RU2619809C1 - Системы и способы обнаружения границ раздела вода/продукт во время обработки пищевого продукта - Google Patents
Системы и способы обнаружения границ раздела вода/продукт во время обработки пищевого продукта Download PDFInfo
- Publication number
- RU2619809C1 RU2619809C1 RU2015155204A RU2015155204A RU2619809C1 RU 2619809 C1 RU2619809 C1 RU 2619809C1 RU 2015155204 A RU2015155204 A RU 2015155204A RU 2015155204 A RU2015155204 A RU 2015155204A RU 2619809 C1 RU2619809 C1 RU 2619809C1
- Authority
- RU
- Russia
- Prior art keywords
- food product
- food
- flow
- flow detector
- computer
- Prior art date
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims abstract description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000012545 processing Methods 0.000 title description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 38
- 238000010183 spectrum analysis Methods 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 35
- 230000000977 initiatory effect Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 238000002604 ultrasonography Methods 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000004806 packaging method and process Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 238000012865 aseptic processing Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 229910001018 Cast iron Inorganic materials 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/001—Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/003—Control or safety devices for sterilisation or pasteurisation systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B25/00—Packaging other articles presenting special problems
- B65B25/001—Packaging other articles presenting special problems of foodstuffs, combined with their conservation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B55/00—Preserving, protecting or purifying packages or package contents in association with packaging
- B65B55/02—Sterilising, e.g. of complete packages
- B65B55/025—Packaging in aseptic tunnels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/663—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L23/00—Soups; Sauces; Preparation or treatment thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N2015/0687—Investigating concentration of particle suspensions in solutions, e.g. non volatile residue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/017—Doppler techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/022—Liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02809—Concentration of a compound, e.g. measured by a surface mass change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2636—Surfaces cylindrical from inside
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Acoustics & Sound (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Nutrition Science (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Использование: для производства пищевых продуктов. Сущность изобретения заключается в том, что в общем варианте осуществления системы для производства пищевого продукта включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи. Детектор потока включает в себя процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Также предложены способы производства пищевых продуктов. Технический результат: обеспечение возможности более совершенной процедуры асептической обработки пищевых продуктов, определения местоположения границы раздела вода/пищевой продукт, а также снижение риска упаковки разбавленного пищевого продукта. 2 н. и 27 з.п. ф-лы, 1 ил.
Description
Уровень техники
Настоящее изобретение в основном относится к технологии пищевых продуктов. В частности, настоящее изобретение относится к системам и способам для обнаружения границы раздела вода/продукт, которая возникает во время перехода от рециркулирующей воды к пищевому продукту при асептической обработке пищевого продукта.
Способы асептической обработки пищевых продуктов хорошо известны. Однако эти способы не всегда могут обеспечить оптимальные результаты применительно к эффективности производства и/или качеству получаемого продукта. Например, во время асептической обработки пищевой продукт обычно нагревают водой, которая нагревается паром. Однако перед обработкой пищевого продукта систему химически очищают и промывают водой. Затем вода рециркулирует через систему для сохранения стерильности системы. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела вода/пищевой продукт начинает перемещаться по системе. В качестве альтернативы, когда подходит время для прекращения потока пищевого продукта в систему, клапан резервуара продукта закрывают, и вода снова начинает рециркулировать по системе. В любом случае, важно определить местоположение границы вода/продукт или продукт/вода, чтобы избежать неэффективности процесса, такой как, например, ненужные потери продукта, которые происходят, если при упаковке пищевого продукта применяется традиционный подход. При этом предприятия могут руководствоваться традиционным подходом в определении момента появления границы вода/продукт, чтобы гарантировать, что разбавленный продукт не будет упакован для продажи потребителям.
Таким образом, существует необходимость в производственном процессе, который способен точно установить границу раздела вода/пищевой продукт, которая возникает во время асептической обработки пищевого продукта.
Сущность изобретения
В настоящем изобретении предложены системы и способы производства асептичных пищевых продуктов. В варианте осуществления предложены системы для производства пищевого продукта, которые включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта для потока пищевого продукта, и детектор потока, соединенный с трубопроводом снаружи. Детектор потока включает в себя процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.
