RU2612317C1 - Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения - Google Patents

Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения Download PDF

Info

Publication number
RU2612317C1
RU2612317C1 RU2015145381A RU2015145381A RU2612317C1 RU 2612317 C1 RU2612317 C1 RU 2612317C1 RU 2015145381 A RU2015145381 A RU 2015145381A RU 2015145381 A RU2015145381 A RU 2015145381A RU 2612317 C1 RU2612317 C1 RU 2612317C1
Authority
RU
Russia
Prior art keywords
whey
base
oxygen
polysaccharide
cocktail
Prior art date
Application number
RU2015145381A
Other languages
English (en)
Inventor
Алла Львовна Новокшанова
Наталия Владимировна Неповинных
Анна Александровна Абабкова
Алина Игоревна Семина
Наталия Михайловна Птичкина
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина" (ФГБОУ ВО Вологодская ГМХА)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина" (ФГБОУ ВО Вологодская ГМХА) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина" (ФГБОУ ВО Вологодская ГМХА)
Priority to RU2015145381A priority Critical patent/RU2612317C1/ru
Application granted granted Critical
Publication of RU2612317C1 publication Critical patent/RU2612317C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients

Landscapes

  • Jellies, Jams, And Syrups (AREA)

Abstract

Изобретение относится к пищевой промышленности, а именно к способам получения кислородных коктейлей функционального назначения. Способ заключается в приготовлении основы коктейля и насыщении ее кислородом. В качестве пенообразователя используют молочную сыворотку, обогащенную гидролизатом сывороточных белков с глубокой степенью гидролиза около 60% в количестве 2-6% от объема сыворотки с, по крайней мере, одним полисахаридом растительного происхождения, в качестве стабилизатора полученной пены, при соотношении полисахарида к общему объему основы 1:100-500, при этом предварительно перед смешиванием стабилизатора с основой коктейля осуществляют внесение гидролизата сывороточных белков в количестве 2-6%, совместное набухание полисахарида и гидролизата сывороточных белков в основе в виде смеси в течение 20-30 минут, нагрев полученной смеси до 50-90°C, охлаждение до 23-25°C и барботаж медицинского кислорода до получения устойчивой пены. Изобретение обеспечивает получение кислородных коктейлей с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения. 4 з.п. ф-лы, 3 табл., 3 пр.

