, в настоящем изобретении применяется фторсодержащий полимер тефлон AF 1600 с коэффициентом преломления, аналогичным коэффициенту преломления льда, а также кубиковый лед и вода для получения прозрачного мерзлого грунта, причем готовый грунт имеет схожие свойства с естественным мерзлым грунтовым массивом, может по большей части заменять естественный мерзлый грунт, имитирует свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, включая имитирование направленного взрывания и оползания мерзлого грунта вследствие оттаивания, показывает точные результаты измерения и может наглядно представить внутреннюю деформацию грунтового массива, а кроме того, низкозатратен и прост в эксплуатации.
Описание чертежей
На фиг. 1 представлена схема испытательного устройства для направленного взрывания модели откоса мерзлого грунта; и
На фиг. 2 представлена схема испытательного устройства для оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания.
Особые варианты осуществления изобретения
Пример 1. Получение прозрачного мерзлого грунта
Применение фторсодержащего полимера в получении прозрачного мерзлого грунта: он используется в качестве прозрачного твердого материала в получении прозрачного мерзлого грунта, имеет вид частиц диаметром ≤0,074 мм с неправильной формой и представлен тефлоном AF 1600 производства American DuPont Company с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3.
Способ получения прозрачного мерзлого грунта из вышеуказанного фторсодержащего полимера включает следующие этапы:
(1) приготовление материалов: количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб; фторсодержащий полимер представлен частицами диаметром ≤0,074 мм, подвергается очистке от примесей, сушится в сушильном шкафу, причем его частицы имеют неправильную форму, и является тефлоном AF 1600 производства American DuPont Company с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3; кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм; бесцветная поровая жидкость представлена водой, а для того чтобы сохранить коэффициент преломления, на этапе (1) по настоящему изобретению эта вода представлена очищенной водой;
количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб;
проба по данному примеру обладает содержанием воды 100%, плотностью в сухом состоянии 0,55 г/см3 и размером пробы (высота 125,0 мм и диаметр 61,8 мм), температура в криогенной лаборатории составляет -6,0°C, масса частиц фторсодержащего полимера (масса частиц = плотность в сухом состоянии × объем пробы), необходимая для приготовления пробы, по расчетам составляет 206,0 г, а общее количество воды (содержание воды 100,0%, масса общего количества воды равна массе частиц) составляет 206,0 г; и так как глина обладает содержанием незамороженной воды примерно 15% при температуре -6,0°C, масса очищенной воды, добавленной в процессе приготовления пробы, должна составлять 30,9 г, а масса кубикового льда - 175,1 г;
(2) смешивание: сначала частицы фторсодержащего полимера и кубиковый лед, определенные на этапе (1), равномерно перемешивают в криогенной лаборатории при температуре от -6,0 до -8°C, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем; затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом;
в примере частицы фторсодержащего полимера и кубиковый лед, определенные на этапе (1), сначала равномерно перемешивают в криогенной лаборатории при температуре -6,0°C, загружают в форму по 3 партии для приготовления пробы и утрамбовывают слой за слоем до расчетной относительной плотности; затем в форму добавляют очищенную воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом;
(3) вакуумирование: устройство вакуумирования используется для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния; и
(4) затвердевание: проба помещается в плотномер для затвердевания со значением степени переуплотнения 0,8-3; и
значение степени переуплотнения по примеру составляет 1,5; и
(5) замораживание: проба загружается в криогенный бокс при температуре -20°C и замораживается на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,93 г/см3 и удельная масса - 19,1 кН/м3; а механические свойства следующие: угол внутреннего трения - 20°, связность - 3 кПа, модуль упругости - 9 МПа и коэффициент Пуассона - 0,3.
Прозрачный мерзлый грунт по данному примеру может использоваться для имитирования насыщенной мерзлой глины.
Пример 2. Получение прозрачного мерзлого грунта
Этапы приготовления подобны этапам в примере 1, но разница заключается в том, что на этапе (1) выбраны частицы фторсодержащего полимера плотностью 2,1 г/см3;
на этапе (4) значение степени переуплотнения составляет 0,8; и
физические свойства прозрачного мерзлого грунта, полученного по данному примеру, следующие: плотность - 1,83 г/см3 и удельная масса - 18 кН/м3; а механические свойства следующие: угол внутреннего трения - 19°, связность - 1 кПа, модуль упругости - 5,2 МПа и коэффициент Пуассона - 0,22.
Прозрачный мерзлый грунт по данному примеру может использоваться для имитирования насыщенной мерзлой глины.