В варианте осуществления система является системой асептического производства.
В варианте осуществления детектор потока является ультразвуковым детектором потока.
В варианте осуществления трубопровод является трубой. Трубопровод может быть изготовлен из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления трубопровод изготовлен из нержавеющей стали. Трубопровод может соединять резервуар для пищевого продукта с теплообменником.
В варианте осуществления система включает в себя по меньшей мере один дополнительный трубопровод для потока пищевого продукта. По меньшей мере один из дополнительных трубопроводов может иметь детектор потока. В качестве альтернативы, каждый из дополнительных трубопроводов может иметь детектор потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.
В другом варианте осуществления предложены системы для производства пищевого продукта, которые включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе.
В варианте осуществления компьютер является детектором потока.
В варианте осуществления система является системой асептического производства.
В варианте осуществления компьютер является ультразвуковым детектором потока.
В варианте осуществления компьютер сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.
В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.
В варианте осуществления система включает в себя дополнительную трубу для потока пищевого продукта. По меньшей мере некоторые из дополнительных труб могут иметь детектор потока. В качестве альтернативы, все дополнительные трубы могут иметь детектор потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, и детектор потока, соединенный с трубопроводом снаружи. Детектор потока имеет процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Способы также включают инициирование потока пищевого продукта по трубопроводу.
В варианте осуществления система является системой асептического производства.
В варианте осуществления детектор потока является ультразвуковым детектором потока.
В варианте осуществления трубопровод является трубой. Трубопровод может быть изготовлен из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления трубопровод изготовлен из нержавеющей стали.
В варианте осуществления трубопровод соединяет резервуар для пищевого продукта с теплообменником.
В варианте осуществления система включает в себя по меньшей мере один дополнительный трубопровод для потока пищевого продукта. По меньшей мере один из дополнительных трубопроводов может иметь детектор потока. В качестве альтернативы, каждый из дополнительных трубопроводов может иметь детектор потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.
В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе.
В варианте осуществления компьютер является детектором потока.
В варианте осуществления система является системой асептического производства.
В варианте осуществления компьютер является ультразвуковым детектором потока. Ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.
В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.
В варианте осуществления система также включает в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства. Другие устройства выбирают из группы, состоящей из резервуаров, клапанов, теплообменников или их сочетаний. Дополнительная труба может иметь по меньшей мере один компьютер.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от компьютера и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
В другом варианте осуществления предложены способы обнаружения границы раздела вода/пищевой продукт. Способы включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе и выполнение программы из системы программного обеспечения.
В варианте осуществления компьютер является детектором потока.
В варианте осуществления система является системой асептического производства.
В варианте осуществления компьютер является ультразвуковым детектором потока. Компьютер может быть сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.
В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.
В варианте осуществления система включает в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства. Другие устройства выбирают из группы, состоящей из резервуаров, клапанов, теплообменников или их сочетаний. Дополнительная труба может иметь по меньшей мере один детектор потока.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от компьютера и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.
В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
Преимущество настоящего изобретения заключается в том, что оно предлагает усовершенствованные способы производства пищевых продуктов.
Другое преимущество настоящего изобретения состоит в обеспечении усовершенствованных процедур асептической обработки пищевых продуктов.
Еще одно преимущество настоящего изобретения состоит в обеспечении способов производства пищевого продукта, которые позволяют определить местоположение границы раздела вода/пищевой продукт.
Еще одно другое преимущество настоящего изобретения состоит в обеспечении способов производства пищевого продукта, которые снижают риск упаковки разбавленного пищевого продукта.
Еще одно преимущество настоящего изобретения состоит в обеспечении способов контроля линии по производству асептичного пищевого продукта.
Дополнительные признаки и преимущества описываются здесь далее и будут понятны из последующего подробного описания и чертежей.
На фиг. 1 показано схематическое изображение способа производства пищевого продукта в соответствии с вариантом осуществления настоящего изобретения.
Подробное описание
В соответствии с использованием в данном описании изобретения и прилагаемой формуле изобретения формы слов единственного числа включают соответствия во множественном числе, если только контекст не будет однозначно диктовать обратное.
