RU2619169C1 - Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro - Google Patents

Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro Download PDF

Info

Publication number
RU2619169C1
RU2619169C1 RU2015149913A RU2015149913A RU2619169C1 RU 2619169 C1 RU2619169 C1 RU 2619169C1 RU 2015149913 A RU2015149913 A RU 2015149913A RU 2015149913 A RU2015149913 A RU 2015149913A RU 2619169 C1 RU2619169 C1 RU 2619169C1
Authority
RU
Russia
Prior art keywords
vitro
bacterial suspension
biofilm
pure culture
anaerobic bacteria
Prior art date
Application number
RU2015149913A
Other languages
English (en)
Inventor
Евгений Валерьевич Ипполитов
Виктор Николаевич Царев
Сергей Дарчоевич Арутюнов
Александр Геннадьевич Степанов
Михаил Сергеевич Подпорин
Виктория Геннадьевна Шишова
Тамар Тайгеровна Малазония
Original Assignee
Виктор Николаевич Царев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Николаевич Царев filed Critical Виктор Николаевич Царев
Priority to RU2015149913A priority Critical patent/RU2619169C1/ru
Application granted granted Critical
Publication of RU2619169C1 publication Critical patent/RU2619169C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области биохимии. Предложен способ формирования микробной анаэробной биопленки в условиях текучих сред in vitro. Способ включает три этапа: на первом этапе на подложку из полимерных материалов в замкнутой емкости вносят бактериальную взвесь чистой культуры Streptococcus sanguinis, на втором - Fusobacterium nucleatum, на третьем - Porphyromonas gingivalis, или Aggregatibacter actinomycetemcomitans, или Tannerella forsythia, или Prevotella intermedia и культивируют 48 ч, 72 ч, 120 ч соответственно. Бактериальную взвесь каждой чистой культуры разводят в 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне BHI, LIM или АС, содержащей 0,01% менадиона и 0,1% гемина, до концентрации 106-108 КОЕ/мл и культивируют в микроанаэростате, размещенном в шейкер-термостате, при 37°С. Изобретение обеспечивает воссоздание модели микробной анаэробной биопленки в условиях in vitro при движении жидкой фазы среды. 5 пр.

