RU2615216C2 - Способ синхрофазорного измерения для использования в устройстве измерения фазоров (pmu) р-класса - Google Patents

Способ синхрофазорного измерения для использования в устройстве измерения фазоров (pmu) р-класса Download PDF

Info

Publication number
RU2615216C2
RU2615216C2 RU2015137452A RU2015137452A RU2615216C2 RU 2615216 C2 RU2615216 C2 RU 2615216C2 RU 2015137452 A RU2015137452 A RU 2015137452A RU 2015137452 A RU2015137452 A RU 2015137452A RU 2615216 C2 RU2615216 C2 RU 2615216C2
Authority
RU
Russia
Prior art keywords
phasor
dynamic
frequency
coefficients
dft
Prior art date
Application number
RU2015137452A
Other languages
English (en)
Other versions
RU2015137452A (ru
Inventor
Тяншу БИ
Хао ЛЮ
Original Assignee
Норс Чайна Электрик Пауэр Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Норс Чайна Электрик Пауэр Юниверсити filed Critical Норс Чайна Электрик Пауэр Юниверсити
Publication of RU2015137452A publication Critical patent/RU2015137452A/ru
Application granted granted Critical
Publication of RU2615216C2 publication Critical patent/RU2615216C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Изобретение относится к способу синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса. Упомянутый способ измерения основывают на математической модели динамического фазора. Конструируют цифровой фильтр низких частот для коэффициентов фазора, объединенный с DFT. Этот фильтр устраняет утечку спектра, вызванную входными сигналами динамического фазора, причем после устранения утечки спектра могут провести измерения исходного фазора. Динамический фазор аппроксимируют с использованием ряда Тейлора второго порядка. Исследуют линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка. Затем используют упомянутую линейную зависимость для компенсации исходных ошибок измерения в динамических условиях. Техническим результатом при реализации заявленного способа измерения является возможность точного и быстрого измерения фазора как в статических, так и в динамических условиях. Точность упомянутого способа измерения не только удовлетворяет техническим требованиям соответствующих стандартов, но и на порядок превышает требования этих стандартов. 4 з.п. ф-лы, 3 табл., 7 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к области техники, связанной с измерением фазоров, в частности к разновидности способа синхрофазорного измерения, применяемого к устройству измерения фазоров (PMU) Р-класса.
УРОВЕНЬ ТЕХНИКИ
В настоящее время применение устройства измерения фазоров (PMU) открывает принципиально новые возможности в технологии измерений энергетических систем; при этом, помимо обеспечения синхрофазора, преимущество, связанное с высокой точностью частотой загрузки высокой скорости, расширяет применение PMU в качестве источника данных фазора при динамическом контроле безопасности. В соответствии с требованием стандарта IEEE С37.118.1, PMU Р-класса может быстро и точно отслеживать процесс динамического отклика энергетической системы, при этом отсутствует какие-либо требования на сглаживание и подавление помех наложения спектров фазора. Таким образом, точность измерения фазора и скорость измерения крайне важны, прежде всего, в динамических условиях. Неточная или медленная ответная реакция измерения фазора может привести к неправильным решениям управления и даже к аварии.
Для расчета фазора в устройствах PMU широко используют дискретное преобразование Фурье (DFT) по причине невысоких вычислительных требований этого способа, а также потому, что он позволяет извлекать компонент номинальной частоты из волнового сигнала, который часто искажается другими гармониками. Однако DFT основывается на предположении, что параметры сигнала не изменяются, а номинальное значение частоты сохраняется в пределах некоторого окна времени. Однако в течение процесса динамической реакции энергетической системы это предположение оказывается недействительным, и все параметры изменяются с течением времени. Поэтому использование DFT имеет недостатки, обуславливающие две проблемы измерения. Во-первых, утечка спектра происходит не только из-за отклонения частоты, но и вследствие модуляции входных сигналов. Во-вторых, использование модели статического фазора приводит, в результате, к усредняющему эффекту DFT, что вносит существенные ошибки в динамических условиях.
С выпуском и постепенным усовершенствованием стандартов IEEE и Китая для PMU точность измерений PMU в динамических условиях получает признание все большего количества исследовательских организаций, при этом в способе измерения применяют много новых технологий. Например, в некоторых литературных источниках предлагается моделировать трехфазный фазор способом смещаемого окна времени, чтобы устранить утечку спектра DFT в условиях отклонения частоты. Однако этот способ подходит только для статического входного сигнала и не может решать задачу утечки спектра, которая вызвана динамическими входными сигналами. Таким образом, в существующем техническом решении отсутствует единый алгоритм оценки, основанный на модели динамического фазора. Кроме того, существующие алгоритмы не могут решить проблемы утечки спектра и усредняющего эффекта, которые вызваны динамическими входными сигналами.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задача данного изобретения заключается в создании способа синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса. Этот способ измерения обеспечивает возможность точного и быстрого измерения фазора как в статических, так и в динамических условиях. Точность способа не только удовлетворяет техническим требованиям соответствующих стандартов, но и на порядок выше требований стандартов.