Пример 3. Применение прозрачного мерзлого грунта в модельном испытании направленного взрывания мерзлого грунта
Испытательное устройство для направленного взрывания модели откоса мерзлого грунта включает прозрачный опытный бассейн 1-1, который оснащен моделью откоса прозрачного грунта 1-2, имитирующей естественный откос 1-4; модель откоса прозрачного мерзлого грунта 1-2 также оснащена шпурами 1-3, в которых находятся взрывчатка и детонаторы; цифровые камеры 1-6, которые способны полностью охватить пространство прозрачного опытного бассейна 1-1, устанавливаются на передней, боковой и верхней смотровой поверхности снаружи прозрачного опытного бассейна 1-1, и они соединяются с устройством обработки 1-7 по линиям передачи данных; процесс направленного взрывания модели откоса прозрачного мерзлого грунта 1-2 для образования искусственного откоса 1-5 в условиях разных естественных высот откоса 1-4, диаметров шпуров, глубины и количества взрывчатки снимается цифровыми камерами 1-6, а записанные данные передаются на устройство обработки 1-7, чтобы завершить испытание направленного взрывания модели откоса мерзлого грунта. Прозрачный опытный бассейн 1-1 по настоящему изобретению выполнен из прозрачного высокопрочного стекла.
Модель откоса прозрачного мерзлого грунта 1-2 по данному изобретению состоит из прозрачной мерзлой почвенной массы, приготовленной по примерам 1 и 2 в прозрачном опытном бассейне с необходимыми размерами.
Цифровые камеры 1-6 по настоящему изобретению - это высокоскоростные цифровые камеры высокого разрешения с разрешением 50-500 w (в данном изобретении применяется 500 w), выдержкой кадра, количеством кадров 25 и временем выдержки 10 мкс - 10 с (в данном изобретении применяется 10 мкс).
Способ испытания направленного взрывания модели откоса мерзлого грунта включает следующие процессы: (1) моделирование: согласно требованиям к испытаниям и размерам модели откоса естественного прозрачного мерзлого грунта выполнены прозрачный опытный бассейн 1-1 и модель откоса прозрачного мерзлого грунта 1-2, которая имитирует модель откоса естественного мерзлого грунта, причем модель откоса прозрачного мерзлого грунта 1-2 состоит из прозрачного мерзлого грунта и оснащена шпурами 1-3; а прозрачный опытный бассейн 1-1 выполнен из прозрачного высокопрочного стекла; и сначала согласно требованиям к испытаниям изготавливается форма, имитирующая модель естественного откоса, а количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам формы; в настоящем примере используются условия примера 1 для получения прозрачного мерзлого грунта, и выполняется модель откоса прозрачного мерзлого грунта 1-2, которая имитирует модель откоса естественного мерзлого грунта;
(2) монтаж: модель откоса прозрачного мерзлого грунта 1-2 загружается в прозрачный опытный бассейн 1-1, и в соответствии с планом испытания детонаторы и взрывчатка загружаются в отведенные шпуры 1-3, а количество взрывчатки определяется по плану испытания; цифровые камеры 1-6, которые способны полностью охватить пространство прозрачного опытного бассейна 1-1, устанавливаются на передней, боковой и верхней смотровой поверхности снаружи прозрачного опытного бассейна 1-1, и они соединяются с устройством обработки 1-7 по линиям передачи данных; и
цифровые камеры 1-6 по настоящему изобретению - это высокоскоростные цифровые камеры высокого разрешения с разрешением 500 w, выдержкой кадра, количеством кадров 25 и временем выдержки 10 мкс;
(3) испытание: детонаторы и взрывчатка приводятся в действие, процесс направленного взрывания модели откоса прозрачного мерзлого грунта 1-2 для образования искусственного откоса снимается и записывается цифровыми камерами 1-6, а записанные данные передаются на устройство обработки 1-7 по линии передачи данных; и для обработки данных изображения, полученных цифровыми камерами 1-6, в испытании применяется технология PIV (анемометрия по изображениям частиц) наряду с программным обеспечением для обработки изображений PIVview2C; и
(4) процесс (1) - процесс (3) повторяются, процессы направленного взрывания модели откоса прозрачного мерзлого грунта 1-2 в условиях разных естественных высот откоса 1-4, диаметров шпуров 1-3, глубины и количества взрывчатки передаются на устройство обработки 1-7, чтобы проанализировать механизм направленного взрывания мерзлого грунта и завершить испытание модели откоса мерзлого грунта 1-2 направленным взрыванием.
Пример 4. Применение прозрачного мерзлого грунта в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Испытательное устройство для оползания мерзлого грунта дорожной насыпи вследствие оттаивания включает криогенную лабораторию 2-1, которая оснащена прозрачным опытным бассейном 2-5, в свою очередь оснащенным моделью прозрачного мерзлого грунта дорожной насыпи 2-13, имитирующей дорожную насыпь 2-9; модель прозрачного мерзлого грунта дорожной насыпи 2-13 предварительно оснащена датчиком температуры 2-12, а на солнечной стороне дорожной насыпи 2-9 размещается источник нагрева 2-6, установленный на прозрачном опытном бассейне 2-5; на солнечной стороне 2-7 размещается теплоизоляционный материал 2-11, а у ее подножия размещается порог 2-10; снаружи прозрачного опытного бассейна 2-5 одна сторона, параллельная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи 2-13, оснащается лазерным источником 2-2 (находится в одной части теневой стороны 2-8 в примере), а другая сторона, перпендикулярная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи 2-13, оснащается цифровой камерой 2-3, причем цифровая камера 2-3 и датчик температуры 2-12 соединены с устройством обработки 2-4 по линии передачи данных; осевая линия цифровой камеры 2-3 перпендикулярна осевой линии лазерного источника 2-2, а точка пересечения осевых линий цифровой камеры 2-3 и лазерного источника 2-2 находится внутри прозрачного опытного бассейна 2-5; лазерный источник 2-2 освещает поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи 2-13, и при этом поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи 2-13, освещаемое лазерным источником 2-2, записывается цифровой камерой 2-3.