Description

Изобретение относится к области медицины, а именно к микробиологии для формирования микробной биопленки в анаэробных условиях in vitro.
Известно, что бактерии, находящиеся в составе микробных сообществ и, в частности, биопленок, становятся менее доступными для действия различных внешних факторов, включая антибиотики, пестициды, биоциды и др. Процесс роста и формирования биопленок зависит от характеристики раствора, свойств носителя, состава популяции микроорганизмов и разнообразия адгезивных механизмов при использовании различных поверхностей.
Известны способы формирования биопленки in vitro в аэробных (но не анаэробных) условиях, которые предполагают нанесение планктонных форм в виде бактериальной взвеси на пластиковые или стеклянные поверхности, погруженные в жидкую (полужидкую) питательную среду или на плотной питательной среде, погруженной в жидкую среду (двухфазная питательная среда).
Так, например, из уровня техники известен способ моделирования образования биопленок холерных вибрионов в условиях эксперимента, включающий формирование биопленок на твердом носителе, отличающийся тем, что биопленку создают на покровных стеклах, установленных наклонно под углом 10-12° к вертикальной оси в количестве 8-9 штук, которые помещают между витками пружинообразного приспособления, размещенного внутри емкости объемом 100 мл, затем емкость заполняют экспериментальной средой в объеме 40-50 мл до полного погружения покровных стекол, добавляют в емкость суспензию холерных вибрионов и инкубируют при конечной концентрации холерных вибрионов в n×108 КОЕ/мл с доведением до минимального порога чувствительности 0,1 КОЕ/мл при комнатной температуре (Патент РФ №2559546 от 10.08.2015).
Известен способ определения способности микроорганизмов формировать биопленки на поверхности твердой фазы, включающий окрашивание сформировавшихся биопленок красителем с последующим экстрагированием связавшегося с биопленками красителя этиловым спиртом и оценкой интенсивности окрашивания спиртового раствора на фотометре, отличающийся тем, что в качестве твердой фазы используют биологический субстрат - измельченные и простерилизованные натуральные почечные камни различной химической природы (Патент РФ №2461631 от 20.09.2012).
Известен способ оценки взаимного влияния микроорганизмов методом совместного культивирования с контрольным высевом и определением численности тест-культуры и изучаемого штамма по количеству выросших колоний на плотной питательной среде (Семенов А.В. Характеристика антагонистической активности бактерий при межмикробных взаимодействиях. Дисс. к.м.н. Оренбург, 2009).
Известен способ оценки характера межмикробных взаимодействий, отличающийся тем, что тестируемые моно- и смешанные культуры микроорганизмов культивируют в лунках полистиролового планшета на LB-бульоне до формирования биопленки, осуществляют промывание сформированных биопленок, окрашивание в течение 45 мин в темноте красителем, в качестве которого используют 0,1% раствор генцианвиолета, трехкратное промывание биопленок с последующим высушиванием планшета, краситель элюируют спиртом и определяют оптическую плотность элюатов на спектрофотометре, усредненные показатели оптической плотности элюата из смешанных биопленок сравнивают с суммой показателей оптической плотности элюата из биопленок монокультур, и при отсутствии достоверных отличий делают вывод о нейтральном характере взаимодействия, если показатель для смешанной биопленки меньше суммы показателей монопленок, делают вывод об антагонистическом характере взаимодействия, если показатель для смешанной биопленки больше суммы показателей монопленок, делают вывод о синергическом характере в межмикробном взаимодействии (Патент РФ №2448161, 20.04.2012).
Все эти модели не позволяют воссоздать анаэробные условия и потому не пригодны для изучения пародонтопатогенной микрофлоры, которая по современным данным является этиологическим фактором пародонтита.
Весьма относительные условия анаэробиоза (отсутствия кислорода в среде) удалось создать при использовании полужидких редуцирующих сред, в частности, пулированной слюны, на которой были получены моно- и мультивидовые биопленки, растущие на гидроксиапатите (Guggenheim В et al., 2009). Инновационные подходы в искусственной слюне разработали Peyyala R. с соавторами (2012, 2013), которые применили подобные модели биопленок для демонстрации различий цитокинового и хемокинового ответов на различные бактериальные биопленки, а также
Figure 00000001
М.Т. с соавт., 2013 - для выявления факторов патогенности у компонентов биопленки (Guggenheim В., Gmur R., Galicia J.C., Stathopoulou PG, Benakanakere MR, etal. (2009) In vitro modeling of host-parasite interactions: the 'subgingival' biofilmchallenge of primary human epithelial cells. BMC Microbiol 9: 280; Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J.L. Oral microbial biofilm stimulation of epithelial cell responses. Cytokine 2012, 58, 65-72; Peyyala R., Kirakodu S.S., Novak K.F., Ebersole J.L. Oral epithelial cell responses to multispecies microbial biofilms // J Dent. Res. - 2013. - Vol. 92, N 3. - 235-240;
Figure 00000002
M.T., Paino A., Ihalin R. Environmental stimuli shape biofilm formation and the virulence of periodontal pathogens // Int. J. Mol. Sci. - 2013. - Vol. 14, N 8. - P. 17221-17237).
Однако во всех перечисленных способах моделирования биопленок отсутствует решение двух важнейших моментов, которые непосредственно связаны с патологией полости рта:
1. Биопленки в ротовой полости формируются при движении жидкой фазы, то есть в условиях текучей среды;
2. Возбудителями пародонтита являются анаэробные бактерии, а создание анаэробиоза не предусмотрено в предложенных моделях.