Способ синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса выполняют на основе математической модели динамического фазора, при этом конструируют цифровой фильтр низких частот для коэффициентов фазора, объединенный с DFT и устраняющий утечку спектра, вызванную входными сигналами динамического фазора, причем после устранения утечки спектра могут проводить измерения исходного фазора.
Динамический фазор аппроксимируют с использованием ряда Тейлора второго порядка. Исследуют линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка. Затем используют упомянутую линейную зависимость для компенсации исходных ошибок измерения в динамических условиях. Наконец, выполняют точные измерения динамического фазора.
Исследование линейной зависимости между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка, использование упомянутой линейной зависимости для коррекции исходных ошибок измерения в динамических условиях и выполнение точных измерений динамического фазора включают в себя:
вычисление по способу наименьших квадратов коэффициентов ряда Тейлора второго порядка динамического входного сигнала фазора и получение исходной частоты, скорости изменения частоты (ROCOF) и связанных с ними коэффициентов ряда Тейлора второго порядка, при этом все параметры входного сигнала динамического фазора повторно вычисляют в соответствии с упомянутыми коэффициентами ряда Тейлора второго порядка;
проведение динамической коррекции параметров исходных измерений фазора и статическую коррекцию амплитуды, причем точные измерения динамического фазора получают путем динамической калибровки;
и калибровку исходных параметров динамического фазора и статическую коррекцию амплитуды исходного динамического фазора, при этом точные измерения динамического фазора получают путем динамической калибровки.
Упомянутый способ измерения после выполнения точных измерений динамического фазора дополнительно включает в себя:
введение второго цифрового фильтра низких частот для устранения эффекта от гармоник и белого шума для получения измерений фазора с более высокой точностью.
Частота среза цифрового фильтра низких частот, объединенного с дискретным преобразованием Фурье (DFT), составляет 2,5 Гц, при этом окно времени составляет два номинальных периода динамического входного сигнала и расчетная частота исходного фазора составляет 400 Гц.
Частота среза второго цифрового фильтра низких частот составляет 2,5 Гц, при этом окно времени составляет 27,5 миллисекунд.
Как можно заметить, в вышеупомянутом техническом решении в соответствии с настоящим изобретением предложен способ измерения, обеспечивающий возможность точного и быстрого измерения фазора как в статических, так и в динамических условиях. Кроме того, точность упомянутого способа измерения может на порядок превышать ту точность, которая требуется в соответствии с упомянутым стандартом.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Для ясного понимания упомянутого технического решения при описании вариантов осуществления настоящего изобретения дается краткое представление необходимых чертежей. Очевидно, что нижеупомянутые чертежи предназначены для описания лишь некоторых вариантов осуществления настоящего изобретения. Специалисту в данной области техники понятно, что могут быть получены также другие чертежи, в соответствии с приведенными, без затрат какой-либо творческой работы.
На фиг. 1 показана блок-схема способа синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса, который выполняют в соответствии с вариантом осуществления изобретения.
На фиг. 2 показано соответствие ошибок измерения амплитуды и частот, которое получено в соответствии с вариантом осуществления изобретения.
На фиг. 3 показана максимальная суммарная векторная ошибка (TVE) для различных основных частот при моделировании теста частотного сканирования, которая получена в соответствии с вариантом осуществления изобретения.
На фиг. 4 показаны максимальные ошибки частоты и скорости изменения частоты (ROCOF) для различных основных частот при моделировании теста частотного сканирования, полученные в соответствии с вариантом осуществления изобретения.
На фиг. 5 показана максимальная TVE для различных частот модуляции при моделировании теста модуляции, полученная в соответствии с вариантом осуществления изобретения.
На фиг. 6 показаны максимальные ошибки частоты для различных частот модуляции при моделировании теста модуляции, полученные в соответствии с вариантом осуществления изобретения.
На фиг. 7 показаны максимальные ошибки ROCOF для различных частот модуляции при моделировании теста модуляции, полученные в соответствии с вариантом осуществления изобретения.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Техническое решение варианта осуществления изобретения описано ясно и исчерпывающе ниже со ссылками на вышеупомянутые чертежи. Очевидно, что описанные конструктивные решения не исчерпывают всех конструктивных решений, а составляют лишь часть упомянутого варианта осуществления изобретения. Все другие конструктивные решения, основанные на этом варианте осуществления изобретения и полученные специалистами в данной области без затрат творческого труда, входят в объем правовой охраны настоящего изобретения.
Упомянутый вариант осуществления настоящего изобретения подробно описан ниже с привлечением чертежей. На фиг. 1 изображена блок-схема способа синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса, который выполняют в соответствии с вариантом осуществления изобретения. Упомянутый способ включает в себя:
этап 11, на котором конструируют цифровой фильтр низких частот для коэффициентов фазора на основе математической модели динамического фазора, который объединяют с DFT. Этот фильтр устраняет утечку спектра, вызванную входными сигналами динамического фазора. Затем, после устранения утечки спектра, могут быть выполнены измерения исходного фазора.
