RU2103400C1 - Способ переработки бадделеита - Google Patents

Способ переработки бадделеита Download PDF

Info

Publication number
RU2103400C1
RU2103400C1 RU97104839A RU97104839A RU2103400C1 RU 2103400 C1 RU2103400 C1 RU 2103400C1 RU 97104839 A RU97104839 A RU 97104839A RU 97104839 A RU97104839 A RU 97104839A RU 2103400 C1 RU2103400 C1 RU 2103400C1
Authority
RU
Russia
Prior art keywords
zirconium
baddeleyite
hydrofluoric acid
less
solution
Prior art date
Application number
RU97104839A
Other languages
English (en)
Other versions
RU97104839A (ru
Inventor
В.А. Томашов
Ю.А. Симонов
В.В. Челпанов
А.В. Елютин
Е.В. Голубев
Original Assignee
Кооператив "Наука"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кооператив "Наука" filed Critical Кооператив "Наука"
Priority to RU97104839A priority Critical patent/RU2103400C1/ru
Application granted granted Critical
Publication of RU2103400C1 publication Critical patent/RU2103400C1/ru
Publication of RU97104839A publication Critical patent/RU97104839A/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к переработке бадделеита с получением диоксида циркония повышенной чистоты, позволяющей использовать его в производстве оптических материалов, подложек интегральных схем, спецкерамики, пьезокерамики. Способ включает растворение бадделеита в кипящей фтористоводородной кислоте с одновременной концентрацией ее паров и возвратом конденсата обратно в зону растворения и последующую сульфатизацию полученного фтористокислого раствора циркония. Сульфатизацию проводят при подаче данного раствора в концентрированную серную кислоту, нагретую до 200-250oC, с получением твердого сульфата циркония, конденсацией паров фтористоводородной кислоты и последующим возвратом ее на растворение бадделеита. Сульфат циркония переводят в гидроксид циркония, который затем прокаливают до образования диоксида циркония. В варианте способа гидроксид циркония получают путем подачи сульфата циркония в аммиачную воду. Изобретение позволяет получить бадделеита диоксид циркония, практически не содержащий кремния, с содержанием Fe < 5•10-3 мас.%, Li = 1•10-3 мас.%, Al <1•10-3 мас.%, Ti <1•10-3 мас.%, Th-экв. <1•10-3 мас. % с достаточно высокой производительностью. Возможность регенерации дорогостоящей фтористоводородной кислоты обеспечивает ее экономию и экологическую безопасность процесса. 1 з.п. ф-лы.