Одним из важнейших условий перехода планктонных бактерий из взвеси в биопленкообразующую колонию считается истощение среды. Однако, в естественных природных условиях (в том числе, в организме человека) биопленка формируется в условиях омывания жидкими секретами, то есть в условиях текучих сред. Это обеспечивает дифференцировку клеточных слоев биопленки и постоянный приток питательных веществ, и отток продуктов метаболизма. При патологии пародонта биопленка является смешанной (мультивидовой). Однако воссоздание этого условия было технически не выполнимо при попытке получения биопленки из анаэробных бактерий, ибо не удавалось обеспечить движение жидкости (питательной среды) в анаэростатах, используемых для культивирования анэробных бактерий, или создать необходимый температурный режим 37°С.
Задачей нашего изобретения является изучение межмикробных взаимоотношений в анаэробной биопленке, воссозданной в условиях in vitro при движении жидкой фазы среды.
Технический результат изобретения заключается в воссоздании модели микробной биопленки в анаэробных условиях in vitro при движении жидкой фазы среды.
Технический результат заключается в том, что способ формирования смешанной биопленки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro осуществляется следующим образом, бактериальную взвесь из чистой культуры, разведенной в 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне (BHI, LIM или АС), содержащей 0,01% менадиона и 0,1% гемина - стимуляторов роста анаэробных бактерий, в концентрации 106-108 КОЕ/мл помещать на подложку из полимерных материалов (метилметакрилат, полиуретан, триацетат или плотную агаровую питательную среду) в замкнутой емкости, которая помещается в микроанаэростат с постоянным составом бескислородной газовой смеси, состоящей из 80% азота, 10% водорода, 10% углекислого газа, который в свою очередь помещается в шейкер-термостат, обеспечивающий возвратно-поступательные движения в заданном режиме, в диапазоне 60-120 движений в минуту при постоянной температуре культивирования биопленки 37°С; и при этом формирование смешанной биопленки осуществляется в несколько этапов, на начальном производится внесение микроба с высокой адгезивной активностью - Streptococcus sanguinis с последующим культивированием 48 часов, на следующем этапе проводят внесение микроба-промежуточного колонизатора - Fusobacterium nucleatum с культивированием 72 часа, и на заключительном этапе внесение микроба-пародонтопатогена Porphyromonas gingivalis (или Aggregatibacter actinomycetemcomitans, или Tannerella forsythia, или Prevotella intermedia, или их комбинации) с последующим культивированием в течение 5 суток для получения смешанной биопленки.
Преимущества данного способа - воспроизводимость, рост на биологически релевантных субстратах и средах, формирование биопленки в форме, похожей на зубной налет. При этом получается ограниченное число бактериальных видов (3-7), что позволяет при необходимости оценить вклад каждого вида в индукцию медиаторов воспаления, факторов патогенности или резистентности к антибиотикам.
Способ формирования смешанной биопленки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro осуществляется следующим образом:
1. Помещают бактериальную взвесь чистой культуры - Str. sanguinis, разведенной 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне (BHI, LIM или АС), содержащей 0,01% менадиона и 0,1% гемина - стимуляторов роста анаэробных бактерий, в концентрации 106-108 КОЕ/мл на подложку из полимерных материалов в чашку Петри.
2. Полученная композиция устанавливается в микроанаэростат с постоянным составом бескислородной газовой смеси, состоящей из 80% азота, 10% водорода, 10% углекислого газа.
3. Микроанаэростат помещается в шейкер-термостат, обеспечивающий постоянную температуру культивирования монобиопленки 37°С и возвратно-поступательные движения в заданном режиме, в диапазоне 60-120 движений в минуту на 48 часов.
4. Добавляют к ранее культивированной монобиопленке бактериальную взвесь чистой культуры - F. nucleatum, разведенной в 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне (BHI, LIM или АС) 0,01% менадиона и 0,1% гемина - стимуляторов роста анаэробных бактерий в концентрации 106-108 КОЕ/мл на подложку из полимерных материалов в чашку Петри.
5. Полученная композиция устанавливается в микроанаэростат с постоянным составом бескислородной газовой смеси, состоящей из 80% азота, 10% водорода, 10% углекислого газа.
6. Микроанаэростат помещается в шейкер-термостат, обеспечивающий постоянную температуру культивирования биопленки разных видов 37°С и возвратно-поступательные движения в заданном режиме, в диапазоне 50-100 движений в минуту, на 72 часа. 4.
7. Добавляют к ранее культивированной биопленке, состоящей из двух видов бактерий, бактериальную взвесь чистой культуры пародонтопатогенного вида - P. gingivalis (или Aggregatibacter actinomycetemcomitans, или Tannerella forsythia, или Prevotella intermedia, или их комбинации), разведенной в 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне (BHI, LIM или АС), содержащей 0,01% менадиона и 0,1% гемина - стимуляторов роста анаэробных бактерий в концентрации 106-108 КОЕ/мл на подложку из полимерных материалов в чашку Петри.
8. Полученная композиция устанавливается в микроанаэростат с постоянным составом бескислородной газовой смеси, состоящей из 80% азота, 10% водорода, 10% углекислого газа.
9. Микроанаэростат помещается в шейкер-термостат, обеспечивающий постоянную температуру культивирования биопленки 37°С и возвратно-поступательные движения в заданном режиме, в диапазоне 60-120 движений в минуту, на 5 суток.
10. После получения смешанной (мультивидовой) биопленки от 3-х до 6-и видов на протяжении 1-2 месяцев проводят контроль ее жизнеспособности с использованием сканирующей электронной микроскопии.
КЛИНИЧЕСКИЙ ПРИМЕР 1
пп. 1-6, 8-10 - повторить, п. 7 - в качестве пародонтопатогена используют штамм Porphyromonas gingivalis.
КЛИНИЧЕСКИЙ ПРИМЕР 2
пп. 1-6, 8-10 - повторить, п. 7 - в качестве пародонтопатогена используют штамм Aggregatibacter actinomycetemcomitans.
КЛИНИЧЕСКИЙ ПРИМЕР 3
пп. 1-6, 8-10 - повторить, п. 7 - в качестве пародонтопатогена используют штамм Tannerella forsythia.
КЛИНИЧЕСКИЙ ПРИМЕР 4
пп. 1-6, 8-10 - повторить, п. 7 - в качестве пародонтопатогена используют штамм Prevotella intermedia.
КЛИНИЧЕСКИЙ ПРИМЕР 5
пп. 1-6, 8-10 - повторить, п. 7 - в качестве пародонтопатогена используют смесь штаммов Porphyromonas gingivalis, Tannerella forsythia и Prevotella intermedia.