На этом этапе формулируют математическую модель динамического фазора. Для выполнения вычислений предложена математическая модель динамического фазора, основанная на ряде Тейлора второго порядка. В этой модели все параметры фазора, включая амплитуду, угол сдвига фаз, частоту и ROCOF, изменяются с течением времени в расчетном окне времени.
Например, в этом случае прежде всего выражают динамический сигнал основной частоты в виде:
Figure 00000001
где x(t) - текущее значение сигнала, Xm(t) - амплитуда, f(t) - частота сигнала, ϕ0 - исходный угол сдвига фаз, f0 - номинальная частота, Δf(t) - отклонение частоты. Амплитуда и частота сигнала являются функцией времени.
Выражение (1) можно перезаписать следующим образом:
Figure 00000002
где Re - вещественная часть формулы. В этом случае в вышеприведенном выражении обычно можно пренебречь величиной
Figure 00000003
, учитывая при этом, что базовая система координат синхронно вращается с угловой частотой 2πf0. Тогда формула (1) выражается величиной
Figure 00000004
и формула математической модели динамического фазора представляет собой:
Figure 00000005
ROCOF имеет вид
Figure 00000006
Таким образом, все параметры динамического фазора являются функцией времени. Для аппроксимации динамического входного сигнала в пределах одного окна времени применяют ряд Тейлора второго порядка ко всем параметрам фазора, чтобы смоделировать изменяющийся нелинейным образом волновой сигнал, как показано в выражениях (5-8):
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
где m2=d2Xm(t)/dt2|t=0, m1=dXm(t)/dt|t=0, m0=Xm(0); n2=d2ϕ(t)/dt2|t=0, n1=dϕ(t)/dt|t=0, n0=ϕ(0); p2=d2f(t)/dt2|t=0, p1=df(t)/dt|t=0, p0=f(0); q2=d2ROCOF(t)/dr2|t=0, q1=dROCOF(t)/dt|t=0, q0=ROCOF(0).
Затем, на основе математической модели динамического фазора, анализируют явление утечки спектра, вызванное DFT в случае динамического фазора, и его влияние на измерения фазора. Предложено DFT с цифровым фильтром низких частот для устранения утечки спектра и получения исходного фазора (
Figure 00000011
и
Figure 00000012
). Частота среза цифрового фильтра низких частот, объединенного с DFT, составляет 2,5 Гц, при этом окно времени составляет 2 номинальных периода входного сигнала динамического фазора и расчетная частота исходного фазора составляет 400 Гц.
Например, формула стандартного алгоритма DFT в отношении сигнала электрического тока выглядит как
Figure 00000013
где
Figure 00000014
- измеренный фазор, N - объем выборки, x(k) - k-е значение выборки, f0 - номинальная частота и Δt- интервал выборки.
Можно считать, что вычислительный процесс DFT должен обеспечивать измерение фазора путем усреднения произведений выборок сигнала и ортогональных коэффициентов в окне времени. Тогда γ полагают равным
Figure 00000015
Вещественную и мнимую части γ следующим образом при этом выделяют:
Figure 00000016
Figure 00000017
где x={diag[x(k); n=0, 1, …, N-1]}, CT=[cos[2πf0(0)Δt], cos[2πf0(1)Δt], …, cos[2nf0(N-1)Δt]], ST=[sin[2πf0(0)Δt], sin[2πf0(1)Δt], …, sin[2πf0(N-1)Δt]]. Здесь Cx и Sx относятся к коэффициентам фазора, которые существенны для характеристики измерения DFT. При этом формула (1) может быть перезаписана с коэффициентами фазора следующим образом:
Figure 00000018
Если входной сигнал статичен и имеет номинальную частоту
Figure 00000019
то Cx и Sx
Figure 00000020
Figure 00000021
В соответствии с выражениями (15) и (16) при увеличении k коэффициенты фазора состоят из компоненты 2f0 и компоненты постоянного тока. Путем усреднения коэффициентов фазора в одном цикле сигнала компонента 2f0 может быть исключена и затем может быть получен действительный фазор, как показано в формуле (17). Это алгоритм DFT с одним циклом.
Figure 00000022
Алгоритм DFT широко используют из-за того, что он позволяет исключать гармоники и извлекать основную волну. Однако если частота смещается от номинального значения, то будет происходить утечка спектра. В частности, если частота изменяется в зависимости от времени, то трудно устранить утечку спектра. Кроме того, при поступлении динамического сигнала также будет происходить утечка спектра.
