RU2623301C2 - Способ и устройство для автоматизированной доплеровской оценки угла и скорости потока - Google Patents

Способ и устройство для автоматизированной доплеровской оценки угла и скорости потока Download PDF

Info

Publication number
RU2623301C2
RU2623301C2 RU2014102983A RU2014102983A RU2623301C2 RU 2623301 C2 RU2623301 C2 RU 2623301C2 RU 2014102983 A RU2014102983 A RU 2014102983A RU 2014102983 A RU2014102983 A RU 2014102983A RU 2623301 C2 RU2623301 C2 RU 2623301C2
Authority
RU
Russia
Prior art keywords
doppler
blood flow
dimensional array
angle
calculated
Prior art date
Application number
RU2014102983A
Other languages
English (en)
Other versions
RU2014102983A (ru
Inventor
Лалит ГУПТА
Аджай АНАНД
Джон ПЕТРУЦЦЕЛЛО
Паллави ВАДЖИНЕПАЛЛИ
Раджендра Сингх СИСОДИА
Селин ФИРТЬОН
Ганесан РАМАЧАНДРАН
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2014102983A publication Critical patent/RU2014102983A/ru
Application granted granted Critical
Publication of RU2623301C2 publication Critical patent/RU2623301C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Группа изобретений относится к медицинской технике, а именно к средствам ультразвукового измерения скорости кровотока. Устройство содержит анализатор для приема электрических сигналов, представляющих отраженную ультразвуковую энергию, принятую каждым элементом ультразвукового датчика, включающего в себя двухмерный массив элементов датчика, и для анализа доплеровской мощности сигналов для формирования представления кровотока во множестве заданных местоположений в объеме и вычисления первой скорости кровотока в каждом из местоположений, блок очерчивания кровотока в кровеносном сосуде в объеме представляющей кровоток выборки, блок определения угла для вычисления во множестве точек в очерченном кровотоке доплеровского угла между направлением пучка для излучаемого коллимированного пучка ультразвуковой энергии в каждой из множества точек в очерченном кровотоке и направлением кровотока в каждой из множества точек, и вычислитель доплеровской скорости для вычисления второй скорости кровотока во множестве точек на основании вычисленных первых скоростей во множестве местоположений вычисленного доплеровского угла. Способ определения доплеровского угла для измерения скорости кровотока содержит этапы приема, на котором принимают электрические сигналы от двухмерного массива ультразвуковых датчиков, вычисления, на котором вычисляют доплеровскую мощность в заданной полосе частот, этап формирования, на котором формируют первый трехмерный массив, отображения, на котором формируют второй трехмерный массив, при этом каждая ячейка второго массива содержит двоичный бит, указывающий, находится ли значение в соответствующей ячейке первого трехмерного массива выше порогового значения, идентификации смежных ячеек, которые содержат двоичный бит, представляющий значения выше порогового значения, в каждом двухмерном массиве, формирующем второй трехмерный массив, вычисления, на котором вычисляют трехмерные координаты центра тяжести площади, покрытой каждой группой в каждом из двухмерных массивов, и вычисления угла, на котором вычисляют угол между первой линией, соединяющей два центра тяжести, ближайших друг к другу в двух смежных двухмерных массивах, и второй линией, проходящей через один из двух центров тяжести, причем линия является параллельной излучаемому ультразвуку. Использование группы изобретений позволяет повысить экономичность точного измерения скорости кровотока. 2 н. и 5 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к области ультразвукового измерения скорости.
УРОВЕНЬ ТЕХНИКИ
Контроль состояния кровотока в кровеносных сосудах субъекта является важным средством для оценки здоровья субъекта. Контроль состояния кровотока представляет важность в материнских и эмбриональных сосудах, например, во время профилактического дородового консультирования, обследования сонной артерии на апоплексию, нижних конечностей на заболевание периферийных артерий (PAD). В особенности в области акушерства измерения кровотока к матке и плоду являются важным средством оценки достаточности кровоснабжения для плода, а отсюда здоровья или патологического состояния плода.
В ультразвуковом измерении скорости, скорость кровотока измеряется посредством доплеровского сдвига, испытываемого импульсным ультразвуковым колебанием. Чтобы измерение было точным, в идеале, пучок ультразвука должен быть параллельным кровотоку. Для измерения скорости с приемлемой точностью, угол между направлением потока и пучком, называемый доплеровским углом, должен находиться ниже определенного порогового значения. Это пороговое значение нормально имеет значение 60º, и не рекомендуется производить измерения, когда доплеровский угол является большим, чем это значение.
Даже когда доплеровский угол является меньшим, чем 60°, углу необходимо измеряться, а оцененной скорости необходимо подвергаться поправке на разность между идеалом, то есть пучком, параллельным потоку, и фактическим доплеровским углом. Когда скорость крови измеряется с использованием устройства формирования ультразвуковых изображений, можно выяснять, что доплеровский угол находится в пределах 60°, и измерять угол и вносить поправку на него.