Модель прозрачного мерзлого грунта дорожной насыпи 2-13 по настоящему изобретению выполнена из прозрачного мерзлого грунта, количество фторсодержащего полимера, кубикового льда и очищенной воды рассчитывается согласно условиям испытаний и размерам проб в форме, а модель прозрачного мерзлого грунта дорожной насыпи 2-13 подготавливают в форме, применяя способ получения прозрачного мерзлого грунта по примеру 2.
Когда углы наклона солнечной стороны 2-7 и теневой стороны 2-8 превышают 4-9°, существует вероятность возникновения оползания вследствие оттаивания. Угол наклона солнечной стороны 2-7 модели прозрачного мерзлого грунта дорожной насыпи 2-13, полученной по примеру, составляет 31°, а угол наклона теневой стороны 2-8 - 36°.
Прозрачный опытный бассейн 2-5 и порог 2-10 по настоящему изобретению выполнены из органического стекла; а теплоизоляционный материал 2-11 - это слой щебня, дополненный частицами фторсодержащего полимера толщиной 5-15 мм или полиэтиленовой пенопластовой сеткой.
Источник нагрева 2-6 по настоящему изобретению - это линейный провод теплового сопротивления, а максимальная температура возле провода сопротивления может достигать 25-28°C.
Лазерный источник 2-2 по данному изобретению - это внутрирезонаторное гелий-неоновое лазерное устройство, мощность которого может составлять 50-500 мВт (500 мВт в данном примере).
Цифровые камеры 1-6 по настоящему изобретению - это высокоскоростные цифровые камеры высокого разрешения с разрешением 50-500 w (500 w в данном примере), выдержкой кадра, количеством кадров 25 и временем выдержки 10 мкс - 10 с (10 мкс в данном примере).
В частности, способ испытания оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания включает следующие процессы:
(1) моделирование: прозрачный опытный бассейн 2-5 и модель прозрачного мерзлого грунта дорожной насыпи 2-3, имитирующая модель мерзлого грунта дорожной насыпи, выполнены согласно требованиям к испытаниям и размерам модели мерзлого грунта дорожной насыпи; модель мерзлого грунта дорожной насыпи 2-13 состоит из прозрачной мерзлой почвенной массы и предварительно оснащена датчиком температуры 2-12; прозрачный опытный бассейн 2-5 выполнен из органического стекла;
(2) монтаж: в криогенной лаборатории 2-1 модель прозрачного мерзлого грунта дорожной насыпи 2-13 загружается в прозрачный опытный бассейн 2-5, и источник нагрева 2-6 помещается на прозрачный опытный бассейн 2-5 поверх солнечной стороны 2-7 модели прозрачного мерзлого грунта дорожной насыпи 2-13; снаружи прозрачного опытного бассейна 2-5 одна сторона, параллельная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи 2-13, оснащается лазерным источником 2-2 (находится в одной части теневой стороны 2-8 в примере), а другая сторона, перпендикулярная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи 2-13, оснащается цифровой камерой 2-3, причем цифровая камера 2-3 и датчик температуры 2-12 соединены с устройством обработки 2-4; осевая линия цифровой камеры 2-3 перпендикулярна осевой линии лазерного источника 2-2, а точка пересечения осевых линий цифровой камеры 2-3 и лазерного источника 2-2 находится внутри прозрачного опытного бассейна 2-5; и
источник нагрева 2-6 по настоящему изобретению - это линейный провод теплового сопротивления, а максимальная температура возле провода сопротивления может достигать 25-28°C.