Прежде всего, используют формулу (1) в качестве входного сигнала, тогда Cx и Sx будут
Figure 00000023
Figure 00000024
Реальный фазор должен походить на формулу (3), которая составлена из C2 и S2 согласно формуле (18) и формуле (19). Однако C1 и S1 не могут быть устранены, так как их частоты больше не являются кратными f0. Поэтому происходит утечка спектра.
Как показано в формулах (18) и (19), все частоты частотных компонент, приводящих к утечке спектра, находятся вблизи 2f0, в то время как частоты частотных компонент, составляющих реальный фазор, относительно низки. Согласно требованиям для PMU Р-класса, содержащимся в IEEE стандарте С37.118.1, все значения Δf и f1 составляют менее 2 Гц, и для сохранения низкочастотных компонент может быть осуществлен фильтр низких частот, в то время как высокочастотные компоненты фильтруются в коэффициентах фазора. По этой причине в варианте осуществления настоящего изобретения предложен усовершенствованный алгоритм DFT с цифровым фильтром низких частот для устранения утечки спектра и получения исходного фазора (
Figure 00000025
и
Figure 00000026
). Формула выглядит следующим образом:
Figure 00000027
где
Figure 00000028
- рассчитываемый фазор,
Figure 00000029
- коэффициенты фильтра нижних частот и
Figure 00000030
. Следует отметить, что k начинается с -(N-1)/2, потому что положение метки времени установлено в середине окна времени.
Переписав формулу (24) с коэффициентом фазора, получают:
Figure 00000031
Можно заметить, что, несмотря на то, что утечка спектра устранена, амплитуда
Figure 00000032
зависит от Xm(t), Δf(t) и коэффициентов фильтра. Точный фазор, который выражается как
Figure 00000033
, может быть получен, только если Xm(t) является константой и Δf(t)=0. Иначе существует ошибка измерения амплитуды. Тем не менее, коэффициенты фильтра считают величинами, фиксированными для выполняемого алгоритма. Ошибка вычисления амплитуды связана только с Δf(t). Зависимость между ними может быть принята и аппроксимирована в виде квадратичной функции путем подбора кривой для результатов моделирования, как показано на фиг.2, где
Figure 00000034
Этап 12: Входной сигнал динамического фазора аппроксимируют с использованием ряда Тейлора второго порядка. Находят линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами второго порядка ряда Тейлора. Затем используют упомянутую линейную зависимость для калибровки исходных ошибок измерения. Наконец, могут выполнять точные измерения динамического фазора.
На этом этапе, прежде всего, аппроксимируют входной сигнал динамического фазора с использованием ряда Тейлора второго порядка. Находят линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами второго порядка ряда Тейлора. Затем используют упомянутую линейную зависимость для калибровки исходных ошибок измерения. Наконец, выполняют точные измерения динамического фазора.
В частности, во-первых, вычисляют по способу наименьших квадратов коэффициенты ряда Тейлора второго порядка для входного сигнала динамического фазора и получают исходную частоту, ROCOF (
Figure 00000035
и
Figure 00000036
), и их коэффициенты ряда Тейлора второго порядка. Повторно вычисляют все параметры динамического фазора в соответствии с коэффициентами ряда Тейлора второго порядка.
Во-вторых, уточняют параметры исходного динамического фазора для получения
Figure 00000037
,
Figure 00000038
и
Figure 00000039
.
Затем выполняют статическую коррекцию амплитуды исходного динамического фазора для получения
Figure 00000040
в соответствии с
Figure 00000041
и выполняют динамическое измерение фазора
Figure 00000042
путем динамической калибровки.
Например, путем выполнения DFT с фильтром низких частот, как указано в этапе 11, вычисляют исходный фазор, который устойчив к утечке спектра. Однако из-за предположения, что фазор находится в равновесном состоянии, измерение исходного фазора все еще является недостаточно точным для динамических входных сигналов, что не отвечает требованиям упомянутого стандарта.
В течение колебаний энергетической системы амплитуда, угол сдвига фаз, частота и ROCOF изменяются нелинейно.
Заменяя Xm(t) в формуле (25) выражением (5) и предполагая для упрощения процесса получения производной Δf(t)=0, формулу (25) можно перезаписать в следующем виде:
Figure 00000043
где
Figure 00000044
,
Figure 00000045
,
Figure 00000046
и
Figure 00000047
Поскольку коэффициенты фильтра являются симметричными, H может быть выражен как
Figure 00000048
.
Таким образом,
Figure 00000049
Figure 00000050
Figure 00000051
где
Figure 00000052
- средневзвешенное значение K2. Заменив относительные переменные в формуле (26) выражениями (27), (28), (29), получим
Figure 00000053
Поскольку метка времени установлена в середине окна времени, действительный фазор будет
Figure 00000054
. Таким образом, ошибка измерения амплитуды фазора
Figure 00000055
где em - ошибка измерения амплитуды,
Figure 00000056
. Для алгоритма, выполняемого в устройстве, интервал выборки и коэффициенты фильтра являются фиксированными, то есть Δt и
Figure 00000057
постоянны. Следовательно, ошибка измерения амплитуды фазора имеет линейную зависимость от m2. Кроме того, коэффициент наклона линейной зависимости зависит от фильтра низких частот.
