RU2615514C1 - Полимерная композиция, стойкая к воздействию ионизирующего излучения - Google Patents

Полимерная композиция, стойкая к воздействию ионизирующего излучения Download PDF

Info

Publication number
RU2615514C1
RU2615514C1 RU2016112604A RU2016112604A RU2615514C1 RU 2615514 C1 RU2615514 C1 RU 2615514C1 RU 2016112604 A RU2016112604 A RU 2016112604A RU 2016112604 A RU2016112604 A RU 2016112604A RU 2615514 C1 RU2615514 C1 RU 2615514C1
Authority
RU
Russia
Prior art keywords
melt flow
flow rate
copolymer
polymer composition
specified
Prior art date
Application number
RU2016112604A
Other languages
English (en)
Inventor
Юрий Нуриевич Хакимуллин
Резеда Юсуповна Галимзянова
Эльвина Рамисовна Рахматуллина
Мария Сергеевна Лисаневич
Александр Порфирьевич Жанжора
Наталия Александровна Мукменева
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ")
Priority to RU2016112604A priority Critical patent/RU2615514C1/ru
Application granted granted Critical
Publication of RU2615514C1 publication Critical patent/RU2615514C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/24Graft or block copolymers according to groups C08L51/00, C08L53/00 or C08L55/02; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к полимерным композициям на основе полипропилена и может быть использовано в производстве изделий медицинского назначения. Композиция содержит полипропилен с показателем текучести расплава 25-35 г/10 мин, дивинилстирольный термоэластопласт с показателем текучести расплава не более 1 г/10 мин, поликарбонат с показателем текучести расплава 6,5±1 г/10 мин, пространственно затрудненный амин, триаллилизоцианурат и в количестве от 0,0010 до 0,0500 мас.% наноцеллюлозу в качестве стабилизатора. Композиция обладает повышенной радиационной стойкостью, а полученные из нее изделия медицинского назначения имеют повышенный срок хранения. 3 табл., 6 пр.