Однако устройства формирования ультразвуковых изображений с измерением скорости крови являются дорогостоящими и нуждаются в том, чтобы квалифицированный радиолог осуществлял эксплуатацию и интерпретировал результаты. Таким образом, существует необходимость в недорогих системах, может быть, без возможностей формирования изображений, но способных выполнять ультразвуковое измерение скорости крови.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Одной из проблем, встречаемой при измерении скорости крови без формирования изображений, является определение доплеровского угла. Этот документ раскрывает устройство для измерения скорости кровотока в кровеносных сосудах субъекта. Такое ультразвуковое устройство для измерения скорости кровотока в кровеносном сосуде субъекта, измерение зависит от отражений от объема части тела субъекта коллимированного пучка ультразвуковой энергии, излучаемой ультразвуковым датчиком в объем части тела субъекта, причем устройство содержит блок ввода сигналов для приема электрических сигналов, представляющих отраженную ультразвуковую энергию, принимаемую каждым элементом ультразвукового датчика, включающего в себя двухмерный массив элементов датчика, анализатор для анализа сигналов для формирования представления кровотока в множестве заданных местоположений в объеме и вычисления первой скорости кровотока в каждом из местоположений, блок очерчивания для очерчивания кровотока в кровеносном сосуде в объеме представляющей кровоток выборки, блок вычисления угла для вычисления угла между направлением излученного коллимированного пучка ультразвуковой энергии в множестве точек в очерченном кровотоке и направлением кровотока в точке, зависящей от очерчивания, и вычислитель скорости для вычисления второй скорости кровотока в множестве точек на основании вычисленных первых скоростей в множестве местоположений и вычисленного угла в точке для передачи второй скорости крови пользователю.
Такое устройство предусматривает средство для выполнения измерения скорости крови в субъекте, при этом устройство не имеет функции формирования изображений. Это может давать преимущество, что такое устройство является более экономичным, чем устройство с функциональными возможностями формирования изображений. Это дополнительно может давать преимущество, что пользователь, который не является высококвалифицированным специалистом по ультразвуковому исследованию, также может выполнять измерение скорости крови.
Кроме того, раскрыт способ измерения скорости кровотока с использованием ультразвуковой флоуметрии. Способ определения доплеровского угла для доплеровского измерения скорости крови в объеме части тела субъекта, причем способ содержит этапы: этап приема по приему электрических сигналов из двухмерного массива ультразвуковых датчиков, сигналы являются представляющими ультразвуковую энергию, отраженную от части тела субъекта, ультразвуковая энергия была излучена двухмерным массивом, этап вычисления по вычислению доплеровской мощности в заданной полосе частот, принимаемой из заданных местоположений в объеме, этап формирования по формированию первого трехмерного массива, при этом каждая ячейка массива содержит в себе значение доплеровской мощности, принятой из местоположения в объеме, с заданной зависимостью между местоположением и положением ячейки в массиве, этап отображения по формированию второго трехмерного массива, при этом каждая ячейка второго массива содержит в себе двоичный бит, служащий признаком, находится или нет значение в соответствующей ячейке первого трехмерного массива выше порогового значения, этап идентификации по идентификации группы сопредельных ячеек, которые содержат в себе двоичный бит, представляющий значения выше порогового значения, в каждом двухмерном массиве, образующем второй трехмерный массив, этап вычисления для вычисления трехмерных координат центра тяжести площади, покрытой каждой группой в каждом из двухмерных массивов, и этап вычисления угла для вычисления угла между первой линией, соединяющей два центра тяжести, ближайших друг к другу в двух прилегающих двухмерных массивах, и второй линией, проходящей через один из двух центров тяжести, линия является параллельной излучаемому ультразвуку.
При этом угол между пучком ультразвука и кровеносным сосудом узнается и может использоваться для поправки измеренных значений скорости крови известным образом. Это дает возможность способа выполнения измерения скорости крови без необходимости в устройстве со способностью формирования изображений. Должно быть понятно, что способ также может использоваться в устройстве с возможностью формирования изображений, чтобы также вносить поправку в измеренные значения скорости кровотока, с использованием доплеровского угла, вычисленного с использованием способа.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты будут подробно описаны, в качестве примера, на основе следующих вариантов осуществления и реализации со ссылкой на сопровождающие чертежи, на которых:
фиг. 1 - двухмерный массив элементов первичного ультразвукового датчика;
фиг. 2 - вариант осуществления раскрытого устройства;
фиг. 3 - представление раскрытого способа;
фиг. 4 - представление аспекта раскрытого способа;
фиг. 5 - представление еще одного аспекта раскрытого способа;
фиг. 6а - представление аспекта раскрытого способа;
фиг. 6b - представление аспекта раскрытого способа;
фиг. 6с - представление аспекта раскрытого способа; и
фиг. 6d - представление аспекта раскрытого способа;
на которых одинаковые номера обозначают на подобные элементы на разных чертежах.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Фиг. 1 показывает ультразвуковой датчик 100, который используется раскрытым устройством, и конфигурацию элементов датчика в нем. Конфигурация датчика состоит из множества элементов датчика, скомпонованных в двухмерном массиве. Фиг. 1 показывает 32-элементный датчик, скомпонованный в шести строках. Строки в верхней и нижней частях массива имеют четыре элемента каждая, и есть четыре строки из шести элементов, каждая между ними. Однако это является всего лишь примерной компоновкой, и другие компоновки также могут использоваться. Также возможно, что размер элементов датчика и их форма могут быть иными. Характеристика массива датчиков является такой, что отдельные элементы датчика приводятся в действие независимо друг от друга и не возбуждаются для управления направлением пучка сдвинутыми по фазе сигналами. Такой массив, как на фиг. 1, может возбуждаться для выработки коллимированного пучка ультразвука известным образом. Во время сбора доплеровских данных, элементы могут возбуждаться последовательно или группами, из условия чтобы акустический сигнал с одного датчика не оказывал влияния на другие, которые возбуждаются одновременно.