Для компенсации ошибки измерения сначала необходимо вычислить m2. В предположении, что фазор “М” измерений амплитуды, вычисленный по формуле (20), имеет вид
Figure 00000058
где
Figure 00000059
- r-е измерение амплитуды фазора, Δtc - интервал расчета фазора. Вышеупомянутая формула может быть записана в матричном представлении как
Figure 00000060
где Т - матрица коэффициентов. Неизвестную матрицу Cm вычисляют по способу взвешенных наименьших квадратов (WLS):
Figure 00000061
Опять же, поскольку метка времени установлена в середине, повторно вычисляют
Figure 00000062
для получения аппроксимированной кривой:
Figure 00000063
Затем вычисленный m2 используют для калибровки
Figure 00000064
. Компенсирующий коэффициент α может быть определен модельными экспериментами.
Аналогично, этим способом с использованием измеренного фазора (
Figure 00000065
) может быть вычислен также n2. Затем выполняют измерения первоначальной частоты и ROCOF:
Figure 00000066
Figure 00000067
В течение времени изменения ϕ(t), f(t) и ROCOF(t) ошибки их измерения также линейно связаны с коэффициентами ряда Тейлора второго порядка для каждой из этих величин. Эти ошибки могут быть проверены результатами моделирования.
Кроме того, в варианте осуществления изобретения для рассматриваемого конкретного случая в стандартное DFT вводят цифровой фильтр низких частот для устранения утечки спектра и явления искажения частоты, которые вызваны динамическими входными сигналами. Однако цифровой фильтр низких частот нарушает характеристики стандартного DFT, что может устранить гармоники, кратные целому числу. Поэтому после получения точных измерений динамического фазора применяют второй цифровой фильтр низких частот, чтобы избавиться от влияния гармоник и белых шумов. Затем могут быть выполнены с более высокой точностью измерения фазора, то есть
Figure 00000068
,
Figure 00000069
,
Figure 00000070
и
Figure 00000071
. N′ является длиной окна времени второго цифрового фильтра низких частот. Поскольку для устройства PMU Р-класса требуется более высокая скорость реакции для ступенчатых сигналов, порядок второго цифрового фильтра оказывается ниже. Однако он все еще достаточен для создания эффекта устранения гармонических помех.
Для рассматриваемого конкретного случая частота среза второго цифрового фильтра низких частот составляет 2,5 Гц. Для обеспечения высокой скорости динамической реакции окно времени устанавливают величиной 27,5 миллисекунд.
Для проведения испытания способом моделирования для вышеупомянутого способа измерения использованы конкретные варианты осуществления настоящего изобретения. В частности:
В стандарте IEEE С37.118.1 четко определены максимальные ошибки при измерении фазора, а также статические и динамические тесты для имитирования статических и динамических процессов в энергетической системе. Предложенный вариант выполнения способа синхрофазорного измерения в соответствии с настоящим изобретением был подвергнут имитационному тесту в условиях отклонения частоты, гармонических искажений, колебаний, рассинхронизации и замыканий. Показано сравнение с предельными ошибками согласно стандарту, чтобы продемонстрировать преимущество предложенного способа. Для выполнения алгоритма номинальная частота составляет 50 Гц, скорость выдачи отчетов составляет 50 Гц и частота выборки составляет 1200 Гц. N=48, M=7, N'=10. Матрица Cm в формуле (34) может быть вычислена предварительно, при этом при оценке фазора может использоваться способ таблиц подстановки. Полная вычислительная нагрузка при расчете фазора, частоты и ROCOF составляет приблизительно 296 операций умножения и 237 операций суммирования.
1) Тест частотного сканирования
Различные режимы работы энергетической системы могут вызывать дрейф частоты относительно ее номинального значения. Кроме того, замыкания могут приводить к большим отклонениям частоты. В этой секции исследована точность измерения предложенного алгоритма в отношении сигналов с отклонением частоты. Диапазон изменения частоты входного сигнала составляет 48-52 Гц и остается неизменным во время каждого состояния. В тесте частотного сканирования, в соответствии с IEEE С37.118.1а, максимальная суммарная векторная ошибка (TVE) ограничена в пределах 1%, максимальная ошибка частоты (FE) составляет 0,005 Гц и максимальная ошибка ROCOF (RFE) равна 0,1 Гц/с. Соответствующие измерения показаны на фиг. 3 и 4. На фиг. 3 изображена максимальная TVE для различных основных частот при моделировании теста частотного сканирования, выполненного в соответствии с этим вариантом осуществления изобретения. На фиг. 4 изображены максимальные ошибки частоты и ROCOF для различных основных частот при моделировании теста частотного сканирования, выполненного в соответствии с этим вариантом осуществления изобретения. Можно заметить, что предложенный алгоритм достигает намного лучшей точности, чем это определено требованиями IEEE С37.118.1а.