Description

Изобретение относится к металлургии тугоплавких металлов и может быть использовано при переработке бадделеита гидрометаллургическим способом с получением диоксида циркония повышенной чистоты, обусловливающей его использование в производстве оптических материалов, подложек интегральных схем, фианита для ювелирных целей, спецкерамики, пьезокерамики.
Известен способ разложения бадделеита смесью фтористоводородной и серной кислот при 240oC в автоклаве. Перевод бадделеита в раствор завершается за 12-16 ч [1] . Данный способ требует применения специального оборудования, длителен по времени и используется для максимально полного перевода малых масс твердого материала в раствор с целью аналитического контроля его состава.
Известен также способ переработки тонко измельченного бадделеита выщелачиванием 40%-ной фтористоводородной кислотой в свинцовых сосудах с последующим выпариванием досуха. Образующийся осадок тетрафторида циркония подвергают кипячению в воде, во время которого цирконий переходит в раствор. Из отфильтрованного раствора осаждают гидроксид циркония каустической содой [2] .
Получаемый гидроксид циркония имеет высокое содержание таких примесей, как Si, Al, Fe, Ti, U, Th (каждого по 1•10-1 -1•10-2 мас.%), представляет собой аморфный, плохо фильтруемый осадок. Недостатком способа также является невозможность регенерации дорогостоящей фтористоводородной кислоты, так как фтор-ион связывается при осаждении гидроксида циркония натрием и при отмывании переходит в отработанные промывные воды. Процесс является длительным из-за плохой растворимости в воде твердого тетрафторида циркония.
Наиболее близким к предлагаемому является способ переработки бадделеита, в соответствии с которым после окончания его выщелачивания фтористоводородной кислотой добавляют концентрированную серную кислоту и выпаривают раствор до одымления серной кислоты (при температуре более 330oC). Осадок растворяют в воде, фильтруют и их полученного сернокислого раствора циркония осаждают гидроксид циркония [2].
Полученный по данному способу сульфат циркония загрязнен примесями, которые при его растворении в воде переходят в раствор, и при последующем осаждении из этого раствора гидроксида циркония примеси образуют твердые гидроксиды (содержание отдельных примесей составляет 1•10-1 - 1•10-2 мас.%). В связи с этим получение диоксида циркония повышенной чистоты требует дополнительной очистки сернокислого раствора циркония от лимитирующих примесей, что снижает производительность процесса. Регенерация фтористоводородной кислоты затруднена, так как при добавлении концентрированной серной кислоты к фтористокислому раствору циркония происходит образование твердого осадка тетрафторида циркония, и отделения фтор-иона требуется нагрев до температуры выше 330oC. Кроме того, поскольку газовая фаза при таком нагреве содержит смесь паров фтористого водорода и серной кислоты, необходимо применять специальные аппараты (например, ректификационные колонны) для разделения смеси паров с целью регенерации фтористоводородной кислоты.
Данное изобретение направлено на получение диоксида циркония повышенной чистоты и обеспечение регенерации фтористоводородной кислоты при достижении достаточной производительности процесса.
Поставленные цели достигаются тем, что в известном способе переработки бадделеита, включающем растворение во фтористоводородной кислоте с получением фтористокислого раствора циркония, перевод его в твердый сульфат циркония сульфатизацией с последующим получением гидроксида циркония и его прокаливанием с образованием диоксида циркония, в соответствии с изобретением, растворение ведут в кипящей фтористоводородной кислоте с одновременной конденсацией ее паров и возвратом конденсата на растворение бадделеита, сульфатизацию ведут при подаче фтористокислого раствора циркония в концентрированную серную кислоту при ее нагреве до 200-250oC с конденсацией паров фтористоводородной кислоты и возвратом ее на растворение бадделеита.
В варианте изобретения предусмотрено получение гидроксида циркония путем подачи твердого сульфата циркония в аммиачную воду.
При растворении бадделеита в кипящей фтористоводородной кислоте происходит активное образование паров фтористоводородной кислоты, которые конденсируют и возвращают в зону растворения. Одновременно происходит очистка от кремния, имеющего температуру кипения ниже температуры кипения фтористоводородной кислоты. Конденсацию тетрафторида кремния предотвращают и выводят его из процесса. Кроме того, при кипении улучшается динамика химического взаимодействия твердых частиц бадделеита с молекулами фтористоводородной кислоты за счет увеличения скорости массообмена у поверхности частиц бадделеита. При интенсивном перемешивании пульпы повышается частота и сила столкновения частиц бадделеита, что обеспечивает механическую активацию их поверхности. В результате повышается скорость растворения бадделеита и обеспечивается высокая производительность процесса - содержание диоксида циркония в растворе достигает 250-310 г/л всего за 4-5 ч.