Употребляемый в данном документе термин «примерно» понимается как относящийся к числам в некотором числовом диапазоне. Кроме того, следует понимать, что все указанные здесь числовые диапазоны включают в себя все числа, целые или дробные, в пределах данного диапазона.
Под употребляемым в настоящем документе выражением «рециркулирующая вода» следует понимать воду, которая рециркулирует в части теплообменника, который будет содержать пищевой продукт во время обработки пищевого продукта. Специалисту в данной области будет понятно, что перед обработкой пищевого продукта систему химически очищают и промывают водой, и вода после этого рециркулирует через систему для поддержания системы стерильной. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела рециркулирующая вода/пищевой продукт начинает перемещаться через систему, при этом вытесняя рециркулирующую воду.
Употребляемое в настоящем документе выражение «анализ расширенного спектра» означает метод, который может применяться при мониторинге потока и включает в себя использование широкого ультразвукового луча, который преломляется стенкой трубопровода и также отражается частицами, суспендированными в текучей среде (например, пищевом продукте). В частности, широкий ультразвуковой луч распространяется от тангенциально установленного керамического выхода измерителя потока и через стенку трубопровода под углом примерно 90° к потоку в трубопроводе. Луч затем преломляется под углами поперек оси потока и после этого отражается от любых частиц, пузырьков и т.д. в текучей среде во всех направлениях и при широком диапазоне частот. Многочисленные отражения принимаются вторым керамическим приемником, присутствующим в измерителе потока. Отраженные сигналы могут анализироваться с помощью специального комплекса цифровой обработки сигналов (например, программного обеспечения) для получения желаемой информации о потоке.
Способы асептической обработки пищевых продуктов хорошо известны. Однако эти способы не всегда могут обеспечить оптимальные результаты применительно к эффективности производства и/или качеству получаемого продукта. Например, во время асептической обработки пищевой продукт обычно нагревают водой, которая нагревается паром. Однако перед обработкой пищевого продукта систему химически очищают и промывают водой. Затем вода рециркулирует через систему для сохранения системы стерильной. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела вода/пищевой продукт начинает перемещаться по системе. В качестве альтернативы, когда подходит время для прекращения потока пищевого продукта в систему, клапан резервуара продукта закрывают, и вода снова начинает рециркулировать по системе. В любом случае, важно определить местоположение границы вода/продукт или продукт/вода, чтобы избежать неэффективности процесса, такой как, например, ненужные потери продукта и/или энергии, которые происходят, если при упаковке пищевого продукта применяется традиционный подход. При этом предприятия могут руководствоваться традиционным подходом в определении момента появления границы вода/продукт, чтобы гарантировать, что разбавленный продукт не будет упакован для продажи потребителям.
Существующие способы обнаружения границы раздела вода/продукт используют известный инструментарий, такой как оптические, плотностные измерения или измерения вязкости, при которых необходимо, чтобы детекторы находились в непосредственном контакте с продуктом. Это представляет проблемы не только для конструкции системы, но также и для стерильности системы асептической обработки.
Другая возможность обнаружения границы раздела вода/продукт включает ультразвуковые детекторы, такие как ультразвуковые измерители потока. Однако традиционная ультразвуковая аппаратура не работает надежно с гигиенической трубой из нержавеющей стали, которая обычно используется при асептической обработке. При этом труба из нержавеющей стали может вибрировать во время использования, что создает значительные помехи сигналам традиционного ультразвукового измерителя потока/детектора.
Соответственно в системах и способах настоящего изобретения применяются детекторы потока, которые специально выполнены с возможностью работы в условиях асептического производства. В частности, детекторы потока настоящего изобретения используют новый алгоритм обработки сигнала, который способен преодолеть описанные выше проблемы установки. Алгоритм обработки представляет собой анализ расширенного спектра, который работает путем определения размера и концентрации твердых частиц в жидкости. Соответственно детектор потока, запрограммированный командами для выполнения анализа расширенного спектра, способен использовать изменение в качестве сигнала от воды (с чрезвычайно низкой концентрацией частиц) к продукту (с относительной высокой концентрацией частиц) для обнаружения прохождения границы раздела вода/продукт.