2) Тест влияния гармоник
В этой секции для исследования характеристики восприимчивости предложенного алгоритма к гармоникам использован сигнал энергетической системы с частотой 50 Гц, содержащий 2-ю, 3-ю, 8-ю и 13-ю гармоники в количестве 1%. В Таблице 1 также показаны допустимые ошибки согласно стандарту (станд.).
Результаты измерения для каждого случая гармонического искажения представлены в Таблице 1. Можно заметить, что для гармоник четного порядка ошибки больше, чем для гармоник нечетного порядка. Однако ошибки значительно ниже требуемых предельных значений, что демонстрирует устойчивость предложенного способа к гармоническим искажениям.
Figure 00000072
3) Тест модуляции
Тест модуляции выполняют для отражения изменений амплитуды и угла сдвига фаз сигнала напряжения, когда энергетическая система генерирует колебания. Как правило, в узле электрической сети амплитуда и угол сдвига фаз напряжений прямой последовательности должны колебаться одновременно, при этом эти две модуляции находятся в противофазе. Во время теста амплитуда и угол сдвига фаз сигнала изменяются как синусоидальная функция. Ошибка может иметь максимум там, где нелинейные участки являются самыми резкими (пик или впадина колебания и т.д.).
В этом тесте считается, что глубина модуляции амплитуды составляет 10%, глубина модуляции угла сдвига фаз составляет 0,1 рад, частота модуляции изменяется от 0,1 до 2 Гц. В тесте модуляции, согласно IEEE С37.118.1а, максимальная TVE ограничена величиной 3%, максимальная ошибка частоты (FE) составляет 3 Гц. Ошибки измерения показаны на фиг. 5, 6 и 7. На фиг. 5 показана максимальная TVE для различных частот модуляции при моделировании теста модуляции, выполненного в соответствии с этим вариантом осуществления изобретения. На фиг. 6 показана максимальная ошибка частоты для различных частот модуляции при моделировании теста модуляции, выполненного в соответствии с этим вариантом осуществления настоящего изобретения. На фиг. 7 показана максимальная ошибка ROCOF для различных частот модуляции при моделировании теста модуляции, выполненного в соответствии с этим вариантом осуществления настоящего изобретения. Можно заметить, что все показанные на фиг.5-7 ошибки измерений непрерывно увеличиваются при увеличении частоты модуляции, потому что в пределах одного окна времени сигнал изменяется все быстрее. Тем не менее, предложенный алгоритм показывает возможность точного динамического отслеживания по сравнению с предельными ошибками, указанными в IEEE С37.118.1а.
4) Тест линейного изменения частоты
Тест линейного изменения частоты имитирует рассинхронизацию энергетической системы, что отличается от теста частотного сканирования, в котором основная частота сигнала изменяется от 48 до 52 Гц со скоростью 1 Гц/с. Из этого теста можно заметить, что способ измерения, предложенный в настоящем изобретении, обеспечивает возможность точного измерения фазора, частоты и скорости изменения частоты при непрерывном изменении частоты, как показано в Таблице 2.
Figure 00000073
5) Тест ступенчатого изменения
Внезапные изменения амплитуды и угла сдвига фаз сигналов напряжения и тока могут произойти при возникновении замыканий или операций переключения в энергетических системах. Для устройств PMU Р-класса скорость реакции крайне важна для динамического мониторинга безопасности энергетической системы.
В этом тесте входной сигнал изменяли путем скачкообразного изменения амплитуды на 10% и путем скачкообразного изменения угла сдвига фаз на 10°. Время реакции в каждом случае показано в Таблице 3. Можно видеть, что время реакции фазора удовлетворяет требованиям стандартов.
Figure 00000074
Таким образом, способ измерения в соответствии с рассмотренным вариантом осуществления настоящего изобретения обеспечивает возможность точных расчетных измерений фазора в условиях отклонения частоты, колебания мощности и рассинхронизации. Кроме того, способ имеет высокую скорость реакции и устойчив в отношении целочисленной гармоники и нецелочисленных гармоник.
Вышеприведенное описание раскрывает только предпочтительный вариант частного случая осуществления данного изобретения. Однако объем правовой охраны настоящего изобретения не ограничен указанным частным случаем осуществления. Подразумевается, что любые изменения или замены в пределах сущности изобретения, которые могут быть сделаны любым специалистом в области техники, к которой относится настоящее изобретение, включены в объем правовой охраны изобретения. Таким образом, при определении объема правовой охраны изобретения следует руководствоваться формулой изобретения.