Description

Изобретение относится к полимерным композициям на основе полиолефина и может быть использовано в производстве изделий медицинского назначения, в частности пробирок для анализов в медицинских учреждениях и нетканых материалов для изготовления изделий медицинского назначения.
Известна полимерная композиция на основе полиолефинов, включающая кристаллический изотактический полипропилен, кристаллический полиэтилен и аморфную сополимерную фракцию этилена и пропилена, при следующем соотношении компонентов, мас. %:
кристаллический изотактический полипропилен 74-91
кристаллический полиэтилен 1,8-8,0
аморфная сополимерная фракция этилена и пропилена 7,2-18
см. Патент US №4521566, МПК C08F 29708, C08L 23/16, 1985.
Указанная композиция обладает жесткостью, затрудняющей процесс переработки.
Наиболее близкой по технической сущности является полимерная композиция, стойкая к воздействию ионизирующего излучения, включающая полиолефин, сополимер и стабилизатор, которая в качестве полиолефина содержит полиэтилен с показателем текучести расплава от 5 до 15 г/10 мин, в качестве сополимера содержит сополимер пропилена с этиленом с содержанием от 3 до 11% этилена и с показателем текучести расплава от 25 до 50 г/10 мин, в качестве стабилизатора она содержит пентаэритрил-тетракис-3-(3',5'-ди-трет-бутил-4'-гидроксифенил)пропионат, дополнительно содержит пространственно затрудненный амин, соединение, содержащее аллилированные шестичленные циклы - триаллилизоцианурат, пентаэритрит и концентрат красителя Remafin, при следующем соотношении компонентов, мас. %:
указанный сополимер пропилена с этиленом 98,795-90,00
указанный полиэтилен 1,000-5,000
пространственно затрудненный амин 0,050-0,500
триаллилизоцианурат 0,005-2,000
указанный стабилизатор 0,050-1,000
пентаэритрит 0,050-0,500
концентрат красителя Remafin 0,050-1,000
см. Патент RU №2515558, МПК C08J 3/20 (2006.01), C08L 23/16 (2006.01), C08L 23/06 (2006.01), C08K 5/00 (2006.01), 2014.
Недостатками являются недостаточная стойкость изделий к действию ионизирующего излучения из указанной полимерной композиции и, как следствие, короткий срок хранения изделий из него.
Задачей изобретения является повышение радиационной стойкости изделий из заявленной полимерной композиции.
Техническая задача решается тем, что полимерная композиция, стойкая к воздействию ионизирующего излучения, включающая полиолефин, сополимер, пространственно затрудненный амин, триаллилизоцианурат и стабилизатор, согласно изобретению в качестве полиолефина она содержит полипропилен с показателем текучести расплава 25-35 г/10 мин, в качестве сополимера она содержит блок-сополимер - дивинилстирольный термоэластопласт с показателем текучести расплава не более 1 г/10 мин, в качестве стабилизатора содержит наноцеллюлозу и дополнительно содержит поликарбонат с показателем текучести расплава 6,5±1 г/10 мин при следующем соотношении компонентов, мас. %:
указанный полипропилен 95,944-73,45
указанный дивинилстирольный термоэластопласт 2,000-12,000
пространственно затрудненный амин 0,050-0,500
триаллилизоцианурат 0,005-2,000
наноцеллюлоза 0,0010-0,0500
указанный поликарбонат 2,000-12,000
Решение технической задачи позволяет повысить радиационную стойкость полимерной композиции, позволяющей получать из нее изделия медицинского назначения с повышенным сроком хранения изделий.
Полимерная композиция содержит:
полипропилен с показателем текучести расплава (ПТР) 25-35 г/10 мин, показатель текучести расплава определяют при температуре 230°С и нагрузке 2,16 кг по ГОСТ 11645-73, см. https://www.nknh.ru/upload/iblock/49a/1562r.pdf
поликарбонат с показателем текучести расплава (ПТР) 6,5+1 г/10 мин, показатель текучести расплава определяют при температуре 300°С и нагрузке 1,2 кгс по ГОСТ 11645-73,
см. http://www.kazanorgsintez.ru/upload/catalog/PK.pdf
Дивинилстирольный термоэластопласт, структурная формула:
Figure 00000001
,
содержит 70% полибутадиена и 30% полистирола, с показателем текучести расплава не более 1 г/10 мин, показатель текучести расплава (ПТР) дивинилстирольного термоэластопласта определяют при температуре 190°С и нагрузке 5 кг по ГОСТ 11645-73, см. http://sibur-int.ru/product/rubber/catalog/item74.php
Пространственно затрудненный амин, структурная формула:
Figure 00000002
,
имеет химическое название: поли-(N-бета-гидроксиэтил-2,2,6,6-тетраметил-4-гидрокси-пиперидилсукцинат) и известен под торговой маркой «Tinuvin 622»;
Триаллилизоцианурат, структурная формула:
Figure 00000003
,
относится к классу шестичленных гетероциклов, имеет химическое название триаллил-сим-триазин-2,4,6(1Н,3Н,5Н)-трион. Способ его получения описан, см. Патент RU №2427576, МПК C07D 251/34(2006.01), 2011, и используют его в качестве сшивающего компонента для термопластиков и синтетического каучука.
Наноцеллюлоза, структурная формула:
Figure 00000004
Наноцеллюлоза представляет собой набор наноразмерных волокон целлюлозы с высоким отношением сторон (длины к ширине). Типичная ширина такого волокна составляет 5-20 нм, а продольный размер варьируется от 10 нм до нескольких микрон. Материал обладает свойством псевдопластичности, т.е. является вязким при обычных условиях и ведет себя как жидкость при физическом взаимодействии (тряске, взбалтывании и т.п.). Способ ее получения описан, см. RU Патент №2505545, МПК D01F 2/00(2006.01), С08В 15/02 (2006.01), С08В 15/00 (2006.01), В82В 3/00 (2006.01), 2014.