На фиг. 1 проиллюстрировано схематическое изображение процесса 10 асептического производства пищевого продукта, который включает в себя, без ограничения перечисленным, резервуар 12 для воды, резервуар 14 для пищевого продукта, клапан 16, теплообменник 18 и трубопроводы 20, соединяющие элементы процесса. Трубопроводы 20 могут быть трубопроводами из нержавеющей стали. Однако специалисту будет понятно, что трубопроводы также могут быть изготовлены из такого материала, как, например, чугун, мягкая сталь, жесткая пластмасса и т.д. Специалисту также понятно, что производственная линия не должна быть ограничена показанными устройствами и может включать в себя, например, другие резервуары, клапаны, трубопроводы, теплообменники, насосы, резервуары для выдержки, охладители, уравнительные резервуары, дренажи, упаковочное оборудование и т.д. Например, и как показано на фиг. 1, процесс 10 также может включать в себя насос 24, резервуар 26 для выдержки, охладитель 28, асептический уравнительный резервуар 30, дренаж 32, упаковочное оборудование 34 и дополнительные клапаны 36, 38.
Как также показано на фиг. 1, детекторы потока 22 могут быть расположены на внешней части любой трубы 20, присутствующей в производственной линии. В связи с этим, одна производственная линия может иметь один детектор потока или множество детекторов потока, расположенных вдоль любого участка трубопровода в процессе. Обеспечение множества детекторов позволяет оператору производства определить местоположение границы раздела вода/продукт или продукт/вода в любом месте вдоль производственной линии. Это расширение возможностей обнаружения в значительной степени снизит количество теряемой энергии или продукта, которые в настоящее время отмечаются на производственных линиях асептического процесса. Специалисту будет ясно, что детекторы потока 22 необязательно должны быть расположены в показанных местах процесса и могут быть расположены вдоль любого участка трубопровода 20 в процессе.
Соответственно процессы и способы настоящего изобретения предпочтительно снижают количество теряемого пищевого продукта и/или энергии, которые отмечаются в известных процессах асептического производства. Кроме того, системы и способы настоящего изобретения обеспечивают преимущества снижения риска загрязнения за счет использования установленного снаружи детектора потока и удобство конструкции производственной линии.
Хотя настоящее изобретение обсуждается как используемое при производстве, например, асептичного пищевого продукта через теплообменник, который нагревается с помощью нагревательной среды, специалисту будет понятно, что описанные здесь способы и процессы не ограничиваются производством асептичных пищевых продуктов. Кроме того, хотя настоящее изобретение содержит описания обработки пищевых продуктов, специалисту будет понятно, что любые продукты, которые имеют концентрацию частиц, которая больше, чем у воды, могут быть обработаны в соответствии с системами и способами, описанными в настоящем документе.
Кроме того, хотя выражения «измеритель потока» и «детектор потока» используются в различных местах в данном описании, специалисту в данной области будет понятно, что эти устройства также могут называться компьютерами, которые специально запрограммированы для определения расходов потока. Соответственно, выражения «измеритель потока», «детектор потока» и «компьютер» могут быть использованы взаимозаменяемо в настоящем описании.
В варианте осуществления настоящего изобретения предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи. Детектор потока имеет процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Способы также включают инициирование потока пищевого продукта по трубопроводу.
В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе.
В другом варианте осуществления предложены способы обнаружения границы раздела вода/пищевой продукт. Способы включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе и выполнение программы из системы программного обеспечения.
Следует понимать, что различные изменения и модификации, вносимые в предпочтительные в настоящее время варианты осуществления, описанные в данном документе, будут очевидны специалистам. Такие изменения и модификации могут быть осуществлены без отклонения от сущности и объема настоящего предмета изобретения и без уменьшения его предполагаемых преимуществ. Таким образом, предполагается, что такие изменения и модификации охватываются прилагаемой формулой изобретения.
Claims (48)
1. Система для производства пищевого продукта, при этом система содержит:
по меньшей мере один теплообменник;
по меньшей мере один резервуар для пищевого продукта;
по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, причем трубопровод соединяет резервуар для пищевого продукта с теплообменником; и
детектор потока, соединенный с трубопроводом снаружи, причем детектор потока содержит процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.