Claims (10)

1. Способ синхрофазорного измерения для использования в устройстве измерения фазоров (PMU) Р-класса со следующими характеристиками:
упомянутый способ измерения основывают на математической модели динамического фазора, конструируют цифровой фильтр низких частот для коэффициентов фазора, объединенный с дискретным преобразованием Фурье (DFT) и устраняющий утечку спектра, вызванную входными сигналами динамического фазора, при этом после устранения утечки спектра могут проводить измерения исходного фазора;
причем динамический фазор аппроксимируют с использованием ряда Тейлора второго порядка, исследуют линейную зависимость между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка и используют линейную зависимость для компенсации исходных ошибок измерения в динамических условиях, при этом могут получить точные измерения динамического фазора.
2. Способ по п. 1, в котором исследование линейной зависимости между ошибками измерения, вызванными усредняющим эффектом DFT, и коэффициентами ряда Тейлора второго порядка, использование упомянутой линейной зависимости для коррекции исходных ошибок измерения в динамических условиях и возможное выполнение точных измерений динамического фазора включают в себя:
вычисление по способу наименьших квадратов коэффициентов ряда Тейлора второго порядка входного сигнала динамического фазора и получение исходной частоты, скорости изменения частоты (ROCOF) и их коэффициентов ряда Тейлора второго порядка, при этом все параметры входного сигнала динамического фазора повторно вычисляют в соответствии с упомянутыми коэффициентами ряда Тейлора второго порядка;
калибровку исходных параметров динамического фазора и статическую коррекцию амплитуды исходного динамического фазора, проведение точных измерений динамического фазора путем динамической калибровки.
3. Способ по п. 1, который, после выполнения точных измерений динамического фазора, дополнительно включает в себя:
введение второго цифрового фильтра низких частот для уменьшения эффекта от гармоник и белого шума и дополнительно для получения измерений фазора с более высокой точностью.
4. Способ по п. 1, в котором частота среза цифрового фильтра низких частот, объединенного с дискретным преобразованием Фурье (DFT), составляет 2,5 Гц, окно времени составляет два номинальных периода динамического входного сигнала и расчетная частота исходного фазора составляет 400 Гц.
5. Способ по п. 3, в котором частота среза второго цифрового фильтра низких частот составляет 2,5 Гц и окно времени составляет 27,5 мс.
RU2015137452A 2014-04-18 2014-04-18 Способ синхрофазорного измерения для использования в устройстве измерения фазоров (pmu) р-класса RU2615216C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075688 WO2015157989A1 (zh) 2014-04-18 2014-04-18 一种适用于p类相量测量单元pmu的同步相量测量方法

Publications (2)

Publication Number Publication Date
RU2015137452A RU2015137452A (ru) 2017-03-09
RU2615216C2 true RU2615216C2 (ru) 2017-04-04

Family

ID=54323415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015137452A RU2615216C2 (ru) 2014-04-18 2014-04-18 Способ синхрофазорного измерения для использования в устройстве измерения фазоров (pmu) р-класса

Country Status (5)

Country Link
US (1) US20160154041A1 (ru)
EP (1) EP2957918B1 (ru)
CN (1) CN105723229A (ru)
RU (1) RU2615216C2 (ru)
WO (1) WO2015157989A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788340C2 (ru) * 2018-06-28 2023-01-17 Синаптек Лимитед Способ и устройство для выполнения синхронизированных векторных измерений

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016002267B4 (de) 2016-02-26 2017-09-14 Gerd Bumiller Anordnung und Verfahren zur Messung der elektrischen Eigenschaften am Anschlusspunkt eines elektrischen Energieversorgungsnetzes, von daran angeschlossenen Erzeugern, Verbrauchern oder Teilnetzen
CN106154037B (zh) * 2016-08-11 2019-04-02 中国南方电网有限责任公司 一种基于校验的同步相量自适应计算方法
CN106324340B (zh) * 2016-08-11 2019-02-01 中国南方电网有限责任公司 一种同步相量和频率测量动态性能的方法
CN107144734B (zh) * 2017-05-15 2019-09-27 北京理工大学 一种适用于pmu的配电网高精度相量测量方法
CN107345984B (zh) * 2017-06-23 2019-08-06 华北电力大学 一种基于信号识别的自适应同步相量测量方法
CN107271774B (zh) * 2017-07-10 2019-06-14 河南理工大学 一种基于频谱泄漏校正算法的apf谐波检测方法
US10809683B2 (en) 2017-10-26 2020-10-20 General Electric Company Power system model parameter conditioning tool
CN109856503B (zh) * 2018-12-27 2021-07-16 国网江苏省电力有限公司检修分公司 一种基于s变换及同步相量测量的输电线路故障定位方法
CN110389312B (zh) * 2019-07-17 2021-01-01 华北电力大学 一种适用于现场pmu测试的校准器相量测量方法
CN112305310B (zh) * 2020-10-19 2023-09-05 华北电力大学 一种适用于不同应用场景的同步相量量测方法
CN112433093B (zh) * 2020-11-06 2023-08-22 国网四川省电力公司电力科学研究院 一种基于Kaiser窗的动态相量估计方法及系统