Фиг. 2 схематично показывает описываемое устройство 200. Элементы датчиков возбуждаются, как описано выше со ссылкой на фиг. 1, формирователем 201. Датчики принимают отраженную ультразвуковую энергию и преобразуют ее в электрические сигналы. Сигналы, выдаваемые отдельными элементами датчика, анализируются анализатором 203 для вычисления доплеровской мощности в известном количестве точек в объеме выборки и сохранения их в трехмерном массиве.
Блок 207 определения угла использует этот трехмерный массив для определения угла, в каждой точке объема выборки, из которой были собраны доплеровские данные, между ультразвуковым излучением в точке и направлением сосуда в точке. Углы, вычисленные таким образом, являются доплеровскими углами в каждой точке в объеме выборки. Вычислитель 209 доплеровской скорости использует доплеровские данные и определенный угол для определения скорости кровотока во всех точка, в которых доплеровский угол является меньшим, чем 60°.
Скорости кровотока, подвергнутые поправке на доплеровский угол, передаются пользователю с использованием соответствующим образом интерфейса 211 пользователя. Должно быть понятно, что сам интерфейс пользователя не обязательно должен быть частью устройства и может быть внешним блоком, в который вычисленные значения отправляются проводным или беспроводным средством для передачи пользователю соответствующим образом. Таковой, например, мог бы быть принтером, компьютером общего назначения или мобильным устройством. Однако может быть более полезным иметь интерфейс пользователя в качестве части самого устройства, так что устройство является автономным блоком, которому не нужно взаимодействие с другими устройствами или системами.
Возможно, что вследствие анатомии сосудов в индивидуальном субъекте или положения датчика на субъекте, либо того и другого, ни один из вычисленных доплеровских углов не находится ниже 60°, или что очень немного точек в объеме выборки являются доплеровскими углами, меньшими чем 60°. Устройство может быть выполнено с возможностью сообщать пользователю, в таких случаях, что положение датчика на субъекте должно измениться, чтобы было осуществлено полезное измерение.
Настоящим также раскрыт способ определения доплеровского угла во время доплеровского измерения скорости крови. Это описывает способ обработки импульсов отраженной ультразвуковой энергии, принятых и преобразованных датчиком в электрические сигналы. Датчик имеет разреженный массив элементов датчика, как описано со ссылкой на фиг. 1, и описанное выше устройство.
На Фиг. 3 показан способ определения доплеровского угла для доплеровского измерения скорости кровотока в объеме части тела субъекта. Способ содержит следующие этапы:
этап 313 приема, на котором принимают электрические сигналы от двухмерного массива ультразвуковых датчиков, причем сигналы представляют ультразвуковую энергию, отраженную от части тела субъекта, при этом ультразвуковая энергия была излучена двухмерным массивом;
этап 315 вычисления, на котором вычисляют доплеровскую мощность в заданной полосе частот, принятую из заданных местоположений в объеме;
этап 317 формирования, на котором формируют первый трехмерный массив, при этом каждая ячейка массива содержит значение доплеровской мощности из местоположения в объеме с заданной зависимостью между упомянутым местоположением и положением ячейки в массиве;
этап 319 отображения, на котором формируют второй трехмерный массив, при этом каждая ячейка второго массива содержит двоичный бит, указывающий, находится ли значение в соответствующей ячейке первого трехмерного массива выше порогового значения;
этап 321 идентификации, на котором идентифицируют группу смежных ячеек, которые содержат двоичный бит, представляющий значения выше порогового значения, в каждом двухмерном массиве, формирующем второй трехмерный массив;
этап 323 вычисления, на котором вычисляют трехмерные координаты центра тяжести площади, покрытой каждой группой в каждом из двухмерных массивов; и
этап 325 вычисления угла, на котором вычисляют угол между первой линией, соединяющей два центра тяжести, ближайших друг к другу в двух смежных двухмерных массивах, и второй линией, проходящей через один из двух центров тяжести, причем линия является параллельной излучаемому ультразвуку.
На Фиг. 4 показан способ определения доплеровского угла для доплеровского измерения скорости кровотока в объеме части тела субъекта. Способ содержит этапы 313, 315, 317, 319, 321, 323, 325, и этап 427 вычисления скорости, на котором вычисляют первую скорость кровотока в местоположении на основании доплеровской мощности в таком местоположении, и этап 429 поправки скорости, на котором вносят поправку в вычисленную скорость в зависимости от доплеровского угла, вычисленного в таком местоположении, для передачи пользователю. На этапе 429 поправки скорости поправка в вычисленную скорость может быть внесена, только когда угол, вычисленный в такой точке, является меньшим, чем заданное пороговое значение.