Предусмотренный изобретением режим сульфатизации путем подачи фтористокислого раствора циркония в концентрированную серную кислоту (а не наоборот), нагретую до температуры 200-250oC, обеспечивает постоянный ее избыток. Это предотвращает образование промежуточного продукта - твердой соли тетрафторида циркония, происходит наиболее полное извлечение фтор-иона в газовую фазу в виде паров фтористоводородной кислоты, что позволяет осуществить их конденсацию и повторно использовать конденсат при растворении бадделеита.
Температура серной кислоты ниже 200oC не позволяет с необходимой полнотой выделить фтор-ион в газовую фазу, а выше 250oC приводит к повышенному содержанию паров триоксида серы и необходимости дополнительных затрат на очистку паров фтористоводородной кислоты от триоксида серы.
В процессе сульфатизации происходит очистка образующегося твердого сульфата циркония от примесей: Li переходит в газовую фазу в виде LiF, а Fe, Al, Ti, U, Th, находящиеся в жидкой фазе, легко удаляются фильтрацией и промывкой полупродукта. Это позволяет на завершающей стадии процесса получить диоксид циркония повышенной чистоты: Fe <5•10-3 мас.%, Li = 1•10-3 мас.%, Al = 1•10-3 мас.%, Ti = 1•10-3 мас.%, Th-экв. = 1•10-3 мас.%.
При получении гидроксида циркония путем подачи твердого сульфата циркония в аммиачную воду достигается дополнительный эффект образования структурированного осадка, что обеспечивает высокую скорость его отстаивания, позволяет достаточно полно и быстро отмыть осадок от SO4-, снизить температуру и продолжительность прокаливания при получении диоксида циркония.
Заявляемая совокупность отличительных признаков способа неизвестна из уровня техники.
Пример. Во фторопластовый реактор, оборудованный электромеханической мешалкой, обратным фторопластовым холодильником и электронагревателем, заливают фтористоводородную кислоту. Включают мешалку и загружают бадделеит, затем включают нагрев для создания режима кипения кислоты. Растворение продолжают в течение 4 часов. Образующиеся при этом пары фтористоводородной кислоты конденсируют в обратном холодильнике и возвращают в реактор. Пары тетрафторида кремния проходят через обратный холодильник без конденсации и улавливаются в гидрозатворе. Затем выключают мешалку и перемещают пульпу из реактора на нутч-фильтр. Фильтрат - фтористый раствор циркония с содержанием ZrO2 307 г/л поступает в дозатор. Во фторопластовый реактор сульфатизации, оборудованный электромеханической мешалкой, электронагревателем, нисходящим фторопластовым холодильником и термопарой, заливают концентрированную серную кислоту. Включают мешалку и электронагрев. При достижении температуры серной кислоты 200oC начинают подавать из дозатора фтористокислый раствор циркония с такой скоростью, чтобы эта температура оставалась в пределах 200-250oC. Образующиеся при этом пары фтористоводородной кислоты поступают в охлаждаемый водой нисходящий холодильник, где конденсируются, и конденсат стекает в приемный бак, откуда регенерированную фтористоводородную кислоту забирают для последующего использования на операции растворения бадделеита. По окончании слива фтористокислого раствора циркония в реактор сульфатизации нагреватель и мешалку выключают, пульпу сливают в нутч-фильтр. Отделенный от маточника и отмытый от примесей сульфат циркония загружают в реактор осаждения, оборудованный электромеханической мешалкой, в который предварительно заливают аммиачную воду. По окончании загрузки всей массы сульфата циркония образовавшуюся пульпу сливают в нутч-фильтр и после отмывки водой гидроокиси циркония его прокаливают до диоксида циркония. Прямое извлечение диоксида циркония из бадделеита - 87,5%, степень регенерации фтористоводородной кислоты - 95,5%, содержание примесей в диоксиде циркония: Fe <5•10-3 мас.%, Li = 1•10-3 мас.%, Al = 1•10-3 мас.%, Ti = 1•10-3 мас.%, Th-экв. = 1•10-3 мас.%.
Таким образом, преимуществами предложенного способа переработки бадделеита по сравнению с известными являются:
повышение чистоты получаемого диоксида циркония по отдельным примесям не менее, чем на один-два порядка;
возможность регенерации и возврата обратно в процесс дорогостоящей фтористоводородной кислоты как на стадии растворения бадделеита, так и при сульфатизации фтористокислого раствора циркония, что обеспечивает ее экономию и экологическую безопасность процесса;
достаточно высокая производительность процесса.