CN112485524B (zh) * 2020-11-10 2024-01-19 广东电网有限责任公司广州供电局 一种用于pmu测试的高精度校准器相量计算方法
CN114047392A (zh) * 2021-09-26 2022-02-15 南京国电南自电网自动化有限公司 一种低压保护装置的电信号幅值、相角测量方法
CN113904329B (zh) * 2021-10-29 2023-08-11 山东大学 超宽频带大规模动态谐波和间谐波实时测量方法及系统
CN114964620B (zh) * 2022-08-03 2022-10-21 中国航空工业集团公司北京长城计量测试技术研究所 机械传感器动态校准分析方法、装置、计算机设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444248B2 (en) * 2005-04-29 2008-10-28 General Electric Company System and method for synchronized phasor measurement
US20140028116A1 (en) * 2012-07-27 2014-01-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437969B2 (en) * 2009-03-31 2013-05-07 Virginia Polytechnic Institute And State University Accurate magnetic field sensor and method for wireless phasor measurement unit
CA2699596A1 (fr) * 2010-03-24 2011-09-24 Hydro-Quebec Systeme et methode de synchronisation de phase de signaux produits par des unites de mesure respectives
CN103575980B (zh) * 2012-07-26 2016-12-21 施耐德电器工业公司 系统频率测量方法、同步相量测量方法及设备
EP2713172B1 (en) * 2012-09-26 2019-05-29 Rheinisch-Westfälisch-Technische Hochschule Aachen Measurement apparatus for electricity distribution grids
CN103513105A (zh) * 2013-09-05 2014-01-15 太原理工大学 一种220v用户侧同步相量测量装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444248B2 (en) * 2005-04-29 2008-10-28 General Electric Company System and method for synchronized phasor measurement
US20140028116A1 (en) * 2012-07-27 2014-01-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
" Model Estimation of Electric Power Systems by Phasor Measurement Units Data", January 2012. *
"New Standards for Test and Calibration of Phasor Measurement Units", 2012 NCSL International Workshop and Symposium. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788340C2 (ru) * 2018-06-28 2023-01-17 Синаптек Лимитед Способ и устройство для выполнения синхронизированных векторных измерений

Also Published As

Publication number Publication date
EP2957918A1 (en) 2015-12-23
EP2957918A4 (en) 2016-12-07
CN105723229A (zh) 2016-06-29
WO2015157989A1 (zh) 2015-10-22
RU2015137452A (ru) 2017-03-09
EP2957918B1 (en) 2022-06-29
US20160154041A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
RU2615216C2 (ru) Способ синхрофазорного измерения для использования в устройстве измерения фазоров (pmu) р-класса
Zhan et al. A Clarke transformation-based DFT phasor and frequency algorithm for wide frequency range
Wen et al. Simple interpolated FFT algorithm based on minimize sidelobe windows for power-harmonic analysis
Akke et al. Sample value adjustment improves phasor estimation at off-nominal frequencies
Ren et al. A hybrid method for power system frequency estimation
Xu et al. A high-accuracy phasor estimation algorithm for PMU calibration and its hardware implementation
Gallo et al. A new test procedure to measure power electronic devices’ frequency coupling admittance
CN104020352A (zh) 一种适用于m类pmu单元的同步相量测量方法
US10901014B1 (en) Iterative algorithm to estimate fundamental phasor and frequency values for a PMU calibrator based on a general signal-fitting model
CN108896944B (zh) 一种同步测量装置实验室校准仪及其同步相量测量方法
D'Avanzo et al. Impact of inductive current transformers on synchrophasor measurement in presence of modulations
Guillo-Sansano et al. Harmonic-by-harmonic time delay compensation method for PHIL simulation of low impedance power systems
Adamo et al. A spectral estimation method for nonstationary signals analysis with application to power systems
de Carvalho et al. A novel DFT-based method for spectral analysis under time-varying frequency conditions
Alfieri et al. New ESPRIT-based method for an efficient assessment of waveform distortions in power systems
Letizia et al. Low cost procedure for frequency characterization of voltage instrument transformers
Berdin et al. Estimating the instantaneous values of the state parameters during electromechanical transients
Romano DFT-based synchrophasor estimation algorithms and their integration in advanced phasor measurement units for the real-time monitoring of active distribution networks
CN109283391A (zh) 一种基于非线性拟合的同步相量量测方法
Zygarlicki et al. Prony’s method with reduced sampling-numerical aspects
US20200132772A1 (en) Dynamic state estimation of an operational state of a generator in a power system
Xue et al. Consecutive DFT method for instantaneous oscillating phasor measurement
Zhang et al. A novelty digital algorithm for online measurement of dielectric loss factor of electronic transformers
Radil et al. Methods for estimation of voltage harmonic components
Tzvetkov et al. Some features and opportunities for calibration of analyzers of electric power by total harmonic distortion