На Фиг. 5 показан способ определения доплеровского угла для доплеровского измерения скорости кровотока в объеме части тела субъекта. Способ содержит этапы 313, 315, 317, 319, 321, 323, 325 и этап 531 оценки, на котором вычисляют количество определенных углов, значения которых являются меньшими, чем заданное пороговое значение, и определяют, необходимо ли изменение положения ультразвукового датчика на субъекте, на основании заданного количества, для передачи пользователю.
Принятый сигнал обрабатывается относительно доплеровской мощности. Диапазоном частот, выбранным для этого, является 300-2500 Гц, которые типично представляют кровоток. Доплеровские данные собираются из точек в объеме сканирования, например, с длинами шага в 2 мм с каждого элемента датчика, в направлении, перпендикулярном поверхности элементов датчика. Доплеровские данные могут собираться с любыми выбранными длинами шага, и 2 мм нормально считаются достаточными, поскольку, обычно, никакие интересующие сосуды не являются меньшими, чем 2 мм в диаметре. Доплеровские данные, собранные вплоть до расстояния в 10 см от датчика или поверхности кожи субъекта, или любой другой подходящей начальной и конечной точки. Проанализированные данные используются для формирования трехмерного представления потока в объеме сканирования.
Должно быть понятно, что числовые значения, приведенные выше, упомянуты ради пояснения. Однако можно менять эти значения для удовлетворения требованиям конкретного применения. Или что устройства строятся на основании этого раскрытия, которое имеет меняющиеся значения и диапазоны для изготовления устройства, применимого в случаях, в которых значения отличны от изложенных. Например, диапазон частот может быть более широким, чтобы обеспечивать измерение большей скорости крови, вызванной стенозом. Или что длины шага, меньшие, чем 2 мм, - в случае детей, которые могут иметь кровеносные сосуды гораздо меньшего диаметра поперечного сечения, и так далее. Считается, что все такие варианты должны покрываться в объеме этого раскрытия.
Для дальнейшего описания предполагается, что выбранная длина шага фактически имеет значение 2 мм и что датчик является 32-элементным датчиком, как описано выше. Кроме того, предполагается, что поверхность каждого элемента датчика должна быть квадратной с размерами 10 мм на 10 мм. При этом информация о потоке, которая получается в результате, может быть скомпонована в 3-мерном массиве, который имеет 6 строк, 6 столбцов и 50 слоев, за исключением верхней и нижней строк, которые имеют только 4 элемента датчика. Таким образом, четыре угловых ячейки каждого слоя не будут иметь никакой информации о доплеровской мощности в них. За исключением упомянутых ячеек, каждая ячейка этого массива содержит в себе информацию в показателях измеренной доплеровской мощности.
Эти данные используются для создания второго массива, который является копией первого массива по структуре, но имеет цифровое значение '1' во всех тех ячейках, которые имеют значение доплеровской мощности, большее чем заданное пороговое значение, и цифровое значение '0' во всех тех ячейках, которые имеют значение доплеровской мощности, меньшее чем или равное такому пороговому значению. Пороговое значение выбирается, из условия чтобы шум и паразитные сигналы не мешали очерчиванию сосудов.
Этот трехмерный массив отображается в виде отображения потока в трех измерениях, на котором очерчены сосуды в объеме выборки. Это означает, что трехмерный массив может визуализироваться в качестве имеющего размеры при реалистичном отображении объема тела субъекта, из которого принимается и обрабатывается отраженное излучение. Таким образом, каждая ячейка массива имеет размеры, соответствующие размерам излучающей поверхности элементов датчика, и расстояние между слоями визуализируется, чтобы иметь длину шага, с которой принимается и обрабатывается доплеровская мощность. Эта визуализация массива в качестве имеющего физические размеры является ключом к раскрытию.
В каждом слое массива все соседние ячейки, содержащие в себе '1', считаются принадлежащими одному и тому же сосуду. Эта группа ячеек, содержащая в себе сопредельные 1, считается представляющей поперечное сечение сосуда в плоскости, сформированной каждым слоем. Таким образом, получает поперечные сечения сосудов, разделенные расстояниями в 2 мм в направлении слоев массива.
Как только определены сечения, центр тяжести каждого из них определяется известным образом. Начиная с любого слоя, самые ближние центры тяжести в двух прилегающих слоях обрабатываются в качестве принадлежащих одному и тому же сосуду. Таким образом, линия, соединяющая все такие центры тяжести, считается являющейся центральной линией каждого из сосудов в объеме выборки. Как только эти сосуды очерчены таким образом, сосуд рассматривается в качестве линейного и состоящего из участков, и угол между каждой линией, соединяющей два ближайших центра тяжести, и линией в каждом центре тяжести, перпендикулярной сечению и в направлении датчика, может определяться известным образом. Каждый из этих углов, измеренных таким образом, является доплеровским углом в такой точке.
Извлекается наименьший определенный угол, то есть точка в центре поперечного сечения сосуда, в которой ультразвуковой пучок является ближайшим к являющемуся параллельным сосуду, и информация о доплеровской мощности из первого трехмерного массива, принадлежащая ячейке, ближайшей к центру тяжести, используется для вычисления информации о скорости с использованием формулы
Figure 00000001
в которой v обозначает скорость кровотока в артерии в конкретной точке, Fs представляет доплеровский сдвиг частот, с представляет скорость звука в среде, th представляет угол между зондом и сосудом, и Ft представляет частоту зонда. Это могло бы быть видно со ссылкой на фиг. 4, как на этапе 427, начальная скорость вычисляется на этапе 429, и вычисляется окончательная или поправленная скорость. Даже если в описании она выше и в других местах, точка единая.