Лазерный источник 2-2 по данному изобретению - это внутрирезонаторное гелий-неоновое лазерное устройство, мощность которого может составлять 50-500 мВт (500 мВт в данном примере). Цифровые камеры 1-6 по настоящему изобретению - это высокоскоростные цифровые камеры высокого разрешения с разрешением 50-500 w (500 w в данном примере), выдержкой кадра, количеством кадров 25 и временем выдержки 10 мкс - 10 с (10 мкс в данном примере);
(3) испытание: включается лазерный источник 2-2, проверяется яркость плоскости касания частиц, образованной внутри модели прозрачного мерзлого грунта дорожной насыпи 2-13, и угол лазера регулируется таким образом, чтобы он падал перпендикулярно на плоскость касания и проходил через центр продольного направления модели прозрачного мерзлого грунта дорожной насыпи 2-13; включается цифровая камера 2-3, и ее объектив регулируется таким образом, чтобы она могла охватывать солнечную 2-7 и теневую 2-8 сторону модели прозрачного мерзлого грунта дорожной насыпи 2-13; т.е. лазерный источник 2-2 освещает поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи 2-13, и при этом поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи 2-13, освещаемое лазерным источником, записывается цифровой камерой 2-3; согласно плану опыта источник нагрева 2-6 периодически включается, процесс оползания на солнечной стороне 2-7 модели прозрачного мерзлого грунта дорожной насыпи 2-13 вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровой камерой 2-3, а записанные данные передаются на устройство обработки 2-4 по линии передачи данных.
Для обработки данных изображения, полученных цифровыми камерами 1-6, в испытании применяется технология PIV (анемометрия по изображениям частиц) наряду с программным обеспечением для обработки изображений PIVview2C; и чтобы оценить влияние мер по обработке на устранение явления оттаивания/оползания, на солнечной стороне размещается теплоизоляционный материал 2-11, а у ее подножия размещается порог 2-10; теплоизоляционный материал 2-11 представлен слоем щебня, который дополнен частицами фторсодержащего полимера толщиной 5-15 мм или полиэтиленовой пенопластовой сеткой (слой щебня, дополненный частицами фторсодержащего полимера толщиной 10 мм в примере), а порог выполнен из органического стекла; на этапе (3) согласно плану опыта источник нагрева 2-6 периодически включается, процесс оползания на солнечной стороне 2-7 модели прозрачного мерзлого грунта дорожной насыпи 2-13 вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровой камерой 2-3, записанные данные передаются на устройство обработки 2-4 по линии передачи данных, и оценивается влияние мер по обработке на устранение явления оттаивания/оползания.

Claims (22)

1. Прозрачный мерзлый грунт, отличающийся тем, что его получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости на этапах приготовления материалов, смешивания, вакуумирования, затвердевания и замораживания, а количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб; бесцветная поровая жидкость представлена водой, фторсодержащий полимер представлен частицами диаметром ≤0,074 мм неправильной формы из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3; диаметр частиц кубикового льда составляет ≤0,074 мм; физические свойства прозрачного мерзлого грунта следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3.
2. Прозрачный мерзлый грунт по п. 1, отличающийся тем, что в качестве жидкости используется очищенная вода.
3. Способ получения прозрачного мерзлого грунта по п. 1, отличающийся тем, что он включает следующие этапы:
(1) приготовление материалов: количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывается согласно условиям испытаний и размерам проб; фторсодержащий полимер, представленный частицами неправильной формы диаметром ≤0,074 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу; кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм; бесцветная поровая жидкость представлена водой;
(2) смешивание: сначала фторсодержащий полимер и кубиковый лед равномерно перемешивают в криогенной лаборатории при температуре от -6,0°С до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем; затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом;
(3) вакуумирование: устройство вакуумирования используется для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния;
(4) затвердевание: проба помещается в плотномер для затвердевания со значением степени переуплотнения 0,8-3; и
(5) замораживание: проба загружается в криогенный бокс при температуре -20°С и замораживается на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие:
плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3.
4. Способ получения прозрачного мерзлого грунта по п. 3, отличающийся тем, что на этапе (1) в качестве жидкости используется очищенная вода.
5. Применение прозрачного мерзлого грунта по п. 1 в модельном испытании направленного взрывания мерзлого грунта.
6. Применение по п. 5, отличающееся тем, что оно включает следующие процессы:
(1) моделирование: согласно требованиям к испытаниям и размерам модели откоса естественного мерзлого фунта выполнены прозрачный опытный бассейн и модель откоса прозрачного мерзлого грунта, которая имитирует модель откоса естественного мерзлого грунта, причем модель откоса прозрачного мерзлого грунта состоит из прозрачного мерзлого грунта и включает шпуры; а прозрачный опытный бассейн выполнен из прозрачного высокопрочного стекла;
(2) монтаж: модель откоса прозрачного мерзлого грунта загружается в прозрачный опытный бассейн, и в соответствии с планом испытания детонаторы и взрывчатка загружаются в отведенные шпуры; цифровые камеры, которые способны полностью охватить пространство прозрачного опытного бассейна, устанавливаются на передней, боковой и верхней смотровой поверхности снаружи прозрачного опытного бассейна, и они соединяются с устройством обработки по линиям передачи данных;
(3) испытание: детонаторы и взрывчатка приводятся в действие, процесс направленного взрывания модели откоса прозрачного мерзлого грунта для образования искусственного откоса снимается и записывается цифровыми камерами; записанные данные передаются на устройство обработки по линиям передачи данных; и
(4) процесс (1) - процесс (3) повторяются, процессы направленного взрывания модели откоса прозрачного мерзлого грунта в условиях разных естественных высот откоса, диаметров шпуров, глубины и количества взрывчатки передаются на устройство обработки, чтобы проанализировать механизм направленного взрывания мерзлого грунта и завершить испытание модели откоса мерзлого грунта направленным взрыванием.