2. Система по п. 1, где система является системой асептического производства.
3. Система по п. 1, в которой детектор потока является ультразвуковым детектором потока.
4. Система по п. 1, дополнительно содержащая по меньшей мере один дополнительный трубопровод для потока пищевого продукта, в которой по меньшей мере один из дополнительных трубопроводов содержит детектор потока.
5. Система по п. 1, в которой команды запрограммированы для обеспечения процессором прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
6. Система по п. 5, в которой команды запрограммированы для обеспечения процессором анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
7. Система по п. 1, в которой команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.
8. Система по п. 1, дополнительно содержащая:
компьютер, имеющий процессор компьютера; и
машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по пути потока.
9. Система по п. 1, дополнительно содержащая дополнительные пути потока, соединяющие другие устройства в системе асептического производства, при этом другие устройства выбраны из группы, состоящей из резервуаров, клапанов, теплообменников и их сочетаний.
10. Система по п. 1, в которой команды запрограммированы для обеспечения инициирования потока пищевого продукта по трубопроводу.
11. Способ обнаружения границы раздела вода/пищевой продукт, при этом способ включает в себя:
обеспечение системы производства пищевых продуктов, содержащей
по меньшей мере один теплообменник,
по меньшей мере один резервуар для пищевого продукта,
трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником;
компьютер, имеющий процессор компьютера, и
машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе.
12. Способ по п. 11, дополнительно включающий стадию инициирования потока пищевого продукта по трубе.
13. Способ по п. 11, дополнительно включающий стадию выполнения программы из системы программного обеспечения.
14. Способ по п. 11, в котором имеется программа из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
15. Способ по п. 14, в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
16. Способ по п. 14, в котором ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.
17. Способ по п. 11, дополнительно включающий в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства, в котором другие устройства выбраны из группы, состоящей из
резервуаров, клапанов, теплообменников и их сочетаний, и в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока через по меньшей мере одну дополнительную трубу, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
18. Способ по п. 17, в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
19. Способ по п. 17, в котором ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.
20. Способ по п. 11, в котором система для производства пищевого продукта, содержит:
по меньшей мере один теплообменник;
по меньшей мере один резервуар для пищевого продукта;
по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, причем трубопровод соединяет резервуар для пищевого продукта с теплообменником; и
детектор потока, соединенный с трубопроводом снаружи, причем детектор потока содержит процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.
21. Способ по п. 11, в котором система для производства пищевого продукта является системой асептического производства.
22. Способ по п. 20, в котором детектор потока является ультразвуковым детектором потока.
23. Способ по п. 20, дополнительно содержащий по меньшей мере один дополнительный трубопровод для потока пищевого продукта, в котором по меньшей мере один из дополнительных трубопроводов содержит детектор потока.
24. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.
25. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.
26. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.
27. Способ по п. 20, дополнительно содержащий:
компьютер, имеющий процессор компьютера; и
машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по пути потока.
28. Способ по п. 20, дополнительно содержащий дополнительные пути потока, соединяющие другие устройства в системе асептического производства, при этом другие устройства выбраны из группы, состоящей из резервуаров, клапанов, теплообменников и их сочетаний.