Использование наноцеллюлозы в качестве добавки, повышающей стойкость к воздействию ионизирующего излучения неизвестно.
Для лучшего понимания изобретения приводим примеры конкретного выполнения.
Пример 1
Компоненты полимерной композиции берут в соотношении, мас. %:
полипропилен с ПТР, равным, 35 г/10 мин 95,944
дивинилстирольный термоэластопласт,
содержащий 70% полибутадиена и
30% полистирола, с ПТР, равным, 1 г/10 мин 2,000
пространственно затрудненный амин -
поли-(К-бета-гидроксиэтил-2,2,6,6-тетраметил-4-
гидрокси-пиперидилсукцинат) 0,050
триаллилизоцианурат 0,005
наноцеллюлоза 0,0010
поликарбонат с ПТР, равным, 6,5 г/10 мин 2,000
Для получения нетканого материала указанные компоненты загружают в экструдер и расплавляют при температуре 190-220°С. Из экструдера, расплавленная композиция поступает в фильеру, где происходит формирование волокон при прохождении ее через мелкие отверстия, обычно расположенные одним или несколькими рядами в фильере. Нити быстро охлаждают с помощью воздуха при низком давлении, подвергают пневматической вытяжке и укладывают на движущуюся перфорированную плиту, ленту или "формующую сетку", где происходит образование нетканого материала. Нетканые материалы из расплава получают с плотностью 35 г/м.
Для определения прочности при растяжении, относительного удлинения в продольном направлении и прочности при разрыве нетканых материалов определяют по ГОСТ Р 53226-2008. Полотна нетканые. Методы определения прочности.
Примеры 2-6 аналогичны примеру 1.
Соотношения компонентов и свойства нетканого материала из полимерной композиции приведены в таблице 2.
Образцы нетканого материала, полученные по примерам 1-6, подвергают стерилизации на радиационно-технологической установке «Электронный стерилизатор» с ускорителем электронов УЭЛВ-10-10-С-70 (ИФХЭ РАН) дозами 30 и 75 кГрей, см. Методика МИ 2649-2001 «ГСИ. Поглощенные дозы фотонного и электронного излучений при установлении стерилизующей и максимально допускаемой дозы для изделий медицинского назначения, подвергаемых радиационной стерилизации. Методика выполнения измерений».
Показатели прочности и относительного удлинения при растяжении и прочности при разрыве нетканых материалов определяют до и после воздействия на образцы ионизирующего излучения.
Для получения готовых изделий из полимерной композиции в виде, например, пластиковых пробирок, указанные компоненты загружают в смеситель, где происходит смешение компонентов при 190-220°С, затем полученную смесь гранулируют в шнековом экструдере при 190-230°С, далее полученные гранулы загружают в литьевую машину, готовые изделия (пробирки) получают при 160-220°С.
Мутность полученных изделий определяют по ГОСТ 15875-80. Пластмассы. Методы определения коэффициента пропускания и мутности. Прочность и протекание пробирок определяют по ГОСТ ISO 6710-2011. Показатель текучести расплава определяют по ГОСТ 11645-73. Пластмассы. Метод определения показателя текучести расплава термопластов.
Соотношения компонентов и свойства полученных изделий - пробирок приведены в таблице 3.
Образцы изделий (пробирок) подвергают стерилизации на радиационно-технологической установке «Электронный стерилизатор» с ускорителем электронов УЭЛВ-10-10-с-70 (ИФХЭ РАН) дозами 25, 56 и 73 кГрей, см. Методика МИ 2649-2001 «ГСИ. Поглощенные дозы фотонного и электронного излучений при установлении стерилизующей и максимально допускаемой дозы для изделий медицинского назначения, подвергаемых радиационной стерилизации. Методика выполнения измерений».
Показатели мутности, прочности и показателя текучести расплава изделий (пробирок) определяют до и после воздействия ионизирующего излучения.
В таблице 1 приведены свойства нетканого материала, изготовленного из полимерной композиции по прототипу.
Figure 00000005
Figure 00000006
Figure 00000007
Изготовление нетканого материала из полимерной композиции по прототипу расплавляют в экструдере при температуре 200-230°С, тогда как при изготовлении нетканого материала из заявляемой композиции температура в экструдере составляет 190-220°С.
В таблице 3 приведены свойства изделий (пробирок), изготовленных из заявленной полимерной композиции, и контрольный образец из полипропилена для сравнения.
Figure 00000008
Figure 00000009
Изготовление нетканого материала из полимерной композиции по прототипу расплавляют в экструдере при температуре 200-230°С, тогда как при изготовлении нетканого материала из заявляемой композиции температура в экструдере составляет 190-220°С.
Как видно из примеров конкретного выполнения, см. Таблицу 2, нетканый материал, полученный на основе заявляемой полимерной композиции, обладает по сравнению с прототипом повышенной радиационной устойчивостью до 14,3%, которую характеризует значение показателя прочности при разрыве, и это значение показателя сохраняется до и после воздействия ионизирующего облучения дозой, аналогичной по прототипу.
Как видно из примеров конкретного выполнения, см. Таблицу 3, изделия (пробирки), полученные на основе заявляемой полимерной композиции и облученные дозой 73 кГрей, обладают по сравнению с контрольным образцом с повышенной радиационной устойчивостью до 58%, которую характеризует значение показателя текучести расплава, и это значение показателя сохраняется до и после воздействия ионизирующего облучения.
Таким образом, решение технической задачи позволяет повысить радиационную стойкость полимерной композиции и получать из нее изделия медицинского назначения с повышенным сроком хранения.

