RU2623978C1 - Способ извлечения циркония из кислых водных растворов - Google Patents

Способ извлечения циркония из кислых водных растворов Download PDF

Info

Publication number
RU2623978C1
RU2623978C1 RU2016105491A RU2016105491A RU2623978C1 RU 2623978 C1 RU2623978 C1 RU 2623978C1 RU 2016105491 A RU2016105491 A RU 2016105491A RU 2016105491 A RU2016105491 A RU 2016105491A RU 2623978 C1 RU2623978 C1 RU 2623978C1
Authority
RU
Russia
Prior art keywords
zirconium
solution
mixture
fluoride
solutions
Prior art date
Application number
RU2016105491A
Other languages
English (en)
Inventor
Владимир Михайлович Скачков
Лилия Александровна Пасечник
Игорь Николаевич Пягай
Лидия Михайловна Скрябнева
Ирина Сергеевна Медянкина
Сергей Павлович Яценко
Наиль Аделевич Сабирзянов
Original Assignee
Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" filed Critical Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук"
Priority to RU2016105491A priority Critical patent/RU2623978C1/ru
Application granted granted Critical
Publication of RU2623978C1 publication Critical patent/RU2623978C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных цирконийсодержащих растворов осаждением путем введения источника фторид-иона при нагревании с последующим охлаждением до комнатной температуры. В качестве исходного цирконийсодержащего раствора используют раствор с концентрацией серной кислоты 10-300 г/л. В качестве источника фторид-иона используют смесь фторида калия или натрия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0; при этом смесь вводят в количестве 10÷30 мл/1 г Zr при температуре 40-60°С и после охлаждения выдерживают в течение 22-24 часов. Способ обеспечивает возможность извлечения циркония из растворов с низким содержанием циркония при высоком проценте извлечения. 4 пр.