Description

Изобретение относится к пищевой промышленности и медицине, а именно к способам получения кислородных коктейлей функционального и специализированного назначения, которые могут быть использованы в качестве дополнительной диетологической составляющей лечебно-профилактического и функционального питания. Изобретение направлено на решение задачи создания эффективного способа приготовления кислородных коктейлей с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения, обладающих функциональными, лечебно-профилактическими и высокими органолептическими свойствами за счет обогащения основы гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%).
Известен способ получения кислородного коктейля, предусматривающий приготовление жидкой основы, введение в нее пенообразующей добавки, микширование полученной смеси и барботирование газового потока, обогащенного кислородом, через слой жидкой основы [Патент РФ №2422051 «Способ производства кислородных коктейлей», опубл. 27.06.2011]. Кислородный коктейль содержит в качестве жидкой основы зеленый чай с медом или кофе с лимоном и пенообразующую добавку - сухой белковый полуфабрикат (СБП).
Недостатком данного способа получения кислородного коктейля, во-первых, является трудоемкость, поскольку для приготовления жидкой основы требуется заваривать зеленый чай или кофе, что приводит к значительным затратам времени. Во-вторых, ряд компонентов имеют ограничения в применении. В частности, мед может вызывать аллергию, крапивницу, зуд, насморк, головные боли, желудочно-кишечные расстройства. Зеленый чай противопоказан в пожилом возрасте, при заболевании почек, ревматоидном артрите, подагре, глаукоме, камнях в почках и желчном пузыре, обострении гастрита, язве, эрозии желудка и двенадцатиперстной кишки, высокой температуре, приступе высокого давления, нервной возбудимости. Кофе противопоказан пожилым людям и детям, также людям, страдающим гипертонией, атеросклерозом, заболеваниями почек, ишемической болезнью сердца, глаукомой, бессонницей. Этот продукт имеет сильное мочегонное действие. А нефильтрованный кофе может спровоцировать скачок холестерина в плазме крови.
В известном способе получения кислородного коктейля [Патент РФ №2150856 «Смесь для кислородного коктейля и способ приготовления кислородного коктейля», опубл. 20.06.2000], в качестве пенообразователя используется водный раствор желатина, что значительно увеличивает трудоемкость процесса, поскольку подготовка желатина увеличивает время приготовления кислородного коктейля на 1 час. Кроме этого желатин нежелательно употреблять людям при гиперволемии, тяжелой хронической сердечной недостаточности, нарушении водно-солевого обмена и при мочекаменной болезни.
Также известен способ получения кислородного коктейля [Заявка на изобретение РФ 2010124368/13), опубл. 20.12.2011]. Недостатком данного способа приготовления кислородного коктейля также является трудоемкость, поскольку подготовка стабилизатора пены увеличивает время приготовления кислородного коктейля на 40-70 минут, а подготовка жидкой основы - водного настоя лекарственных трав - тоже приводит к значительным затратам времени. Кроме этого используемый пенообразователь - сироп корня солодки - придает готовому продукту неприятный горький привкус, обусловленный составляющими пенообразователя. Сироп корня солодки имеет в своем составе активные вещества - сапонины - природные соединения (гликозиды), молекулы которых образованы моносахаридами и стероидами, соответственно данный компонент является гормональным и противопоказан ряду людей. Также сироп корня солодки содержит в своем составе глицирризин, который может вызывать у человека артериальную гипертензию и отеки.
Наиболее близким к заявленному является способ получения кислородного коктейля [Патент РФ №2539843 «Способ получения кислородного коктейля», опубл. 27.01.2015].
Недостатком этого способа является несбалансированный состав кислородного коктейля, а именно значительное превышение массовой доли углеводов по отношению к массовой доле белков. Это имеет принципиально важное значение, поскольку в современных условиях в рационах населения диетологи повсеместно отмечают избыточное содержание углеводов, особенно низкомолекулярных, и недостаточное содержание белков, преимущественно животного происхождения.
Задачей нашего изобретения является создание способа получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения путем внесения гидролизата сывороточных белков с глубокой степенью гидролиза.
