RU2615182C1 - Ring type kochetov's soundproof structure - Google Patents

Ring type kochetov's soundproof structure Download PDF

Info

Publication number
RU2615182C1
RU2615182C1 RU2016111625A RU2016111625A RU2615182C1 RU 2615182 C1 RU2615182 C1 RU 2615182C1 RU 2016111625 A RU2016111625 A RU 2016111625A RU 2016111625 A RU2016111625 A RU 2016111625A RU 2615182 C1 RU2615182 C1 RU 2615182C1
Authority
RU
Russia
Prior art keywords
sound
soundproof
absorbing
holes
diameter
Prior art date
Application number
RU2016111625A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2016111625A priority Critical patent/RU2615182C1/en
Application granted granted Critical
Publication of RU2615182C1 publication Critical patent/RU2615182C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8404Sound-absorbing elements block-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8414Sound-absorbing elements with non-planar face, e.g. curved, egg-crate shaped

Abstract

FIELD: construction.
SUBSTANCE: ring type soundproof structure is implemented in the axial cross section in the form of the ring, the multi-layer soundproof structure is located between its walls, made in the form of symmetrically arranged perforated walls, between which the soundproof element is located, in the form of three layers. The central layer is made of soundproof material of complex profile, consisting of evenly distributed hollow tetrahedrons, allowing to reflect the sound waves falling in all directions. The soundproof layers of different density is attached symmetrically to the central layer. Each of the perforated walls has the following perforation parameters: diameter of holes 3÷7 mm, perforation percentage is 10%÷15%. According to the holes form it can be made as round, triangular, square, rectangular or of diamond profile, while in the case of non-round holes the conditional diameter is taken as equal to the maximum diameter of the of the circle inscribed in the polygon. As the soundproof material it is used either soundproof sheet material, which is made on the base of magnesium binder with reinforced fiberglass or glass or polyester, or porous soundproof ceramic material, having bulk density 500÷1000 kg/m3 and consisting of 100 pts.wt. of perlite with grain diameter 0.1÷8.0 mm, 80÷250 pts.wt. of one from the sintering materials selected from the group consisting of fly ash, slag, quartz, lava, stones or clay as the main material, 5÷30 pts.wt. of nonorganic binder. And after the mixture sintering the perlite particles form the connecting holes between their contact surfaces so, that the internal pores are connecting among themselves.
EFFECT: increase of the noise reduction efficiency and design reliability as a whole.
2 cl, 2 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является звукопоглощающий элемент, применяемый в качестве облицовки производственных помещений, известный из патента РФ №2463412 (прототип).The closest technical solution to the technical nature and the achieved result is a sound-absorbing element used as a facing of industrial premises, known from the RF patent No. 2463412 (prototype).

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет наличия пустот между слоями, где отсутствует поглощение звука между слоями звукопоглотителя.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the presence of voids between the layers, where there is no sound absorption between the layers of the sound absorber.

Технический результат - повышение эффективности шумоглушения и надежности конструкции в целом.The technical result is an increase in the efficiency of sound attenuation and the reliability of the structure as a whole.

Это достигается тем, что в звукопоглощающей конструкции, содержащей гладкую и перфорированную поверхности, между которыми размещена многослойная звукопоглощающая конструкция, которая выполнена в два слоя: звукоотражающий слой, прилегающий к жесткой стенке, и звукопоглощающий слой, прилегающий к перфорированной стенке, при этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, «Acutex T»), или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».This is achieved by the fact that in a sound-absorbing structure containing a smooth and perforated surface, between which a multilayer sound-absorbing structure is placed, which is made in two layers: a sound-reflecting layer adjacent to the rigid wall, and a sound-absorbing layer adjacent to the perforated wall, while the layer of sound-reflecting material made of a complex profile, consisting of uniformly distributed hollow tetrahedrons, allowing to reflect sound waves incident in all directions, and perforated the wall has the following perforation parameters: the diameter of the holes 3 ÷ 7 mm, the percentage of perforation 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as of the nominal diameter, the maximum diameter of the circle inscribed in the polygon should be considered, and rockwool type mineral wool or URSA type mineral wool or t basalt wool should be used as sound-absorbing material Ip P-75, or glass wool with glass fiber lining, or foamed polymer, such as polyethylene or polypropylene, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or covered with breathable fabrics or non-woven materials, for example Lutrasil.

На фиг. 1 изображено осевое сечение звукопоглощающего элемента кольцевого типа, на фиг. 2 - вариант звукопоглощающей конструкции кольцевого типа.In FIG. 1 shows an axial section of a sound-absorbing ring-type element, FIG. 2 is an embodiment of a sound-absorbing ring-type structure.