Description

Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства.
Известен способ, включающий технологический процесс совместной экстракции циркония и гафния из азотнокислых растворов, содержащих значительные концентрации указанных ионов металлов (40-80 г/л), с использованием раствора ТБФ (трибутилового эфира фосфорной кислоты) в углеводородном разбавителе (РЭД-3). Заявленный технический результат сводится к повышению производительности экстракционного процесса за счет увеличения концентрации ионов металлов в питающем растворе в 2-3 раза по сравнению с обычно получаемым содержанием циркония в растворах при переработке цирконийсодержащего сырья, повышения концентрации азотной кислоты не ниже 400 г/л для обеспечения эффективной экстракции, а также использования высококонцентрированного органического раствора с содержанием ТБФ 85-90 об. % (патент РФ №2557594, МПК C01G 25/00, C01G 27/00, 2015 г.).
Недостатками известного способа являются: трудность достижения заявленных концентрационных пределов для циркония, высокая кислотность и значительный расход экстрагента (ТБФ). Кроме того, при низкой степени извлечения в одну ступень в удовлетворительных условиях расслаивания фаз содержание металлов в рафинате снижается не более чем в два раза, поэтому необходима многоступенчатость процесса.
Известен способ переработки бадделеита, включающий растворение бадделеита во фтористоводородной кислоте, введение ионов калия в виде фторида калия с получением раствора фторцирконата калия, его охлаждение с выделением кристаллов фторцирконата калия с последующей переработкой кристаллов с получением оксида циркония (патент РФ №2297464, МПК С22В 34/14, С22В 3/06, 2005 г.). При этом содержание циркония в растворе фтористоводородной кислоты составляет 80-100 г/л (прототип).
Недостатком способа является использование для извлечения циркония кислотных растворов только с высоким содержанием в них циркония. Кроме того, применение высококонцентрированных фтористоводородных растворов при температурах кипения создает существенные трудности при проведении процесса.
Таким образом, перед авторами стояла задача повысить эффективность способа извлечения циркония за счет возможности извлечения циркония из растворов с низким его содержанием, обеспечивающего при этом высокий процент извлечения циркония.
Поставленная задача решена в предлагаемом способе извлечения циркония из кислых водных цирконийсодержащих растворов путем введения источника фторид-иона при нагревании с последующим охлаждением до комнатной температуры, в котором в качестве исходного цирконийсодержащего раствора используют раствор серной кислоты с концентрацией 10-400 г/л, а в качестве источника фторид-иона используют смесь фторида калия или натрия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0; при этом смесь вводят в количестве 10÷30 мл/1 г Zr при температуре 40-60°С и после охлаждения выдерживают в течение 22-24 часов.
В настоящее время из патентной и научно-технической литературы не известен способ извлечения циркония из кислых водных цирконийсодержащих растворов, в котором технологический процесс осуществляют с использованием в качестве исходного раствора раствора серной кислоты определенной концентрации, а в качестве источника фторид-иона - смеси фторида щелочного металла и фтористоводородной кислоты при определенном соотношении компонентов, при этом смесь вводят в определенном количестве в зависимости от содержания циркония в растворе и в определенном интервале температур.
Экспериментальные исследования, проведенные авторами, позволили установить, что при использовании предлагаемого способа цирконий полно извлекается из растворов (98,0-99,8%) при достаточно низком его содержании в исходном растворе (до 30 г/л). Для количественного осаждения циркония необходимо было установить пределы использования смеси фторида щелочного металла и фтористоводородной кислоты, а также кислотность исходного раствора. Так, авторами установлено, что с учетом протекания вероятной реакции химического взаимодействия в растворе при максимально полном взаимодействии:
Zr(SO4)2 + 2KF + 4HF=K2ZrF6 + 2H2SO4,
введение плавиковой кислоты как одного из компонентов источника фторид-ионов будет увеличивать кислотность растворов, а соответственно, и концентрацию продукта реакции H2SO4 со смещением равновесия в сторону исходных веществ. Опытным путем установлено, что синергетический эффект (практически полное извлечение циркония при его низком содержании в исходном растворе) достигается за счет оптимального сочетания уровня кислотности исходного раствора и количества вводимой смеси, содержащей фторид-ион. Так, при концентрации сернокислого раствора менее 10 г/л и введении смеси, содержащей фторид-ион, менее 10 мл/1 г Zr наблюдается резкое снижение извлечения циркония в осадок - циркониевый концентрат. При концентрации сернокислого раствора более 400 г/л и введении смеси, содержащей фторид-ион, более 30 мл/1 г Zr наблюдается появление в циркониевом продукте в значительных количествах фторида натрия и состав такого осадка по данным РФА следующий: 50% Na2ZrF6⋅NaF и 50% NaF⋅HF.