Claims (2)

1. Способ переработки бадделеита, включающий растворение во фтористоводородной кислоте с получением фтористокислого раствора циркония, перевод его в твердый сульфат циркония сульфатизацией с последующим получением гидроксида циркония и его прокаливанием до диоксида циркония, отличающийся тем, что растворение ведут в кипящей фтористоводородной кислоте с одновременной конденсацией ее паров и возвратом конденсата на растворение бадделеита, сульфатизацию ведут при подаче фтористокислотного раствора циркония в концентрированную серную кислоту при ее нагреве до 200 250oС с конденсацией паров фтористоводородной кислоты и возвратом ее на растворение бадделеита.
2. Способ по п. 1, отличающийся тем, что получение гидроксида циркония осуществляют путем подачи сульфата циркония в аммиачную воду.
RU97104839A 1997-04-03 1997-04-03 Способ переработки бадделеита RU2103400C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97104839A RU2103400C1 (ru) 1997-04-03 1997-04-03 Способ переработки бадделеита

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97104839A RU2103400C1 (ru) 1997-04-03 1997-04-03 Способ переработки бадделеита

Publications (2)

Publication Number Publication Date
RU2103400C1 true RU2103400C1 (ru) 1998-01-27
RU97104839A RU97104839A (ru) 1998-04-10

Family

ID=20191287

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97104839A RU2103400C1 (ru) 1997-04-03 1997-04-03 Способ переработки бадделеита

Country Status (1)

Country Link
RU (1) RU2103400C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623978C1 (ru) * 2016-02-17 2017-06-29 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Способ извлечения циркония из кислых водных растворов
CN114317959A (zh) * 2021-12-31 2022-04-12 中核二七二铀业有限责任公司 一种锆铪分离萃余水沉淀滤渣回收锆铪的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Бок Р. Методы разложения в аналитической химии. - М.: Химия, 1984, с. 69. 2. Миллер Г.Л. Цирконий. - М.: Иностранная литература, 1955, с. 32 - 33. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623978C1 (ru) * 2016-02-17 2017-06-29 Федеральное государственное бюджетное учреждение науки "Институт химии твердого тела Уральского Отделения Российской Академии наук" Способ извлечения циркония из кислых водных растворов
CN114317959A (zh) * 2021-12-31 2022-04-12 中核二七二铀业有限责任公司 一种锆铪分离萃余水沉淀滤渣回收锆铪的方法
CN114317959B (zh) * 2021-12-31 2024-01-12 中核二七二铀业有限责任公司 一种锆铪分离萃余水沉淀滤渣回收锆铪的方法

Similar Documents

Publication Publication Date Title
RU2645535C1 (ru) Способ получения низкокремнистого пентоксида ванадия из раствора, содержащего ванадий, хром и кремний
TW201439331A (zh) 自鈦殘餘物流回收鈧的方法
FI97291C (fi) Menetelmä alumiinin talteenottamiseksi vedenkäsittelylietteestä
US4119698A (en) Reclamation treatment of red mud
US4237102A (en) Process for obtaining pure alumina by the hydrochloric attack of aluminous ores and extraction of the impurities by means of a sulphuric treatment
US4382916A (en) Method of preparing hydrochloric acid and high purity ferrous sulfate hydrate crystals from hydrochloric acid waste pickle liquor
US6447738B1 (en) Coproducing alumina, iron oxide, and titanium-dioxide from aluminum ore bodies and feedstocks
EA035074B1 (ru) Извлечение продукции из титансодержащих минералов
US4241030A (en) Continuous process for obtaining pure alumina from an acidic liquor originating from the chlorosulphuric attack of an aluminous ore and for the purification of the liquor which has been freed from alumina
RU2350564C2 (ru) Способ получения алюмокалиевых квасцов
US3533742A (en) Production of titanium dioxide
US1792410A (en) Max btjchnee
RU2103400C1 (ru) Способ переработки бадделеита
CN106517580A (zh) 一种从化纤碱减量废水中回收高纯度pta的方法
JPH1150168A (ja) 光学ガラス汚泥からレアアースメタル成分を回収する方法
US4201749A (en) Method for the separation of precipitated aluminum hydroxide from sodium aluminate solution
JP3955092B2 (ja) 解離されたジルコンを処理する方法
JP3131433B2 (ja) 高純度リン酸の製造方法
UA55365C2 (ru) Безводный хлорид магния
KR100367356B1 (ko) 추출에 의한 액체 매질 정제방법
FR2468552A1 (fr) Procede pour la reduction de la concentration en substances organiques dans le cycle de fabrication de l&#39;alumine selon le procede bayer
CA1200075A (en) Purification of bayer process liquors
SK125995A3 (en) Method of purifying solutions containing alkali-metal aluminates
RU2255046C1 (ru) Способ получения медного купороса
JP2981931B2 (ja) アルミニウム箔のエッチング廃液を処理する方法