Возможно, что вследствие положения датчика на поверхности живота субъекта и траектории сосуда относительно датчика ни один из доплеровских углов, вычисленных, как описано выше, не имеет значение, меньшее чем 60°. В одном из вариантов способа, информация, что положению зонда необходимо измениться, поскольку текущее положение не пригодно для измерения скорости с достаточной точностью, может передаваться пользователю в таких случаях. Это показано на фиг. 5. Подсчитывается количество местоположений, где вычисленный угол является меньшим, чем заданное пороговое значение, и на этапе 531 количество сравнивается с заданным количеством. Если подсчитанное количество является меньшим, чем заданное количество, информация может передаваться пользователю соответствующим образом для изменения положения датчика на поверхности тела субъекта. Должно быть понятно, что слово «положение» здесь может означать местоположение на субъекте, угол или наклон и ориентацию, и так далее. Не приходится и говорить, последовательность операций может повторяться до тех пор, пока не определены достоверные значения скорости кровотока, то есть не получено по меньшей мере одно значение доплеровского угла, меньшее чем 60°.
В еще одном варианте способа, могут вычисляться скорости кровотока в разных точках на сосуде, которые удовлетворяют критериям, а именно где доплеровский угол является меньшим, чем 60°, и внимание пользователя может соответственно привлекаться к любому большому различию между ними. Большое различие в скоростях может служить признаком закупорки в сосуде или кровотечения.
Также возможно, что доплеровские данные для всех ячеек, прилегающих к центру тяжести, используются для вычисления скоростей в каждой из таких ячеек, и средняя величина скоростей может получаться для определения скорости кровотока, а затем, подвергаться поправке на доплеровский угол. В качестве альтернативы, сначала определяется средняя величина значений, сохраненных во всех ячейках, прилегающих к центру тяжести, и с использованием этой средней величины скорость определяется, а затем, подвергается поправке на доплеровский угол.
Описание до сих пор следует с допущением, что получаются сечения, и поток отображается в слоях массива, как показано на фиг. 6а. Визуализация массива, в целях понимания, показана на 6b. Должно быть понятно, что это не единственный способ очерчивания сосудов. Равным образом можно делать это с помощью других двух плоскостей, перпендикулярных показанной на 6а. Таковые показаны на фиг. 6b и на фиг. 6с с соответствующими изменениями в вычислениях, которые следуют. Со знанием нормальной анатомии сосудов, рассматриваемых для измерения скорости, и положения зонда, может быть полезным выбирать одну из трех возможностей. На всех трех чертежах стрелка указывает направление облучения звуком или излучения коллимированного пучка ультразвука.
Описание до сих пор предполагало, что структуры сосудов всегда являются достаточно раздельными, чтобы уникально очерчивать сосуды на основании описанного способа. Однако в реальности возможно, что сосуды переплетены или пересекаются друг с другом, так что сосуды, очерчиваемые на основании описываемого способа, будут пересекаться в некоторой точке. Другими словами, поток отображается для одного сосуда в отношении определенного расстояния (определенного количества смежных центров тяжести), а затем центр тяжести, принадлежащий другому сосуду, обрабатывается в качестве следующего смежного центра тяжести. Таким образом, как только определены центры тяжести, и отображен поток, доплеровские данные, хранимые в массиве, сравниваются известным образом, чтобы определять, принадлежат ли они фактически одному и тому же сосуду или нет. Сравнение может быть основано на основании взаимной корреляции или любого другого способа числового сравнения. Альтернатива, например, может состоять в том, чтобы использовать перекрестное распределение Тигера-Вилля или перекрестные распределения Вигнера-Вилля. Кровоток обладает характеристиками, которые остаются по существу идентичными вдоль данного кровеносного сосуда. Посредством сравнения этих характеристик в разных точках в сосуде, может подтверждаться, что отображение сосудов было выполнено правильно. Если эта проверка показывает, что отображение является неправильным, посредством повторного позиционирования датчика, могли бы легко получаться лучшие результаты.
Несмотря на то, что варианты осуществления были подробно описаны на чертежах и в описании, такие чертежи и описание должны считаться примерными, а не ограничивающими; изобретение не ограничено раскрытыми вариантами осуществления.
Например, можно осуществить изобретение на практике в конфигурации, в которой есть более одного компьютерного блока памяти для хранения трехмерных массивов. Подобным образом, этапы способов, раскрытые в разных вариантах осуществления, могут быть объединены с достижением преимущества.
Другие варианты описанных вариантов осуществления могут быть предусмотрены и реализованы специалистами в данной области техники при осуществлении заявленного изобретения на практике на основании изучения чертежей, описания и прилагаемой формулы изобретения. В формуле изобретения слово «содержащий» не исключает элементы или этапы, отличные от упомянутых, а единственное число не исключает множества. Один процессор или другой блок может выполнять функции нескольких элементов, охарактеризованных в формуле изобретения. Сам по себе тот факт, что определенные средства перечислены в различных зависимых пунктах формулы изобретения, не служит признаком того, что сочетание этих средств не может быть использовано с достижением преимущества.