Claims (1)

  1. Способ формирования смешанной биопленки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro, включающий три этапа, причем на первом этапе на подложку из полимерных материалов в замкнутой емкости вносят бактериальную взвесь чистой культуры Streptococcus sanguinis, на втором - Fusobacterium nucleatum, на третьем - Porphyromonas gingivalis, или Aggregatibacter actinomycetemcomitans, или Tannerella forsythia, или Prevotella intermedia и культивируют 48 ч, 72 ч, 120 ч соответственно, при этом бактериальную взвесь каждой чистой культуры разводят в 0,1% полужидкой агаризованной среде - сердечно-мозговом бульоне BHI, LIM или АС, содержащей 0,01% менадиона и 0,1% гемина, до концентрации 106-108 КОЕ/мл, замкнутую емкость помещают в микроанаэростат с постоянным составом бескислородной газовой смеси, состоящей из 80% азота, 10% водорода, 10% углекислого газа, который в свою очередь помещается в шейкер-термостат, обеспечивающий возвратно-поступательные движения в диапазоне 60-120 движений в минуту, при температуре 37°С с получением смешанной биопленки.
RU2015149913A 2015-11-20 2015-11-20 Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro RU2619169C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015149913A RU2619169C1 (ru) 2015-11-20 2015-11-20 Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015149913A RU2619169C1 (ru) 2015-11-20 2015-11-20 Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro

Publications (1)

Publication Number Publication Date
RU2619169C1 true RU2619169C1 (ru) 2017-05-12

Family

ID=58715921

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015149913A RU2619169C1 (ru) 2015-11-20 2015-11-20 Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro

Country Status (1)

Country Link
RU (1) RU2619169C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802078C1 (ru) * 2023-03-31 2023-08-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный медицинский университет" Министерства здравоохранения Российской Федерации Питательная среда для выделения чистой культуры Porphyromonas gingivalis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014580A1 (en) * 2005-07-22 2008-02-07 Mbec Bioproducts Inc. Plate for selection of antibiotics against biofilm infections
RU2461631C1 (ru) * 2011-07-26 2012-09-20 Федеральное государственное бюджетное учреждение "Научно-исследовательский Институт эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения и социального развития Российской Федерации (ФГБУ "НИИЭМ им. Н.Ф. Гамалеи" Минздравсоцразвития России) Способ определения способности микроорганизмов формировать биопленки на поверхности твердой фазы