Для решения поставленной задачи в способе получения кислородного коктейля, заключающемся в приготовлении основы коктейля, введении стабилизатора пены, смешивании его с основой коктейля, насыщении кислородом, согласно изобретению, в качестве пенообразователя используют молочную сыворотку, обогащенную гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%) в количестве 2-6% от объема сыворотки с, по крайней мере, одним полисахаридом растительного происхождения, в качестве стабилизатора полученной пены, при соотношении полисахарида к общему объему смеси молочной сыворотки, фруктово-ягодного сока и гидролизата сывороточных белков 1:100-500, при этом предварительно перед смешиванием стабилизатора с основой коктейля осуществляют внесение гидролизата сывороточных белков в количестве 2-6%, совместное набухание полисахарида и гидролизата сывороточных белков в белково-углеводной основе в виде смеси в течение 20-30 минут, нагрев полученной смеси до 50-90°C и охлаждение до 23-25°C, после чего осуществляют барботаж медицинского кислорода до получения устойчивой кислородной пены.
Гидролизат сывороточных белков (ГСБ) - натуральный продукт, отличающийся высоким содержанием свободных незаменимых аминокислот, биологически активных низкомолекулярных пептидов и пониженной аллергенностью на молочные белки. Использование данного гидролизата сывороточных белков актуально для решения такой проблемы, как дефицит биологически полноценных белков животного происхождения в рационе населения большинства стран, включая Россию. По данным ВОЗ, состав молочных белков и, особенно, сывороточных белков, максимально приближен по аминокислотному набору к идеальному белку. Это служит основанием для использования гидролизатов в производстве функциональных продуктов питания [Королёва О.В. Перспективы использования гидролизатов сывороточных белков в технологии кисломолочных продуктов].
Белки молочной сыворотки обладают наиболее высокой биологической ценностью в плане аминокислотного состава, но могут стать причиной аллергических реакций у некоторых лиц. Доказано, что при расщеплении молекул белков до пептидов с размерами 2,5-3,0 кДа, аллергенность утрачивается. В данном гидролизате методом ферментативного гидролиза расщеплено более 60% всех пептидных связей, что существенно улучшает функциональные свойства сывороточных белков. Методом гель-фильтрации высокого разрешения в данном гидролизате сывороточных белков выявлено три области белковых веществ с молекулярными массами более 4,5 (31,1±7,8%), от 1,7 до 4,5 (21,48±5,46%) и менее 1,7 (50,4±6,4%) кДа. Следовательно, около 70% всех белков данного гидролизата становятся гипоаллергенными. По данным НИИ питания остаточная антигенность гидролизата в 17000 раз ниже нативных сывороточных белков [Абрамов Д.В. Разработка ферментативных гидролизатов сывороточных белков молока - технологии, свойства и применение].
Содержание свободных аминокислот, в том числе незаменимых, в данном гидролизате сывороточных белков достигает 33%. Свободные аминокислоты легко всасываются через кишечную стенку и активно используются организмом на свои нужды. Следовательно, данный компонент является не только хорошим источником незаменимых аминокислот, но и отличается их повышенной биодоступностью в пищеварительном канале. Это имеет принципиальное значение не только для спортсменов, организм которых требует усиленного белкового питания, но и при различных нарушениях пищеварения, которые могут вызываться как заболеваниями желудочно-кишечного канала, так и возрастными особенностями организма человека. В составе гидролизата сывороточных белков преобладают разветвленные незаменимые аминокислоты - валин, лейцин и изолейцин. Они являются источниками энергии для мышечных клеток в период восстановления и напрямую воздействуют на синтез белка в мышцах.
Гидролизат сывороточных белков прошел клинические испытания в медицинских учреждениях для лечения и реабилитации больных с различной степенью белково-энергетической недостаточности. Установлено его положительное влияние при комплексном лечении хронического гепатита, ишемической болезни сердца, гипертонической болезни, сахарного диабета, дисбактериоза и синдрома раздраженного кишечника [Абрамов Д.В. Разработка ферментативных гидролизатов сывороточных белков молока - технологии, свойства и применение].
Несмотря на такие достоинства гидролизатов сывороточных белков, они находят ограниченное применение в молочной промышленности из-за неприятного вкуса и альбуминного запаха, которые проявляются при внесении гидролизата в продукты. Органолептические пороки возникают из-за присутствия пептидов разной длины цепи, некоторые из которых обладают горьким вкусом [Королева О.В. Функциональные свойства кисломолочных продуктов с гидролизатами сывороточных белков].
В связи с этим авторами предварительно проведены исследования влияния гидролизата сывороточных белков на органолептические показатели основы и стабилизатора кислородного коктейля. В результате установлено, что доза гидролизата сывороточных белков не должна превышать 1-3% общего объема жидкой смеси (молочной сыворотки и фруктового сока) для приготовления кислородного коктейля. Также установлено, что наивысшую оценку получили образцы кислородного коктейля, жидкая смесь которых получена соединением молочной сыворотки и фруктово-ягодного сока в соотношении 1:1.