Claims (18)

1. Ультразвуковое устройство (200) для измерения скорости кровотока в кровеносном сосуде субъекта, причем измерение зависит от отражения от объема части тела субъекта коллимированного пучка ультразвуковой энергии, излучаемого ультразвуковым датчиком (100) вдоль направления пучка в объем части тела субъекта, причем устройство содержит:
анализатор (203) для приема электрических сигналов, представляющих отраженную ультразвуковую энергию, принятую каждым элементом (101) ультразвукового датчика (100), включающего в себя двухмерный массив элементов датчика; и для анализа доплеровской мощности сигналов для формирования представления кровотока во множестве заданных местоположений в объеме и вычисления первой скорости кровотока в каждом из местоположений;
блок (205) очерчивания для очерчивания кровотока в кровеносном сосуде в объеме представляющей кровоток выборки;
блок (207) определения угла для вычисления во множестве точек в очерченном кровотоке доплеровского угла между направлением пучка для излучаемого коллимированного пучка ультразвуковой энергии в каждой из множества точек в очерченном кровотоке и направлением кровотока в каждой из множества точек, причем упомянутое направление зависит от очерчивания; и
вычислитель (209) доплеровской скорости для вычисления второй скорости кровотока во множестве точек на основании вычисленных первых скоростей во множестве местоположений и вычисленного доплеровского угла во множестве точек для передачи второй скорости кровотока пользователю.
2. Устройство по п. 1, в котором вторая скорость кровотока в любой точке определяется, только если доплеровский угол в такой точке является меньшим, чем заданное значение.
3. Устройство по п. 1, дополнительно содержащее интерфейс (211) пользователя, предназначенный для передачи пользователю информации для изменения положения датчика на субъекте, когда количество определенных доплеровских углов, которые находятся ниже заданного значения, является меньшим, чем заданное количество.
4. Способ определения доплеровского угла (300) для доплеровского измерения скорости кровотока в объеме части тела субъекта, причем способ содержит следующие этапы:
этап (313) приема, на котором принимают электрические сигналы от двухмерного массива ультразвуковых датчиков, причем сигналы представляют ультразвуковую энергию, отраженную от части тела субъекта, при этом ультразвуковая энергия была излучена двухмерным массивом;
этап (315) вычисления, на котором вычисляют доплеровскую мощность в заданной полосе частот, принятую из заданных местоположений в объеме;
этап (317) формирования, на котором формируют первый трехмерный массив, при этом каждая ячейка массива содержит значение доплеровской мощности из местоположения в объеме с заданной зависимостью между упомянутым местоположением и положением ячейки в массиве;
этап (319) отображения, на котором формируют второй трехмерный массив, при этом каждая ячейка второго массива содержит двоичный бит, указывающий, находится ли значение в соответствующей ячейке первого трехмерного массива выше порогового значения;
этап (321) идентификации, на котором идентифицируют группу смежных ячеек, которые содержат двоичный бит, представляющий значения выше порогового значения, в каждом двухмерном массиве, формирующем второй трехмерный массив;
этап (323) вычисления, на котором вычисляют трехмерные координаты центра тяжести площади, покрытой каждой группой в каждом из двухмерных массивов; и
этап (325) вычисления угла, на котором вычисляют угол между первой линией, соединяющей два центра тяжести, ближайших друг к другу в двух смежных двухмерных массивах, и второй линией, проходящей через один из двух центров тяжести, причем линия является параллельной излучаемому ультразвуку.
5. Способ по п. 4, дополнительно содержащий этап (427) вычисления скорости, на котором вычисляют первую скорость кровотока в местоположении на основании доплеровской мощности в таком местоположении, и этап (429) поправки скорости, на котором вносят поправку в вычисленную скорость в зависимости от доплеровского угла, вычисленного в таком местоположении, для передачи пользователю.
6. Способ по п. 5, в котором на этапе (429) поправки скорости вносят поправку в вычисленную скорость, только когда угол, вычисленный в такой точке, является меньшим, чем заданное пороговое значение.
7. Способ по п. 4, дополнительно содержащий этап (531) оценки, на котором вычисляют количество определенных углов, значения которых являются меньшими, чем заданное пороговое значение, и определяют, необходимо ли изменение положения ультразвукового датчика на субъекте, на основании заданного количества, для передачи пользователю.
RU2014102983A 2011-06-30 2012-06-29 Способ и устройство для автоматизированной доплеровской оценки угла и скорости потока RU2623301C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN2236/???/2011 2011-06-30
IN2236/CHE/2011 2011-06-30
IN2236CH2011 2011-06-30
PCT/IB2012/053315 WO2013001503A2 (en) 2011-06-30 2012-06-29 Method and apparatus for automated ultrasonic doppler angle and flow velocity estimation