29. Способ по п. 20, в котором команды запрограммированы для обеспечения инициирования потока пищевого продукта по трубопроводу.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361829406P | 2013-05-31 | 2013-05-31 | |
US61/829,406 | 2013-05-31 | ||
US201361899053P | 2013-11-01 | 2013-11-01 | |
US61/899,053 | 2013-11-01 | ||
PCT/IB2014/061307 WO2014191857A1 (en) | 2013-05-31 | 2014-05-08 | Systems and methods for detecting water/product interfaces during food processing |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2619809C1 true RU2619809C1 (ru) | 2017-05-18 |
Family
ID=50980334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015155204A RU2619809C1 (ru) | 2013-05-31 | 2014-05-08 | Системы и способы обнаружения границ раздела вода/продукт во время обработки пищевого продукта |
Country Status (12)
Country | Link |
---|---|
US (1) | US9683978B2 (ru) |
EP (1) | EP3004862A1 (ru) |
JP (1) | JP2016520839A (ru) |
CN (1) | CN105431732B8 (ru) |
AU (1) | AU2014272737B2 (ru) |
CA (1) | CA2913921C (ru) |
CL (1) | CL2015003509A1 (ru) |
MX (1) | MX352555B (ru) |
PH (1) | PH12015502682A1 (ru) |
RU (1) | RU2619809C1 (ru) |
SG (1) | SG11201509789WA (ru) |
WO (1) | WO2014191857A1 (ru) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3268138T3 (pl) * | 2015-03-13 | 2019-09-30 | Tetra Laval Holdings & Finance S.A. | Sposób redukcji zużycia wody w układzie do przetwarzania płynnego lub półpłynnego produktu spożywczego |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1635121A1 (ru) * | 1989-03-09 | 1991-03-15 | Всесоюзный Научно-Исследовательский Институт Железнодорожного Транспорта | Устройство дл обнаружени инородных включений в потоке жидкости |
US6136362A (en) * | 1998-12-10 | 2000-10-24 | Alfa Laval Flow Inc. | High temperature/short time pasteurization system and method of cleaning |
WO2002006816A1 (en) * | 2000-07-14 | 2002-01-24 | Abb Ab | Active acoustic spectroscopy |
US20050215902A1 (en) * | 2002-05-06 | 2005-09-29 | Greenwood Margaret S | System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy |
RU2460712C2 (ru) * | 2007-02-05 | 2012-09-10 | Эксонмобил Кемикэл Пейтентс Инк. | Способ отделения конденсированной жидкости от потока олефина |
US20120276266A1 (en) * | 2010-01-13 | 2012-11-01 | Gea Tds Gmbh | UHT System and Method for Heat Treating Temperature-Sensitive Food Products |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3040562A (en) * | 1960-02-27 | 1962-06-26 | Chesapeake Instr Corp | Method for determining the constituents of milk and milk products |
US3891779A (en) * | 1970-07-08 | 1975-06-24 | Rosini Donald A | Aseptic packaging of foods |
JPS5527935A (en) * | 1978-08-21 | 1980-02-28 | Toshiba Corp | Ultrasonic wave flow meter |
US5121629A (en) * | 1989-11-13 | 1992-06-16 | E. I. Du Pont De Nemours And Company | Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics |
JPH04194663A (ja) * | 1990-11-28 | 1992-07-14 | Toshiba Corp | 超音波式流量濃度測定装置 |
JP3060716B2 (ja) * | 1992-04-10 | 2000-07-10 | 株式会社イズミフードマシナリ | 連続流量可変式液体殺菌装置 |
US5473934A (en) * | 1993-10-13 | 1995-12-12 | Cobb; Wesley | Ultrasonic fluid composition monitor |
JP3088932B2 (ja) * | 1995-06-05 | 2000-09-18 | 末次興産株式会社 | 牛乳の殺菌装置 |
NL1001158C2 (nl) * | 1995-09-08 | 1997-03-11 | Maasland Nv | Werkwijze voor het reinigen van een melkleidingstelsel. |
JP2000262594A (ja) * | 1999-03-19 | 2000-09-26 | Dainippon Printing Co Ltd | 滅菌装置 |
US6481268B1 (en) * | 1999-10-12 | 2002-11-19 | Baker Hughes, Inc. | Particle measurement by acoustic speckle |
KR100350026B1 (ko) * | 2000-06-17 | 2002-08-24 | 주식회사 메디슨 | 확산 대역 신호를 이용한 펄스 압축 방식에 기초한 초음파영상 형성 방법 및 장치 |