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014580A1 (en) * 2005-07-22 2008-02-07 Mbec Bioproducts Inc. Plate for selection of antibiotics against biofilm infections
RU2461631C1 (ru) * 2011-07-26 2012-09-20 Федеральное государственное бюджетное учреждение "Научно-исследовательский Институт эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения и социального развития Российской Федерации (ФГБУ "НИИЭМ им. Н.Ф. Гамалеи" Минздравсоцразвития России) Способ определения способности микроорганизмов формировать биопленки на поверхности твердой фазы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COENYE T., HANS N.J. In vitro and in vivo model systems to study microbial biofilm formation.// J.Microbiol. Meth., 2010, N 83, 89-105. АФАНАСЬЕВА В.В. И ДР., Клинико-микробиологические аспекты формирования микробной биопленки на конструкционных материалах, используемых для починки и перебазировки съемных зубных протезов.// Российский стоматологический журнал, 2015, N 2, 44-46. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802078C1 (ru) * 2023-03-31 2023-08-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный медицинский университет" Министерства здравоохранения Российской Федерации Питательная среда для выделения чистой культуры Porphyromonas gingivalis
RU2817419C1 (ru) * 2023-11-24 2024-04-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ формирования биопленки lactobacillus fermentum, выделенных из пародонтальных карманов, на инертных поверхностях
RU2819447C1 (ru) * 2023-11-24 2024-05-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ формирования биопленки lactobacillus casei, выделенных из пародонтальных карманов, на инертных поверхностях

Similar Documents

Publication Publication Date Title
Kishen et al. Biofilm models and methods of biofilm assessment
Standar et al. Setup of an in vitro test system for basic studies on biofilm behavior of mixed-species cultures with dental and periodontal pathogens
Shen et al. Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: a three-dimensional quantitative analysis
Tavares et al. An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single-and dual-species biofilms
Pumeesat et al. Candida albicans biofilm development under increased temperature
Shumi et al. Environmental factors that affect Streptococcus mutans biofilm formation in a microfluidic device mimicking teeth
Liu et al. Bioluminescent nanopaper for rapid screening of toxic substances
RU2619169C1 (ru) Способ формирования смешанной биоплёнки пародонтопатогенных анаэробных бактерий в условиях текучих сред in vitro
CN105524869A (zh) 一种体外牙菌斑生物膜模型及其制备方法
Ionescu et al. Bioreactors: How to study biofilms in vitro
JP6658265B2 (ja) インビトロバイオフィルムモデルの製造方法、ならびに評価方法及び口腔用組成物を選定する方法
CN115161258A (zh) 一种3d类角质层模型及其构建方法和应用
Shi et al. Isoeugenol-functionalized nanogels inhibit peri-implantitis associated bacteria in vitro
RU2661114C1 (ru) Способ формирования смешанной биопленки пародонтопатогенных анаэробных бактерий in vitro
Твердохліб et al. Ability of Lactobacillus plantarum onu 12 and Bacillus megaterium onu 484 to stimulate growth of wheat seedlings and to form biofilms
JP2020167974A (ja) インビトロバイオフィルムモデル用菌体組成物及びその用途
Drake et al. Continuous‐Culture Chemostat Systems and Flowcells as Methods To Investigate Microbial Interactions
Ansbro et al. Polymicrobial biofilm models: The case of periodontal disease as an example
Kishen et al. Laboratory models of biofilms: development and assessment
Bandara Current and Emerging In Vitro and In Vivo Biofilm Models in Investigating Fungal-Bacterial Polymicrobial Communities
Erlandsen et al. Ultrastructure of Enterococcus faecalis biofilms
CRISTEA et al. Virulence profiles of microbial strains isolated from patients with chronic apical lesions
RU2328526C1 (ru) Способ выявления микобактерий туберкулеза крупного рогатого скота
Yiru Yu et al. Dental Biofilm and Laboratory Microbial Culture Models for Cariology Research.
Wei et al. Biofilms of vaginal Lactobacillus in vitro test

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171121