7. Применение прозрачного мерзлого грунта по п. 1 в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания.
8. Применение по п. 7, отличающееся тем, что оно включает следующие этапы:
(1) моделирование: согласно требованиям к испытаниям и размерам модели мерзлого грунта дорожной насыпи выполнены прозрачный опытный бассейн и модель прозрачного мерзлого грунта дорожной насыпи, которая имитирует модель мерзлого грунта дорожной насыпи, причем модель прозрачного мерзлого грунта дорожной насыпи состоит из прозрачной мерзлой почвенной массы и предварительно оснащена датчиками температуры; а прозрачный опытный бассейн выполнен из органического стекла;
(2) монтаж: в криогенной лаборатории модель прозрачного мерзлого грунта дорожной насыпи загружается в прозрачный опытный бассейн, и источник нагрева помещается на прозрачный опытный бассейн поверх солнечной стороны модели прозрачного мерзлого грунта дорожной насыпи; снаружи прозрачного опытного бассейна одна сторона, параллельная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи, оснащается лазерным источником, а другая сторона, перпендикулярная поперечному сечению модели прозрачного мерзлого грунта дорожной насыпи, оснащается цифровой камерой, причем цифровая камера и датчик температуры соединены с устройством обработки по линии передачи данных; осевая линия цифровой камеры перпендикулярна осевой линии лазерного источника, а точка пересечения осевых линий цифровой камеры и лазерного источника находится внутри прозрачного опытного бассейна; и
(3) испытание: включается лазерный источник, проверяется яркость плоскости касания частиц, образованной внутри модели прозрачного мерзлого грунта дорожной насыпи, и угол лазера регулируется таким образом, чтобы он падал перпендикулярно на плоскость касания и проходил через центр продольного направления модели прозрачного мерзлого грунта дорожной насыпи; включается цифровая камера, и ее объектив регулируется таким образом, чтобы она могла охватывать солнечную и теневую сторону модели прозрачного мерзлого грунта дорожной насыпи; т.е. лазерный источник освещает поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи, и при этом поперечное сечение модели прозрачного мерзлого грунта дорожной насыпи, освещаемое лазерным источником, записывается цифровой камерой; согласно плану опыта источник нагрева периодически включается, процесс оползания на солнечной стороне модели прозрачного мерзлого грунта дорожной насыпи вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровыми камерами, а записанные данные передаются на устройство обработки по линии передачи данных.
9. Применение по п. 8, отличающееся тем, что на этапе (2) на солнечной стороне размещается теплоизоляционный материал, а у ее подножия размещается порог; теплоизоляционный материал представлен слоем щебня, который дополнен частицами фторсодержащего полимера толщиной 5-15 мм или полиэтиленовой пенопластовой сеткой, а порог выполнен из органического стекла; на этапе (3) согласно плану опыта источник нагрева периодически включается, процесс оползания на солнечной стороне модели прозрачного мерзлого грунта дорожной насыпи вследствие оттаивания в периодическом цикле замораживания и оттаивания снимается и записывается цифровыми камерами, записанные данные передаются на устройство обработки по линии передачи данных, и оценивается влияние мер по обработке на устранение явления оттаивания/оползания.