EP1352228A2 (en) * | 2000-12-18 | 2003-10-15 | E.I. du Pont de Nemours and Company | Method and apparatus for ultrasonic sizing of particles in suspensions |
EP1377819A1 (en) * | 2001-03-08 | 2004-01-07 | Abb Ab | Method and device for monitoring and controlling a process |
AU2002318408A1 (en) * | 2001-06-22 | 2003-01-08 | John Coupland | Characterization of fluids using ultrasound |
US7368139B1 (en) * | 2002-03-15 | 2008-05-06 | Bronnert Herve X | Aseptic processing system for fruit filling |
WO2006055449A2 (en) * | 2004-11-15 | 2006-05-26 | Massachusetts Institute Of Technology | System and method for ultrasonic measuring concentration of particle properties |
GB0428545D0 (en) * | 2004-12-31 | 2005-02-09 | Euroflow Uk Ltd | Flow methods and apparatus for detection in conduits |
US7614410B2 (en) * | 2005-03-01 | 2009-11-10 | Hydrite Chemical Co. | Chemical concentration controller and recorder |
US7810987B2 (en) * | 2005-07-27 | 2010-10-12 | Cargill, Incorporated | Automated solution maker apparatus |
US7484414B2 (en) * | 2005-11-30 | 2009-02-03 | Nanoalert Ltd. | Method and apparatus for determination of the concentration of particles in multi-component fluid systems |
JP5207285B2 (ja) * | 2008-02-13 | 2013-06-12 | 株式会社イズミフードマシナリ | 流動物の加熱装置 |
WO2009156972A2 (en) * | 2008-06-27 | 2009-12-30 | Ecolab Inc. | Methods and systems for reconditioning food processing fluids |
EP2221613A1 (en) * | 2009-02-19 | 2010-08-25 | Electrolux Home Products Corporation N.V. | An apparatus and a method for estimating the air humidity within an oven cavity |
JP5458258B2 (ja) * | 2009-04-30 | 2014-04-02 | 電源開発株式会社 | 浮遊物質解析方法及び浮遊物質解析システム |
NL1037390C2 (nl) * | 2009-10-13 | 2011-04-14 | Lely Patent Nv | Melkeigenschapmeetinrichting. |
US20110197920A1 (en) * | 2010-02-16 | 2011-08-18 | Andy Kenowski | Monitoring and Recording Device for Clean-In-Place System |
DE102011006717A1 (de) * | 2011-04-04 | 2012-10-04 | Krones Aktiengesellschaft | Verfahren zum automatischen Überprüfen einer Getränkeverarbeitungsanlage |
KR101142897B1 (ko) * | 2011-10-06 | 2012-05-10 | 웨스글로벌 주식회사 | 초음파 유량 및 농도 공용 측정 시스템 |
WO2013089563A1 (en) * | 2011-12-15 | 2013-06-20 | Tine Sa | Method for producing milk or milk related products |
WO2014045237A1 (en) * | 2012-09-24 | 2014-03-27 | Nestec S.A. | Methods and systems for energy balance control for feed flow and feed temperature disturbances |
-
2014
- 2014-05-08 US US14/272,673 patent/US9683978B2/en active Active
- 2014-05-08 EP EP14732012.1A patent/EP3004862A1/en not_active Withdrawn
- 2014-05-08 JP JP2016516265A patent/JP2016520839A/ja active Pending
- 2014-05-08 RU RU2015155204A patent/RU2619809C1/ru active
- 2014-05-08 CA CA2913921A patent/CA2913921C/en active Active
- 2014-05-08 AU AU2014272737A patent/AU2014272737B2/en not_active Ceased
- 2014-05-08 MX MX2015016502A patent/MX352555B/es active IP Right Grant
- 2014-05-08 CN CN201480043142.4A patent/CN105431732B8/zh not_active Expired - Fee Related
- 2014-05-08 WO PCT/IB2014/061307 patent/WO2014191857A1/en active Application Filing
- 2014-05-08 SG SG11201509789WA patent/SG11201509789WA/en unknown
-
2015
- 2015-11-30 CL CL2015003509A patent/CL2015003509A1/es unknown
- 2015-12-01 PH PH12015502682A patent/PH12015502682A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1635121A1 (ru) * | 1989-03-09 | 1991-03-15 | Всесоюзный Научно-Исследовательский Институт Железнодорожного Транспорта | Устройство дл обнаружени инородных включений в потоке жидкости |
US6136362A (en) * | 1998-12-10 | 2000-10-24 | Alfa Laval Flow Inc. | High temperature/short time pasteurization system and method of cleaning |