Звукопоглощающая конструкция кольцевого типа (фиг. 1) в осевом сечении выполнена в виде кольца, стенки которого выполнены в виде жесткой 1 и перфорированной 4 стенок, между которыми расположены два слоя: звукоотражающий слой 2, прилегающий к жесткой стенке 1, и звукопоглощающий слой 3, прилегающий к перфорированной стенке 4. При этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала слоя 3 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, «Acutex T»), или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».The sound-absorbing design of the ring type (Fig. 1) in axial section is made in the form of a ring, the walls of which are made in the form of a rigid 1 and perforated 4 walls, between which there are two layers: a sound-reflecting layer 2 adjacent to the rigid wall 1, and a sound-absorbing layer 3, adjacent to the perforated wall 4. In this case, the layer of sound-reflecting material is made of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, and the perforated wall The wafer has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon. As the sound-absorbing material of layer 3, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene can be used. The surface of the fibrous absorbers is treated with special porous air-permeable paints (for example, Acutex T), or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В качестве звукопоглощающего материала может быть использован пористый шумопоглощающий материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа «Acutex T», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».As a sound-absorbing material, a porous sound-absorbing material can be used, for example, foam aluminum or cermets, or a shell rock with a degree of porosity in the range of optimal values of 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, for example, an elastomer , polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values of 0.3 ... 2.5 mm, and poros can also be used mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or coated with breathable fabrics or non-woven materials , for example, Lutrasil.

Перфорированная стенка 4 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The perforated wall 4 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material deposited on their surface on one or two sides, while the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Перфорированная стенка 4 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», или неткаными материалами, например «Лутрасилом».The perforated wall 4 can be made of solid, decorative vibration-damping materials, for example, agate, anti-vibrate, and shvim plastic compounds, the inner surface of the perforated surface facing the sound-absorbing structure, lined with an acoustically transparent material, for example, fiberglass type EZ- 100 or with a “Poviden” polymer, or with nonwoven materials, for example, “Lutrasil”.

Перфорированная стенка 4 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.The perforated wall 4 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating such as Pural 50 μm thick or Polyester 25 μm thick, or an aluminum sheet 1.0 mm thick and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

В качестве материала звукоотражающего слоя 2 может быть применен материал на основе алюминийсодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий.As the material of the sound-reflecting layer 2, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum.

В качестве материала звукоотражающего слоя 2 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала равной 60÷80 кг/м3.As the material of the sound-reflecting layer 2, sound-insulating plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 can be used.

Звукопоглощающий элемент кольцевого типа работает следующим образом. Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум объекта, пройдя через перфорированную стенку 4, попадает на слой 3 из мягкого звукопоглощающего материала, где происходит ее поглощение, а затем на слой 2 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, снова направляя их на звукопоглощающий материал для вторичного поглощения и рассеяния звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца".The sound-absorbing element of the ring type operates as follows. Sound energy from equipment located in the room, or other object that emits intense noise from the object, passing through the perforated wall 4, enters layer 3 of soft sound-absorbing material, where it is absorbed, and then layer 2 of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, again directing them to sound-absorbing material for secondary absorption and dispersion of sound energy. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into heat (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are a model of Helmholtz resonators.

На фиг. 2 представлен вариант звукопоглощающей конструкции.In FIG. 2 shows an embodiment of a sound-absorbing structure.

Звукопоглощающая конструкция выполнена в виде симметрично расположенных перфорированных 5 и 9 стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя 7 из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев 6 и 8 из материалов разной плотности. Каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing design is made in the form of symmetrically arranged perforated 5 and 9 walls, between which there is a sound-absorbing element made in the form of three layers: the central layer 7 of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions , and symmetrically adjacent to it sound-absorbing layers 6 and 8 of materials of different densities. Each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

В качестве звукопоглощающего материала используются или листовой шумозащитный материал, который выполнен на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, или полиэстер, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3, и состоящий из 100 мас.ч. перлита с диаметром зерна 0,1÷8,0 мм, 80÷250 мас.ч. одного из спекающих материалов, выбранных из группы, включающей зольную пыль, шлак, кварц, лаву, камни или глину в качестве основного материала, 5÷30 мас.ч. неорганического связующего, причем после спекания смеси частицы перлита образуют сообщающиеся отверстия между своими контактирующими поверхностями так, что внутренние поры являются сообщающимися между собой.As a sound-absorbing material, either a sheet soundproofing material is used, which is made on the basis of a magnesian binder with a reinforcing fiberglass or fiberglass, or polyester, or a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 parts by weight. perlite with a grain diameter of 0.1 ÷ 8.0 mm, 80 ÷ 250 wt.h. one of the sintering materials selected from the group comprising fly ash, slag, quartz, lava, stones or clay as the main material, 5 ÷ 30 parts by weight inorganic binder, and after sintering the mixture, the perlite particles form interconnected holes between their contacting surfaces so that the inner pores are interconnected.