RU2015144375A 2014-04-30 2014-05-27 Прозрачный мерзлый грунт, способ его получения и применения RU2625230C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201410177674.9 2014-04-30
CN201410179108.1 2014-04-30
CN201410177674.9A CN103926125A (zh) 2014-04-30 2014-04-30 含氟聚合物在配制透明冻土中的应用及所制的透明冻土和生产方法
CN201410179108.1A CN103926127B (zh) 2014-04-30 2014-04-30 冻土边坡模型制作及冻土边坡模型定向爆破试验装置和试验方法
CN201410180405.8 2014-04-30
CN201410180405.8A CN103926128B (zh) 2014-04-30 冻土路堤模型制作及冻土路堤模型热融滑坡试验装置和试验方法
PCT/CN2014/078522 WO2015165138A1 (zh) 2014-04-30 2014-05-27 一种透明冻土及其制备方法和应用

Publications (2)

Publication Number Publication Date
RU2015144375A RU2015144375A (ru) 2017-06-28
RU2625230C2 true RU2625230C2 (ru) 2017-07-12

Family

ID=54358079

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2015144375A RU2625230C2 (ru) 2014-04-30 2014-05-27 Прозрачный мерзлый грунт, способ его получения и применения
RU2015144374A RU2625231C2 (ru) 2014-04-30 2014-05-27 Прозрачный мерзлый грунт, способ его получения и применение такого грунта
RU2015144373A RU2620055C1 (ru) 2014-04-30 2014-05-27 Способ применения фторосодержащего полимера при производстве прозрачного мерзлого грунта

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2015144374A RU2625231C2 (ru) 2014-04-30 2014-05-27 Прозрачный мерзлый грунт, способ его получения и применение такого грунта
RU2015144373A RU2620055C1 (ru) 2014-04-30 2014-05-27 Способ применения фторосодержащего полимера при производстве прозрачного мерзлого грунта

Country Status (5)

Country Link
US (3) US9810608B2 (ru)
AU (3) AU2014378590B2 (ru)
GB (3) GB2535820B (ru)
RU (3) RU2625230C2 (ru)
WO (3) WO2015165138A1 (ru)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625230C2 (ru) * 2014-04-30 2017-07-12 Хохай Юниверсити Прозрачный мерзлый грунт, способ его получения и применения
WO2017144980A2 (fr) 2016-02-24 2017-08-31 Eklu-Natey Déo Systeme de calibrage des sols en vue de la mesure de leur portance
CN105842242B (zh) * 2016-03-14 2018-09-14 中国矿业大学 隧道围岩裂纹扩展及围岩突水过程的三维可视化模拟方法
CN107271473B (zh) * 2017-08-22 2023-06-30 中国科学院西北生态环境资源研究院 冻融过程对土壤环境影响的室内模拟系统
CN107389903B (zh) * 2017-08-24 2023-04-14 西南交通大学 滑面拉动式滑坡模型试验装置
CN107677788A (zh) * 2017-10-25 2018-02-09 贵州大学 一种用于岩体爆破的预先模拟试验装置
CN108680477B (zh) * 2018-01-12 2024-04-12 浙江大学 基于激光测试技术和透明土可视化的管涌试验装置及方法
CN108519477B (zh) * 2018-04-24 2023-10-13 西南科技大学 一种季节性冻土地区路基模型试验系统
CN108507878A (zh) * 2018-05-31 2018-09-07 中铁建设集团有限公司 一种土压力模拟测试装置及方法
CN109060530B (zh) * 2018-07-25 2023-09-08 中交第二航务工程局有限公司 可重复利用能施加预压荷载的载荷板模型试验装置及方法
CN109339124A (zh) * 2018-11-06 2019-02-15 重庆大学 一种基于透明土的山区路基水毁破坏变形的可视化模型试验装置
CN109324049A (zh) * 2018-11-06 2019-02-12 重庆大学 一种寒区路基冻融变形透明土可视化模型试验装置
CN109339123A (zh) * 2018-11-06 2019-02-15 重庆大学 一种用于群桩沉桩挤土效应的透明土试验装置
CN109541174A (zh) * 2018-11-06 2019-03-29 重庆大学 一种模拟海底滑坡的透明土变形可视化系统