Publications (2)

Publication Number Publication Date
RU2014102983A RU2014102983A (ru) 2015-08-10
RU2623301C2 true RU2623301C2 (ru) 2017-06-23

Family

ID=46755049

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014102983A RU2623301C2 (ru) 2011-06-30 2012-06-29 Способ и устройство для автоматизированной доплеровской оценки угла и скорости потока

Country Status (7)

Country Link
US (1) US10786223B2 (ru)
EP (1) EP2725983B1 (ru)
JP (1) JP6099641B2 (ru)
CN (1) CN103635144B (ru)
BR (1) BR112013033222A2 (ru)
RU (1) RU2623301C2 (ru)
WO (1) WO2013001503A2 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10945702B2 (en) 2013-07-24 2021-03-16 Koninklijke Philips N.V. Doppler ultrasound system for diagnosing carotid stenosis
CN105407807B (zh) * 2013-07-24 2018-11-30 皇家飞利浦有限公司 用于颈动脉狭窄的自动筛查的非成像二维阵列探头和系统
JP6297150B2 (ja) * 2013-07-24 2018-03-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管の超音波データの空間的に異なるサブボリュームを位置合わせするための方法
CN105266848B (zh) * 2015-10-16 2017-12-12 深圳市恩普电子技术有限公司 一种超声频谱多普勒自动优化的方法
EP3370623B1 (en) * 2015-11-03 2020-06-24 Koninklijke Philips N.V. System and method for measuring arterial parameters using non-imaging ultrasound
KR102577752B1 (ko) * 2016-02-02 2023-09-12 삼성메디슨 주식회사 대상체의 속도를 출력하는 방법 및 이를 위한 초음파 진단 장치
EP3432801B1 (en) * 2016-03-23 2020-05-06 Koninklijke Philips N.V. A method and apparatus for improving the measurement of flow velocity of blood
US10856837B2 (en) * 2016-09-30 2020-12-08 Robert Bosch Gmbh Micro-mechanical adjustment system for piezoelectric transducers
KR102069207B1 (ko) * 2017-07-13 2020-01-22 사회복지법인 삼성생명공익재단 혈류의 물리량 산출 방법 및 장치
EP3494895A1 (en) * 2017-12-07 2019-06-12 Koninklijke Philips N.V. Patient monitoring
CN113924044A (zh) * 2019-04-18 2022-01-11 加利福尼亚州立大学董事会 用于血管和中枢器官的连续非侵入性超声监测的系统和方法
JP7334486B2 (ja) * 2019-06-07 2023-08-29 コニカミノルタ株式会社 超音波診断装置、超音波診断装置の制御方法、及び、超音波診断装置の制御プログラム
CN112120733B (zh) * 2020-08-31 2022-09-06 深圳市德力凯医疗设备股份有限公司 一种获取脑血流速度的方法、存储介质及终端设备
CN112415223B (zh) * 2020-11-19 2021-09-24 中国科学院大学 一种液态金属内部的速度测量方法、装置及存储介质
JP2023028891A (ja) * 2021-08-20 2023-03-03 日本光電工業株式会社 生体情報処理方法、生体情報処理装置及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555886A (en) * 1995-09-28 1996-09-17 Siemens Medical Systems, Inc. Apparatus and method for detecting blood vessel size and direction for doppler flow measurement system
RU2246896C2 (ru) * 2001-10-30 2005-02-27 Саратовский государственный технический университет Способ измерения скорости кровотока и устройство для его реализации
US20060184032A1 (en) * 2001-06-15 2006-08-17 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
US20100249597A1 (en) * 2007-12-07 2010-09-30 Koninklijke Philips Electronics N.V. Method and system for imaging vessels
WO2011058471A1 (en) * 2009-11-13 2011-05-19 Koninklijke Philips Electronics N.V. System and method for identifying a doppler signal from a target blood vessel