Поскольку гидролизат сывороточных белков представляет собой концентрат поверхностно-активных веществ - высокомолекулярных и низкомолекулярных пептидов и свободных аминокислот, а также имеет богатый минеральный состав, что может существенно влиять на механизмы пенообразования, авторами изучены особенности формирования пены в жидкой смеси, обогащенной гидролизатом сывороточных белков. В результате авторами экспериментальным путем были подобраны температурные и временные режимы способа получения кислородного коктейля, а также соотношения между полисахаридами и молочной сывороткой, между основой коктейля и стабилизатором пены в присутствии гидролизата сывороточных белков.
В результате выполненных исследований получены достоверные данные, что соединение гидролизата сывороточных белков с полисахаридами и белками молочной сыворотки при других режимах и соотношениях не приводит к получению однородной системы вязкой консистенции без разделения системы на фазы.
Эти сведения позволяют сделать вывод о наличии в заявленном решении «изобретательского уровня».
Технический результат получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения заключается в обогащении основы и стабилизатора коктейля - молочной сыворотки гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%).
Технический результат получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения достигается тем, что в приготовленную основу коктейля вводится стабилизатор пены, смешивается с основой коктейля, приготовленная основа пастеризуется, охлаждается и насыщается кислородом. Согласно изобретению, в качестве пенообразователя используют молочную сыворотку, обогащенную гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%) в количестве 2-6% от объема сыворотки с, по крайней мере, одним полисахаридом растительного происхождения, в качестве стабилизатора пены, при соотношении полисахарида к молочной сыворотке 1:100-500. При этом предварительно перед смешиванием стабилизатора с основой коктейля осуществляют набухание гидролизата сывороточных белков с глубокой степенью гидролиза (около 60%) и полисахарида в основе совместно в виде смеси в течение 20-30 минут, нагрев полученной смеси до 50-90°C и охлаждение до 23-25°C.
В способе получения кислородного коктейля в качестве стабилизатора пены, т.е. смеси растительного полисахарида и молочной сыворотки, кислородный коктейль может содержать высокоэтерифицированный пектин (ВЭП) и белково-углеводную основу (молочная сыворотка, обогащенная гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%) в количестве 2-6% от объема сыворотки и фруктово-ягодный сок) в соотношении 1:100-500, также галактоманнаны (а именно камедь рожкового дерева) и белково-углеводную основу в соотношении 1:100-167 или смесь галактоманнана и ВЭП и белково-углеводную основу в соотношении 1:167-250, соответственно, в частности смесь камеди рожкового дерева с ВЭП в соотношении 1:1-2 соответственно.
В известных авторам источниках патентной и научно-технической информации не описано эффективного, экономичного и нетрудоемкого способа получения кислородного коктейля на основе стабилизатора пены из смеси молочной сыворотки, обогащенной гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%), фруктово-ягодного сока и полисахаридов растительной природы, позволяющего создать продукт, обладающий функциональными, лечебно-профилактическими, высокими физико-химическими и органолептическими свойствами. Способ позволяет впервые создать однородные коллоидные системы без разделения их на фазы. Именно поэтому способ не предусматривает, в отличие от существующих аналогов, отдельное внесение пенообразователя, что удешевляет способ и уменьшает трудозатраты. При этом белки молочной сыворотки и гидролизат сывороточных белков являются пенообразователем. Это связано с наличием на поверхности пенных пленок заряженных функциональных групп с определенным гидрофильно-липофильным балансом. Сывороточные белки и гидролизат сывороточных белков при насыщении сыворотки кислородом более интенсивно флотируют в межфазную поверхность и удерживаются пленками, что связано с их поверхностно-активными свойствами. Сывороточные белки характеризуются ассиметрично-полярной структурой молекул, способных концентрироваться на межфазных пограничных слоях, уменьшая поверхностное натяжение жидкости. Сывороточные белки в сочетании с полисахаридами образуют адсорбционные - вязкие и прочные пленки, обеспечивающие высокую кратность и прочность пены. Это объясняется тем, что при формировании пены на основе смеси молочной сыворотки и полисахаридов происходит активация процесса образования устойчивой кислородной пены за счет образования так называемых интербиополимерных комплексов на основе сывороточных белков и полисахаридов.