CN109583088B (zh) * 2018-11-30 2022-12-13 长沙理工大学 随湿度变化的路堤内空间非均匀分布的回弹模量确定方法
CN109655322A (zh) * 2018-12-11 2019-04-19 上海建工集团股份有限公司 一种透明黏土的制备方法
CN109682853B (zh) * 2019-01-09 2024-02-13 南京大学 一种基于fbg的冻土含冰量分布式原位测量方法及装置
CN109946128A (zh) * 2019-03-08 2019-06-28 同济大学 一种路基土试件制备装置
CN109992841B (zh) * 2019-03-11 2022-12-06 长江水利委员会长江科学院 一种爆破块度空间全方位分区耦合数值仿真方法
CN110346368A (zh) * 2019-06-19 2019-10-18 山东大学 一种研究顶管法施工开挖面破裂机理的实验装置及方法
CN112412099A (zh) * 2019-08-05 2021-02-26 张继红 一种土工控制方法
CN110470515B (zh) * 2019-08-22 2022-06-24 中国石油大学(华东) 一种非成岩水合物粉砂岩芯制作装置及方法
CN110468892A (zh) * 2019-09-06 2019-11-19 中北大学 一种二维相似土模型试验装置和试验方法
CN110579427A (zh) * 2019-10-22 2019-12-17 桂林理工大学 一种裂隙-孔隙双渗透介质优势流模拟装置及实验方法
CN111398558B (zh) * 2020-01-22 2021-09-10 中国矿业大学 一种土体分层位移的测量装置及方法
CN111457803A (zh) * 2020-05-19 2020-07-28 华侨大学 一种地下空间模型循环爆破试验预埋炮孔及制作方法
CN111623720B (zh) * 2020-05-20 2022-03-18 中国电建集团华东勘测设计研究院有限公司 一种用于室内黏性土piv模型试验的试验装置及试验方法
CN111610111B (zh) * 2020-06-23 2023-03-10 中航勘察设计研究院有限公司 模拟冰雹条件下土体崩解试验方法
CN111829847A (zh) * 2020-07-21 2020-10-27 卢四光 一种常温条件下制备高含冰量冻土试样的方法
CN112034135B (zh) * 2020-08-06 2021-06-22 中国科学院广州能源研究所 一种天然气水合物分解地层形变测量装置
CN112284982B (zh) * 2020-11-23 2024-05-14 西南石油大学 堵水剂在多孔介质气水界面铺展和封堵性能的评价装置
CN112629993A (zh) * 2021-01-28 2021-04-09 东北电力大学 用于土壤冻结试验的冷冻装置及以其制备冻土模型的方法
CN112857246B (zh) * 2021-02-05 2022-11-15 中国矿业大学(北京) 一种利用地面三目视频匹配的露天矿边坡形变在线监测方法
CN113049449A (zh) * 2021-03-04 2021-06-29 太原理工大学 基于透明岩体的无机注浆材料扩散试验装置及方法
CN113237764B (zh) * 2021-04-07 2022-08-16 中国科学院武汉岩土力学研究所 一种基于透明胶结土的边坡加载与观测试验方法及装置
CN113405903B (zh) * 2021-05-19 2023-05-23 黄河水利委员会黄河水利科学研究院 一种沙土结构细观试验方法
CN113551956B (zh) * 2021-06-10 2023-06-06 重庆大学溧阳智慧城市研究院 一种全自动化透明土材料制配试验装置及其使用方法
CN113552315B (zh) * 2021-06-10 2023-12-26 重庆大学溧阳智慧城市研究院 一种多功能透明土模型试验主控系统装置及其使用方法
CN113848107A (zh) * 2021-09-15 2021-12-28 天津大学 一种适用于室内土工模型试验槽的饱和砂土制备装置及方法
CN113720668B (zh) * 2021-09-22 2024-02-13 安徽理工大学 一种用于制作冻土动态断裂韧度试样的装置
CN113720870B (zh) * 2021-09-22 2024-04-16 石家庄铁道大学 用于研究冻土局部变形特征的测验装置及测验方法
CN114002411B (zh) * 2021-11-05 2023-07-21 中国矿业大学 一种煤层为主含水层的煤层涌水量动态监测系统及方法
CN114624088B (zh) * 2022-03-14 2024-05-07 安徽理工大学 一种制作高含冰量冻土试样的装置及其使用方法
CN115142393A (zh) * 2022-08-10 2022-10-04 安徽远信工程项目管理有限公司 一种基于安全工程管理的地基防护监测的方法
CN115115627B (zh) * 2022-08-29 2022-11-15 山东省科霖检测有限公司 基于数据处理的土壤盐碱地监测方法
CN115326806B (zh) * 2022-10-17 2023-01-24 湖南大学 一种基于数字图像相关的示踪黏土研制方法
CN116298192B (zh) * 2023-02-09 2024-05-14 中国地质大学(武汉) 温度-降雨-库水联合下冻土滑坡模型试验系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1157452A1 (ru) * 1982-11-09 1985-05-23 Балаковский Филиал Саратовского Ордена Трудового Красного Знамени Политехнического Института Композици дл получени искусственного материала,моделирующего мерзлые грунты
JPH09304377A (ja) * 1996-05-08 1997-11-28 Kokudo Sogo Kensetsu Kk 軟弱土の代用としての透明な模擬土及びこれを用いた軟弱土内部の地盤試験方法
CN102230856A (zh) * 2011-03-21 2011-11-02 中国科学院寒区旱区环境与工程研究所 一种用于高含冰冻土试样的制备方法
CN103234473A (zh) * 2013-04-12 2013-08-07 哈尔滨工业大学深圳研究生院 一种可观测土体内部的渗水力模型试验装置和试验方法
CN103728166A (zh) * 2013-12-17 2014-04-16 河海大学 模拟水泥砂浆流变性能的透明胶砂拌合物及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1157452A (en) * 1915-07-24 1915-10-19 Sven Swanson Combined rail joint and chair.