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701898A (en) 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
US5606972A (en) * 1995-08-10 1997-03-04 Advanced Technology Laboratories, Inc. Ultrasonic doppler measurement of blood flow velocities by array transducers
US7534209B2 (en) 2000-05-26 2009-05-19 Physiosonics, Inc. Device and method for mapping and tracking blood flow and determining parameters of blood flow
US6685645B1 (en) * 2001-10-20 2004-02-03 Zonare Medical Systems, Inc. Broad-beam imaging
US6535835B1 (en) * 2000-01-31 2003-03-18 Ge Medical Systems Global Technology Company, Llc Angle independent ultrasound volume flow measurement
US6312385B1 (en) * 2000-05-01 2001-11-06 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic detection and sizing of cystic objects
US7591787B2 (en) * 2005-09-15 2009-09-22 Piero Tortoli Method for removing Doppler angle ambiguity
JP4864547B2 (ja) 2006-05-30 2012-02-01 株式会社東芝 超音波診断装置およびその制御処理プログラム
KR100969536B1 (ko) * 2007-04-06 2010-07-12 주식회사 메디슨 초음파 영상을 형성하는 초음파 시스템 및 방법
JP5478814B2 (ja) 2007-06-05 2014-04-23 株式会社東芝 超音波診断装置及び超音波による速度測定方法
JP5214920B2 (ja) * 2007-07-24 2013-06-19 株式会社東芝 超音波診断装置及び超音波診断装置の音響出力方法
JP2009039240A (ja) * 2007-08-08 2009-02-26 Toshiba Corp 超音波診断装置、及び超音波画像処理プログラム
US20090292208A1 (en) * 2008-03-03 2009-11-26 Jeffrey Jr R Brooke Automated detection of asymptomatic carotid stenosis
US8394027B2 (en) * 2008-06-06 2013-03-12 Siemens Medical Solutions Usa, Inc. Multi-plane/multi-slice processing for 2-D flow imaging in medical diagnostic ultrasound
CA2728998C (en) 2008-06-26 2021-11-16 Verasonics, Inc. High frame rate quantitative doppler flow imaging using unfocused transmit beams
DE102009019497B4 (de) * 2009-05-04 2014-07-17 Wittenstein Ag Verfahren zur Untersuchung eines Mediums
US8439840B1 (en) * 2010-05-04 2013-05-14 Sonosite, Inc. Ultrasound imaging system and method with automatic adjustment and/or multiple sample volumes
US8622913B2 (en) * 2010-09-28 2014-01-07 General Electric Company Method and system for non-invasive monitoring of patient parameters
US9398898B2 (en) * 2011-02-23 2016-07-26 Siemens Medical Solutions Usa, Inc. Multiple beam spectral doppler in medical diagnostic ultrasound imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555886A (en) * 1995-09-28 1996-09-17 Siemens Medical Systems, Inc. Apparatus and method for detecting blood vessel size and direction for doppler flow measurement system
US20060184032A1 (en) * 2001-06-15 2006-08-17 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
RU2246896C2 (ru) * 2001-10-30 2005-02-27 Саратовский государственный технический университет Способ измерения скорости кровотока и устройство для его реализации
US20100249597A1 (en) * 2007-12-07 2010-09-30 Koninklijke Philips Electronics N.V. Method and system for imaging vessels
WO2011058471A1 (en) * 2009-11-13 2011-05-19 Koninklijke Philips Electronics N.V. System and method for identifying a doppler signal from a target blood vessel

Also Published As

Publication number Publication date
BR112013033222A2 (pt) 2017-03-01
CN103635144A (zh) 2014-03-12
US20140228688A1 (en) 2014-08-14
EP2725983A2 (en) 2014-05-07
WO2013001503A3 (en) 2013-03-28
US10786223B2 (en) 2020-09-29
JP2014518126A (ja) 2014-07-28
EP2725983B1 (en) 2018-02-28
JP6099641B2 (ja) 2017-03-22
WO2013001503A2 (en) 2013-01-03
RU2014102983A (ru) 2015-08-10
CN103635144B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
RU2623301C2 (ru) Способ и устройство для автоматизированной доплеровской оценки угла и скорости потока
US8287456B2 (en) Ultrasound imaging system with pixel oriented processing
KR101820422B1 (ko) 포커싱되지 않은 송신 빔들을 이용한 높은 프레임 레이트의 정량적 도플러 흐름 촬영
KR20080019186A (ko) 영상 처리 시스템 및 방법
JP5426368B2 (ja) 超音波変換器を使用して生物組織の粘弾性特性を測定する方法
RU2723753C1 (ru) Способ и устройство для ультразвукового измерения и визуализации упругости биологических тканей в реальном времени
KR20090095150A (ko) 초음파 영상을 처리하는 초음파 시스템 및 방법
US11399805B2 (en) Ultrasound diagnostic device and ultrasound signal processing method
US10548571B1 (en) Fast 2D blood flow velocity imaging
US20070100238A1 (en) System and method for forming 3-dimensional images using multiple sectional plane images
US20200337679A1 (en) Ultrasonic signal processing apparatus, ultrasonic diagnostic apparatus, ultrasonic signal processing method, and ultrasonic signal processing program
CN101711684B (zh) 超声波诊断装置以及超声波收发方法
JP6321162B2 (ja) 繊維状媒体のマッピングの方法及びデバイス
JP6698511B2 (ja) 超音波信号処理装置、および、それを用いた超音波送受信装置
JP2019111104A (ja) 超音波送受信装置および超音波送受信方法
JP2021013575A (ja) 超音波診断装置、および、超音波診断装置の制御方法
US20170032557A1 (en) Ultrasound Focal Zone System and Method
US20040254468A1 (en) Mapping and tracking blood flow using reduced-element probe
CN108369214A (zh) 超声波检测物体的方法
JP7347445B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
WO2021223237A1 (zh) 确定血流形态的方法、超声装置及计算机存储介质
EP4226863A1 (en) Fetal heart rate monitoring
CN114777696A (zh) 一种超声测厚方法
Baker Two dimensional Echo Imaging and Pulsed Doppler Blood Flow Detection: A comprehensive approach to cardiovascular diagnosis