Claims (2)

1. Звукопоглощающая конструкция кольцевого типа, выполненная в осевом сечении в виде кольца, между стенками которого размещена многослойная звукопоглощающая конструкция, отличающаяся тем, что многослойная звукопоглощающая конструкция выполнена в виде симметрично расположенных перфорированных стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются или листовой шумозащитный материал, который выполнен на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, или полиэстер, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 мас.ч. перлита с диаметром зерна 0,1÷8,0 мм, 80÷250 мас.ч. одного из спекающих материалов, выбранных из группы, включающей зольную пыль, шлак, кварц, лаву, камни или глину в качестве основного материала, 5÷30 мас.ч. неорганического связующего, причем после спекания смеси частицы перлита образуют сообщающиеся отверстия между своими контактирующими поверхностями так, что внутренние поры являются сообщающимися между собой.1. The sound-absorbing design of the ring type, made in axial section in the form of a ring, between the walls of which there is a multilayer sound-absorbing structure, characterized in that the multilayer sound-absorbing structure is made in the form of symmetrically arranged perforated walls, between which there is a sound-absorbing element made in the form of three layers: the central layer of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and sound-absorbing layers symmetrically adjoining to it from materials of different densities, each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter of a circumferentially inscribed polygon should be considered as a conditional diameter sti, and as a sound-absorbing material, either a sheet soundproofing material is used, which is made on the basis of a magnesian binder with a reinforcing fiberglass or fiberglass, or polyester, or a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 wt. hours perlite with a grain diameter of 0.1 ÷ 8.0 mm, 80 ÷ 250 wt.h. one of the sintering materials selected from the group comprising fly ash, slag, quartz, lava, stones or clay as the main material, 5 ÷ 30 parts by weight inorganic binder, and after sintering the mixture, the perlite particles form interconnected holes between their contacting surfaces so that the inner pores are interconnected. 2. Звукопоглощающая конструкция по п. 1, отличающаяся тем, что в качестве звукоотражающего материала применен материал на основе алюминийсодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала равной 60÷80 кг/м3.2. The sound-absorbing structure according to claim 1, characterized in that a material based on aluminum-containing alloys is used as a sound-reflecting material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties : compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foamed aluminum, or soundproofing boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 .
RU2016111625A 2016-03-29 2016-03-29 Ring type kochetov's soundproof structure RU2615182C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016111625A RU2615182C1 (en) 2016-03-29 2016-03-29 Ring type kochetov's soundproof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016111625A RU2615182C1 (en) 2016-03-29 2016-03-29 Ring type kochetov's soundproof structure

Publications (1)

Publication Number Publication Date
RU2615182C1 true RU2615182C1 (en) 2017-04-04

Family

ID=58505556

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016111625A RU2615182C1 (en) 2016-03-29 2016-03-29 Ring type kochetov's soundproof structure

Country Status (1)

Country Link
RU (1) RU2615182C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1196877B (en) * 1964-04-18 1965-07-15 Costa S Vasiljevic Dipl Ing Dr Component based on the resonator principle for creating sound-absorbing surfaces or channels
RU2306430C2 (en) * 2005-12-15 2007-09-20 Олег Савельевич Кочетов Tubular muffler
RU132455U1 (en) * 2012-11-20 2013-09-20 Общество с ограниченной ответственностью "ОЗМК" NOISE PROTECTIVE PANEL (OPTIONS) AND NOISE PROTECTIVE SCREEN
RU2528356C1 (en) * 2013-08-19 2014-09-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2528802C1 (en) * 2013-08-19 2014-09-20 Олег Савельевич Кочетов Sound absorbing element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1196877B (en) * 1964-04-18 1965-07-15 Costa S Vasiljevic Dipl Ing Dr Component based on the resonator principle for creating sound-absorbing surfaces or channels
RU2306430C2 (en) * 2005-12-15 2007-09-20 Олег Савельевич Кочетов Tubular muffler
RU132455U1 (en) * 2012-11-20 2013-09-20 Общество с ограниченной ответственностью "ОЗМК" NOISE PROTECTIVE PANEL (OPTIONS) AND NOISE PROTECTIVE SCREEN
RU2528356C1 (en) * 2013-08-19 2014-09-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2528802C1 (en) * 2013-08-19 2014-09-20 Олег Савельевич Кочетов Sound absorbing element

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2561389C1 (en) Sound-absorbing structure
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2582137C2 (en) Sound absorbing element
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2603857C1 (en) Ring-type kochetov sound absorbing element
RU2583442C2 (en) Sound absorbing structure
RU2583438C1 (en) Kochetov sound-absorbing element
RU2603858C1 (en) Helical-type kochetov sound absorbing element
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2579021C1 (en) Acoustic panel
RU2646252C1 (en) Sound-absorbing lining
RU2615182C1 (en) Ring type kochetov's soundproof structure
RU2651565C1 (en) Acoustic construction for industrial premises
RU2663533C1 (en) Perforated ring type sound absorbing element
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2638344C1 (en) Sound absorption element of annular type
RU2587515C1 (en) Kochetov element for compressor stations silencer
RU2651985C1 (en) Sound absorbing element
RU2596222C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2661423C2 (en) Single piece sound absorber for the compressor stations noise silencers
RU2652003C1 (en) Sound absorbing construction for industrial premises