SU1415114A1 (ru) * 1987-06-17 1988-08-07 Институт Торфа Ан Бсср Способ подготовки образца мерзлого грунта дл определени физико-механических характеристик
JP3639874B2 (ja) * 1993-04-15 2005-04-20 大阪有機化学工業株式会社 人工雪種および人工雪の製造方法
JP2002188104A (ja) 2000-12-22 2002-07-05 Heisei Engineering:Kk 無塵土
US6796139B2 (en) 2003-02-27 2004-09-28 Layne Christensen Company Method and apparatus for artificial ground freezing
CN100390495C (zh) * 2004-03-10 2008-05-28 马芹永 深厚表土冻结法施工人工冻土控制爆破的工艺方法
EP1831288B1 (en) * 2004-12-30 2012-06-27 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
JP2009073954A (ja) * 2007-09-21 2009-04-09 Regent Corporation:Kk 改質土壌の製造方法及び改質土壌製造装置
RU2364807C1 (ru) * 2008-07-10 2009-08-20 Галина Юрьевна Гончарова Способ получения многослойного ледового покрытия для хоккея
EP3054921A4 (en) * 2013-10-10 2017-03-15 New York University Efficient collection of nanoparticles
RU2625230C2 (ru) * 2014-04-30 2017-07-12 Хохай Юниверсити Прозрачный мерзлый грунт, способ его получения и применения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1157452A1 (ru) * 1982-11-09 1985-05-23 Балаковский Филиал Саратовского Ордена Трудового Красного Знамени Политехнического Института Композици дл получени искусственного материала,моделирующего мерзлые грунты
JPH09304377A (ja) * 1996-05-08 1997-11-28 Kokudo Sogo Kensetsu Kk 軟弱土の代用としての透明な模擬土及びこれを用いた軟弱土内部の地盤試験方法
CN102230856A (zh) * 2011-03-21 2011-11-02 中国科学院寒区旱区环境与工程研究所 一种用于高含冰冻土试样的制备方法
CN103234473A (zh) * 2013-04-12 2013-08-07 哈尔滨工业大学深圳研究生院 一种可观测土体内部的渗水力模型试验装置和试验方法
CN103728166A (zh) * 2013-12-17 2014-04-16 河海大学 模拟水泥砂浆流变性能的透明胶砂拌合物及其制备方法

Also Published As

Publication number Publication date
GB2535820B (en) 2018-08-01
GB2535820A (en) 2016-08-31
WO2015165138A1 (zh) 2015-11-05
GB2539728B (en) 2019-05-29
US20160244545A1 (en) 2016-08-25
AU2014378591B2 (en) 2016-03-17
WO2015165137A1 (zh) 2015-11-05
US9909958B2 (en) 2018-03-06
RU2015144374A (ru) 2017-06-27
WO2015165139A1 (zh) 2015-11-05
GB201517007D0 (en) 2015-11-11
GB2539729A (en) 2016-12-28
US20160216247A1 (en) 2016-07-28
GB2539729B (en) 2018-08-01
AU2014378590A1 (en) 2015-11-19
RU2015144375A (ru) 2017-06-28
AU2014378590B2 (en) 2016-03-17
US9784651B2 (en) 2017-10-10
US20160290898A1 (en) 2016-10-06
RU2625231C2 (ru) 2017-07-12
RU2620055C1 (ru) 2017-05-22
AU2014378591A1 (en) 2015-11-19
GB201517015D0 (en) 2015-11-11
GB2539728A (en) 2016-12-28
AU2014378589B2 (en) 2016-03-17
AU2014378589A1 (en) 2015-11-19
GB201517022D0 (en) 2015-11-11
US9810608B2 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
RU2625230C2 (ru) Прозрачный мерзлый грунт, способ его получения и применения
Deprez et al. A review on freeze-thaw action and weathering of rocks
CN103926127B (zh) 冻土边坡模型制作及冻土边坡模型定向爆破试验装置和试验方法
Bai et al. Study on the mechanical properties and damage constitutive model of frozen weakly cemented red sandstone
Xianfeng et al. Experimental study on the seismic response of subway station in soft ground
CN111157699B (zh) 一种基于室内试验的海底滑坡评价方法
Yang et al. Study on failure of red clay slopes with different gradients under dry and wet cycles
Zhang et al. Tunnel stability analysis of coral reef limestone stratum in ocean engineering
Cao et al. Responses of calcareous sand foundations to variations of groundwater table and applied loads
CN108956951B (zh) 考虑接触关系测定落石恢复系数的试验装置及试验方法
Swan et al. Characteristics of Chicago Blue Clay Subjected to a Freeze–Thaw Cycle
Liu et al. Extrusion 3D printing circular and horseshoe tunnel physical models: A comparative study of deformation and brittle failure
CN103926125A (zh) 含氟聚合物在配制透明冻土中的应用及所制的透明冻土和生产方法
Li et al. Mechanism of progressive failure of a slope with a steep joint under the action of freezing and thawing: model test
Burrage Jr Full Scale Testing of Two Excavations in an Unsaturated Piedmont Residual Soil
Koga et al. Thermal measurement and analysis of large Roller Compacted Concrete dam
CN103926128B (zh) 冻土路堤模型制作及冻土路堤模型热融滑坡试验装置和试验方法
da Silva Continuous monitoring of deformability of stabilized soils based on modalidentification
Sabnis Impact of moisture variation on strength and deformation of clays
Rantanen Rock Mechanics analyses of exfoliation fractures at Långören Island
Chen et al. Coupled surface-internal deformation monitoring in three-dimensional space for freezing-thawing soil
Jiang et al. Characterization of the creep behavior and modeling considering viscoelastic-plastic damage of quartz sandstone under thermo-hydro-mechanical conditions
Wang et al. Study on Shear Characteristics of Herbs Plant Root–Soil Composite System in Beiluhe Permafrost Regions under Freeze–Thaw Cycles, Qinghai–Tibet Highway, China
Fenton et al. A methodology for examining soil-water characteristics of loess and loess-derived soils on Banks Peninsula, New Zealand
CN103926128A (zh) 冻土路堤模型制作及冻土路堤模型热融滑坡试验装置和试验方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200528