Claims (7)

  1. Полимерная композиция, стойкая к воздействию ионизирующего излучения, включающая полиолефин, сополимер, пространственно затрудненный амин, триаллилизоцианурат и стабилизатор, отличающаяся тем, что в качестве полиолефина она содержит полипропилен с показателем текучести расплава 25-35 г/10 мин, в качестве сополимера она содержит блок-сополимер - дивинилстирольный термоэластопласт с показателем текучести расплава не более 1 г/10 мин, в качестве стабилизатора содержит наноцеллюлозу и дополнительно содержит поликарбонат с показателем текучести расплава 6,5±1 г/10 мин при следующем соотношении компонентов, мас. %:
  2. указанный полипропилен 95,944-73,45
  3. указанный дивинилстирольный термоэластопласт 2,000-12,000
  4. пространственно затрудненный амин 0,050-0,500
  5. триаллилизоцианурат 0,005-2,000
  6. наноцеллюлоза 0,0010-0,0500
  7. указанный поликарбонат 2,000-12,000
RU2016112604A 2016-04-04 2016-04-04 Полимерная композиция, стойкая к воздействию ионизирующего излучения RU2615514C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016112604A RU2615514C1 (ru) 2016-04-04 2016-04-04 Полимерная композиция, стойкая к воздействию ионизирующего излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016112604A RU2615514C1 (ru) 2016-04-04 2016-04-04 Полимерная композиция, стойкая к воздействию ионизирующего излучения

Publications (1)

Publication Number Publication Date
RU2615514C1 true RU2615514C1 (ru) 2017-04-05

Family

ID=58507217

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016112604A RU2615514C1 (ru) 2016-04-04 2016-04-04 Полимерная композиция, стойкая к воздействию ионизирующего излучения

Country Status (1)

Country Link
RU (1) RU2615514C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060561A (en) * 1997-02-11 2000-05-09 Borealis Ag Use of thermoplastic elastomers for improving the stability of polyolefins to ionizing radiation
CN103214738A (zh) * 2013-04-26 2013-07-24 中国国旅贸易有限责任公司 一种快速成型材料及其制备方法
RU2515558C1 (ru) * 2012-11-26 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Полимерная композиция, стойкая к воздействию ионизирующего излучения.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060561A (en) * 1997-02-11 2000-05-09 Borealis Ag Use of thermoplastic elastomers for improving the stability of polyolefins to ionizing radiation
RU2515558C1 (ru) * 2012-11-26 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Полимерная композиция, стойкая к воздействию ионизирующего излучения.
CN103214738A (zh) * 2013-04-26 2013-07-24 中国国旅贸易有限责任公司 一种快速成型材料及其制备方法

Similar Documents

Publication Publication Date Title
US4282076A (en) Method of visbreaking polypropylene
EP0063654B1 (en) Improved method of visbreaking polypropylene
DE69013246T2 (de) Nahrungsmittelbehälter.
DE69723315T2 (de) Strahlungsabbau-Polypropylen und daraus hergestellten Fasern
RU2180906C2 (ru) Стабилизированные кристаллические полимеры пропилена для получения термосвариваемых волокон
DE69606713T2 (de) Strahlungsbeständiges polypropylen und daraus herstellbare gegenstände
DE60213141T2 (de) Kautschukzusammensetzung oder das vernetzte Produkt zur Herstellung von Gummipfropfen für Medikamente oder medizinische Behandlung
RU2661868C1 (ru) Композиция для синергетического висбрекинга из перекиси и сложного эфира гидроксиламина для увеличения эффективности висбрекинга
CA1291613C (en) Radiation resistant polypropylene-containing products
US5122593A (en) Stabilized gamma-irradiatable polypropylene fibers and sterilizable articles thereof
DE102006006396A1 (de) Verwendung von Triglyceriden als Weichmacher für Polyolefine
BR112017017111B1 (pt) Métodos para modificar a reologia de polímeros
DE19735255B4 (de) Synergistisches Stabilisatorgemisch auf Basis von Polyalkyl-1-oxa-diazaspirodecan-Verbindungen und dessen Verwendung
DE69817128T2 (de) Duktile, gegen Gammastrahlung beständige Polyolefinzusammensetzung und daraus hergestellte Artikel
RU2615514C1 (ru) Полимерная композиция, стойкая к воздействию ионизирующего излучения
DE60020932T2 (de) Poröser auf Polypropylen basierender Film und Verfahren zu seiner Herstellung
DE112015005311T5 (de) Modifizierte heterophasische Polyolefin-Zusammensetzung
Lisanevich et al. Effect of processing and radiation exposure on the structure and properties of polypropylene
KR102273939B1 (ko) 리빙포어를 가지는 멸균 의료용 포장재
DE69225683T2 (de) Polymerzusammensetzungen, Gegenständen und Verfahren zu deren Herstellung
RU2463789C2 (ru) Инсектицидная композиция и изделия, полученные из нее
RU2534900C1 (ru) Полимерная композиция, стойкая к воздействию ионизирующего излучения
DE2254440B2 (de) Herstellung von Schrumpffolien
WO1999002604A1 (de) Verwendung von olefin-copolymeren mit verbesserter stabilität gegenüber ionisierender strahlung
EP4399240A1 (en) Polypropylene composition having improved radiation stability