При этом получение концентрации в пределах 10-400 г/л благоприятно сказывается на извлечении циркония, снижая плотность раствора при гравиметрическом осаждении с улучшением фильтруемости пульпы. Введение смеси фторида калия или натрия и фтористоводородной кислоты в соотношении K(Na):HF=0,5÷1,5:1,0 обусловлено следующими причинами. При соотношении более чем K(Na)F:HF=1,5:1 наблюдается недостаток фторид-иона для образования полноценного гексафторцирконата и присутствует избыток катионов щелочного металла, которые разбавляют циркониевый продукт, а также приводит к необоснованным потерям реагентов, а все вместе обуславливает снижение извлечения в продукт циркония. При соотношении менее чем K(Na)F:HF=0,5:1 наоборот наблюдается избыток анионов и нехватка катионов, что приводит к повышенной растворимости цирконата и, соответственно, также к снижению извлечения циркония в продукт.
Предлагаемый способ может быть осуществлен следующим образом. Крепкие сернокислые растворы (H2SO4≥400÷600 г/л) от вскрытия циркониевого концентрата, содержащие до 30 г/л циркония, разбавляют водой в 2-30 раз, нагревают до температуры 40-60°С и вводят раствор смеси фторида натрия или калия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0 в количестве 10÷30 мл/1 г Zr. После завершения реакции полученный раствор выдерживают в течение 22-24 часов при комнатной температуре. Затем пульпу фильтруют, осадок промывают 5%-ным раствором фторида щелочного металла или дистиллированной водой для удаления примесей и маточного сульфатного раствора из осадка. Осадок фторцирконата сушат при температуре 125°С и определяют содержание компонентов.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Готовят смесь фторида калия и фтористоводородной кислоты, для этого в 100 мл концентрированной (40%) HF растворяют 50 г KF и смесь доводят дистиллированной водой до 1 л, при этом получают соотношение KF:HF=1,25:1. Раствор от вскрытия циркониевого концентрата содержит, г/л: 16,5 Zr и 600 H2SO4. Этот цирконийсодержащий раствор в количестве 200 мл (содержит 3,3 г Zr) разбавляют водой до 300 мл, при этом получают концентрацию цирконийсодержащего раствора равную, г/л: 11,0 Zr и 400 H2SO4. Полученный раствор подогревают до 60°С и при постоянном перемешивании вводят ранее приготовленный фторидный раствор в количестве 110 мл. Перемешивают 20 минут и охлаждают до комнатной температуры. Выдерживают полученную смесь в течение 24 часов при комнатной температуре и фильтруют. Полученный осадок промывают 10% раствором KF и сушат при температуре 125°С. Масса полученного осадка - 24,6 г, содержание в нем циркония - 12,47%, извлечение циркония из раствора - 99,2%.
Пример 2. Готовят смесь фторида калия и фтористоводородной кислоты, для этого в 100 мл концентрированной (40%) HF растворяют 50 г NaF и смесь доводят дистиллированной водой до 1 л, при этом получают соотношение NaF:HF=1,25:1. Раствор от вскрытия циркониевого концентрата содержит, г/л: 16,5 Zr и 600 H2SO4. Этот цирконийсодержащий раствор в количестве 100 мл (содержит 1,65 г Zr) разбавляют водой до 200 мл, при этом получают концентрацию цирконийсодержащего раствора, равную, г/л: 8,25 Zr и 300 H2SO4. Полученный раствор подогревают до 60°С и при постоянном перемешивании вводят ранее приготовленный фторидный раствор в количестве 85 мл. Перемешивают 30 минут и охлаждают до комнатной температуры. Выдерживают полученную смесь в течение 22 часов при комнатной температуре и фильтруют. Полученный осадок промывают 10% раствором KF и сушат при температуре 125°С. Масса полученного осадка - 19,9 г, содержание в нем циркония - 7,95%, извлечение циркония из раствора - 99,8%.
Пример 3. Готовят смесь фторида калия и фтористоводородной кислоты, для этого в 100 мл концентрированной (40%) HF растворяют 10 г KF и смесь доводят дистиллированной водой до 1 л, при этом получают соотношение KF:HF=0,5:1. Раствор от вскрытия циркониевого концентрата содержит, г/л: 3,05 Zr и 10 H2SO4. Этот цирконийсодержащий раствор в количестве 100 мл (0,305 г Zr) подогревают до 60°С и при постоянном перемешивании вводят ранее приготовленный фторидный раствор в количестве 10 мл. Перемешивают 20 минут и охлаждают до комнатной температуры. Выдерживают полученную смесь в течение 24 часов при комнатной температуре и фильтруют. Полученный осадок промывают 10% раствором KF и сушат при температуре 125°С. Масса полученного осадка - 1,97 г, содержание в нем циркония - 15,23%, извлечение циркония из раствора - 98,0%.
Пример 4. Готовят смесь фторида натрия и фтористоводородной кислоты, для этого в 100 мл концентрированной (40%) HF растворяют 60 г NaF и смесь доводят дистиллированной водой до 1 л, при этом получают соотношение NaF:HF=1,5:1. Раствор от вскрытия циркониевого концентрата содержит, г/л: 30,15 Zr и 300 H2SO4. Этот цирконийсодержащий раствор в количестве 200 мл (6,03 г Zr) подогревают до 60°С и при постоянном перемешивании вводят ранее приготовленный фторидный раствор в количестве 180 мл. Перемешивают 30 минут и охлаждают до комнатной температуры. Выдерживают полученную смесь в течение 22 часов при комнатной температуре и фильтруют. Полученный осадок промывают дистиллированной водой и сушат при температуре 125°С. Масса полученного осадка - 30,78 г, содержание в нем циркония - 19,54%, извлечение циркония из раствора - 99,5%.
Таким образом, предлагается способ извлечения циркония из кислых водных цирконийсодержащих растворов, обеспечивающий возможность извлечения циркония из растворов с низким содержанием циркония при высоком проценте извлечения.