WO2002006816A1 (en) * | 2000-07-14 | 2002-01-24 | Abb Ab | Active acoustic spectroscopy |
US20050215902A1 (en) * | 2002-05-06 | 2005-09-29 | Greenwood Margaret S | System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy |
RU2460712C2 (ru) * | 2007-02-05 | 2012-09-10 | Эксонмобил Кемикэл Пейтентс Инк. | Способ отделения конденсированной жидкости от потока олефина |
US20120276266A1 (en) * | 2010-01-13 | 2012-11-01 | Gea Tds Gmbh | UHT System and Method for Heat Treating Temperature-Sensitive Food Products |
Also Published As
Publication number | Publication date |
---|---|
MX2015016502A (es) | 2016-03-17 |
SG11201509789WA (en) | 2015-12-30 |
CL2015003509A1 (es) | 2016-09-02 |
CN105431732A (zh) | 2016-03-23 |
CA2913921C (en) | 2019-07-30 |
CN105431732B (zh) | 2019-07-12 |
CA2913921A1 (en) | 2014-12-04 |
EP3004862A1 (en) | 2016-04-13 |
MX352555B (es) | 2017-11-29 |
US9683978B2 (en) | 2017-06-20 |
CN105431732B8 (zh) | 2019-09-03 |
WO2014191857A1 (en) | 2014-12-04 |
US20140356493A1 (en) | 2014-12-04 |
PH12015502682A1 (en) | 2016-03-07 |
AU2014272737B2 (en) | 2017-12-07 |
AU2014272737A1 (en) | 2015-12-17 |
JP2016520839A (ja) | 2016-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2910648A1 (en) | Apparatus and method for determining a value of a property of a material using microwave | |
Adamkowski et al. | Cavitation characteristics of shutoff valves in numerical modeling of transients in pipelines with column separation | |
RU2619809C1 (ru) | Системы и способы обнаружения границ раздела вода/продукт во время обработки пищевого продукта | |
Zhang et al. | Impedance estimation along pipelines by generalized reconstructive method of characteristics for pipeline condition assessment | |
Yu et al. | Research progress on coping strategies for the fluid-solid erosion wear of pipelines | |
CN103063171A (zh) | 一种工件壁厚的测量方法 | |
Adamkowski et al. | Consideration of the cavitation characteristics of shut-off valves in numerical modelling of hydraulic transients in pipelines with column separation | |
Da Silva et al. | A new ultrasonic reactor for CaCO3 antiscaling in pipelines and equipment | |
Gryshanova et al. | The investigation of the correction factor for ultrasonic flow meters | |
Martins et al. | Characterisation of low-Reynolds number flow through an orifice: CFD results vs. laboratory data | |
Amir et al. | Condenser tube examination using acoustic pulse reflectometry | |
Lucas et al. | Noninvasive ultrasonic monitoring of ice pigging in pipes containing liquid food materials | |
CN106245741A (zh) | 一种带有液体流量传感器的报警污水管 | |
Wada et al. | Effect of low-frequency ultrasound on flow rate measurements using the ultrasonic velocity profile method | |
Lile et al. | Vibration analysis of blocked circular pipe flow | |
Rezapour et al. | Case study of leak detection based on Gaussian function in experimental viscoelastic water pipeline | |
KR20220026165A (ko) | 에너지 손실을 줄이기 위한 유량계 교정 시스템 | |
Zouari | Internal pipe imaging for defect detection using acoustic waves | |
CN206258146U (zh) | 一种超声波冷媒流量计 | |
Suchkov et al. | Enhanced Technology for HP Gas Condensate Wells Production Testing | |
Guo et al. | Gas volume fraction measurement based on ultrasonic array sensors in gas–liquid two-phase flow | |
Liu et al. | Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach | |
CN205580990U (zh) | 一种全流量水中油检测装置 | |
KR101591644B1 (ko) | 선박 평형수용 혼 타입 샘플링 포트 장치 | |
Rowshanaie et al. | Design and Setup the Sampling System to Modify and Reduce the Deposition in Sampling Fluid Pipe Lines by Reducing the Pressure Drop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20190916 |