Claims (1)

  1. Способ извлечения циркония из кислых водных цирконийсодержащих растворов, включающий осаждение путем введения источника фторид-иона при нагревании с последующим охлаждением до комнатной температуры, отличающийся тем, что в качестве исходного раствора используют содержащий до 30 г/л циркония раствор с концентрацией 10-300 г/л серной кислоты, а в качестве источника фторид-иона используют смесь фторида калия или натрия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0, при этом указанную смесь вводят в количестве 10÷30 мл /1 г Zr при температуре 40-60°С и после охлаждения выдерживают в течение 22-24 часов.
RU2016105491A 2016-02-17 2016-02-17 Способ извлечения циркония из кислых водных растворов RU2623978C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016105491A RU2623978C1 (ru) 2016-02-17 2016-02-17 Способ извлечения циркония из кислых водных растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016105491A RU2623978C1 (ru) 2016-02-17 2016-02-17 Способ извлечения циркония из кислых водных растворов

Publications (1)

Publication Number Publication Date
RU2623978C1 true RU2623978C1 (ru) 2017-06-29

Family

ID=59312585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105491A RU2623978C1 (ru) 2016-02-17 2016-02-17 Способ извлечения циркония из кислых водных растворов

Country Status (1)

Country Link
RU (1) RU2623978C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732259C1 (ru) * 2020-05-07 2020-09-14 Акционерное общество "Чепецкий механический завод" Способ извлечения гафния и циркония из фторидного вторичного сырья, содержащего гафний и цирконий

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004207A1 (en) * 1991-08-19 1993-03-04 Commonwealth Scientific And Industrial Research Organisation Zirconium extraction
RU2103400C1 (ru) * 1997-04-03 1998-01-27 Кооператив "Наука" Способ переработки бадделеита
SU1752005A1 (ru) * 1989-05-03 2000-02-20 Чепецкий механический завод Способ переработки цирконий(гафний)содержащего сырья
US20040011739A1 (en) * 2000-09-11 2004-01-22 Noel Ozanne Method for separating metals such as zirconium and hafnium
RU2297464C2 (ru) * 2004-02-16 2007-04-20 Вячеслав Андреевич Патрушев Способ переработки бадделеита

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752005A1 (ru) * 1989-05-03 2000-02-20 Чепецкий механический завод Способ переработки цирконий(гафний)содержащего сырья
WO1993004207A1 (en) * 1991-08-19 1993-03-04 Commonwealth Scientific And Industrial Research Organisation Zirconium extraction
RU2103400C1 (ru) * 1997-04-03 1998-01-27 Кооператив "Наука" Способ переработки бадделеита
US20040011739A1 (en) * 2000-09-11 2004-01-22 Noel Ozanne Method for separating metals such as zirconium and hafnium
RU2297464C2 (ru) * 2004-02-16 2007-04-20 Вячеслав Андреевич Патрушев Способ переработки бадделеита

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732259C1 (ru) * 2020-05-07 2020-09-14 Акционерное общество "Чепецкий механический завод" Способ извлечения гафния и циркония из фторидного вторичного сырья, содержащего гафний и цирконий

Similar Documents

Publication Publication Date Title
CN103361486B (zh) 从含钪和钛的废酸液中提取高纯氧化钪及钛的方法
EP2964794B1 (en) A method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals
US10260127B2 (en) Method for recovering scandium values from leach solutions
CN111057848A (zh) 一种溶剂萃取从含锂溶液中提取锂的方法
CN105129851B (zh) 一种高纯氧化铌的制备方法
CN108910949B (zh) 高纯氟钽酸钾的制备方法
CN106987732B (zh) 一种分离回收钒铬的方法
RU2602124C1 (ru) Способ очистки зольного графита
CN102206748A (zh) 钾铷铯矾的提取方法
RU2623978C1 (ru) Способ извлечения циркония из кислых водных растворов
Sun et al. Separation and extraction of niobium from H2SO4 solution containing titanium and iron impurities
RU2595672C1 (ru) Способ переработки концентрата редкоземельных элементов
US2849286A (en) Method of processing monazite sand
RU2576562C1 (ru) Способ переработки колумбитового концентрата
NO157256B (no) Fremgangsmaate til fremstilling av kaliumnitrat.
Shi et al. Two-stage separation of V (IV) and Al (III) by crystallization and solvent extraction from aluminum-rich sulfuric acid leaching solution of stone coal
RU2605741C1 (ru) Способ переработки вольфрамовых концентратов
RU2563015C2 (ru) Способ выделения церия из нитратных растворов, содержащих сумму редкоземельных элементов
RU2548353C1 (ru) СПОСОБ ИЗВЛЕЧЕНИЯ КАТИОНОВ Еu3+ ИЗ ВОДНО-СОЛЕВЫХ РАСТВОРОВ
Berhe et al. Green extraction of niobium and tantalum from Kenticha tantalite ore using 1-ethyl-3-methyl imidazolium chloride ionic liquid
RU2507281C1 (ru) Способ обработки смеси оксидов ниобия и/или тантала и титана
RU2623522C1 (ru) Способ получения фтортанталата калия из танталсодержащих растворов
RU2623570C1 (ru) Способ переработки танталониобиевого концентрата
RU2493105C1 (ru) Способ разделения циркония и гафния
RU2195510C2 (ru) Способ извлечения молибдена из кислых растворов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190218