Авторами экспериментальным путем были подобраны температурные и временные режимы способа получения кислородного коктейля, а также соотношения между полисахаридами, ГСБ и молочной сывороткой, между основой коктейля и стабилизатором пены. Соединение полисахаридов с белками молочной сыворотки при других режимах и соотношениях не приводит к получению однородной системы с однофазной вязкой консистенцией, поскольку сыворотка молочная содержит в своем составе белки, аминокислоты, ряд макро- и микроэлементов, т.е. компоненты, которые не всегда и не при любых соотношениях могут быть совместимы с полисахаридами без разделения системы на фазы.
Сказанное позволяет сделать вывод о наличии в заявленном решении «изобретательского уровня».
В качестве растительных полисахаридов (ПС) используются высокоэтерифицированный пектин и галактоманнаны, а именно камедь рожкового дерева (locust bean gum, LBG).
Пектин - его основной представитель - полигалактуроновая кислота. Ее молекулярная цепь построена из остатков D-галактуроновой кислоты, соединенных α-(1-4)-гликозидными связями. Остатки галактуроновой кислоты могут, как правило, быть этерифицированы метанолом. Доля этерифицированных остатков, выраженная в процентах, называется степенью этерификации (СЭ). Различают высокоэтерифицированные пектины (СЭ>50%) и низкоэтерифицированные (СЭ<50%).
Высокоэтерифицированный пектин - это пектин, в котором степень этерификации галактуроновой кислоты выше 50%.
Галактоманнаны - природные полисахариды, представляют собой нейтральные полисахариды, состоящие из остатков β-D-маннозы и α-D-галактозы. Маннозные остатки посредством β-(1-4)-гликозидных связей образуют основную цепь, а боковая цепь состоит из галактозных остатков с α-(1-6)-соединением.
Молочная сыворотка - по ГОСТ P 53438-2009 побочный продукт переработки молока, получаемый при производстве сыра, творога и казеина. Сыворотка не оказывает побочных отрицательных воздействий на организм, практически не имеет противопоказаний к использованию. Она оказывает активное стимулирующее влияние на секреторную функцию пищеварительных органов: желудка, кишечника, поджелудочной железы, печени - и может применяться с лечебной целью. Химический состав сыворотки богат и разнообразен. Он включает более 200 компонентов.
Способ получения кислородного коктейля с использованием молочной сыворотки и гидролизата сывороточных белков - одно из наиболее перспективных направлений использования сыворотки для пищевых целей. Это обусловлено рядом факторов: свойствами и составом молочной сыворотки; ее относительной дешевизной и доступностью; решением экологической проблемы использования компонентов молока, служащих побочными продуктами при изготовлении творога и сыра; целесообразностью использования натуральной жидкой сыворотки в лечебно-профилактическом питании.
Способ приготовления кислородного коктейля осуществляется следующим образом.
Полисахарид - камедь рожкового дерева, или ВЭП, или смесь камедь рожкового дерева с ВЭП соединяют с гидролизатом сывороточного белка в определенных соотношениях и при непрерывном помешивании вносят в подготовленную основу творожной сыворотки и фруктово-ягодного сока, оставляют набухать при температуре 23-25°C в течение 20-30 минут. Подготовленную смесь нагревают до температуры 50-90°C до полного растворения полисахарида. Затем основу охлаждают до 23-25°C и осуществляют барботаж медицинского кислорода до прекращения роста высоты столба пены. Скорость барботирования кислорода изменяют в диапазоне 0,5-5 л/мин. В результате, получается однородная, устойчивая кислородная пена.
Пример 1.
Берут 0,5 г ВЭП, 2-6 г гидролизата сывороточных белков с глубокой степенью гидролиза (около 60%) и вносят в 100 г белково-углеводной основы, т.е. в соотношении 1:100 соответственно, и оставляют набухать при температуре 23°C в течение 20-30 минут. Нагревают белково-углеводную основу при температуре 60-90°C для полного растворения полисахарида и ГСБ.
Затем полученную основу охлаждают до 23-25°C и осуществляют барботаж медицинского кислорода до прекращения роста высоты столба пены. В результате, получается однородная, устойчивая пена.
Пример 2.
Берут 0,1 г камеди рожкового дерева, 2-6 г гидролизата сывороточных белков с глубокой степенью гидролиза (около 60%) и вносят в 100 г белково-углеводной основы, т.е. в соотношении 1:500 соответственно, оставляют набухать при температуре 23°C в течение 20-30 минут. Нагревают белково-углеводную основу при температуре 60-90°C для полного растворения полисахарида и ГСБ.
Затем полученную основу охлаждают до 23-25°C и осуществляют барботаж медицинского кислорода до прекращения роста высоты столба пены. В результате, получается однородная, устойчивая пена.
Пример 3.
Берут смесь ВЭП и камеди рожкового дерева в количестве 0,2 г и 0,1 г соответственно, 2-6 г гидролизата сывороточных белков с глубокой степенью гидролиза (около 60%) и вносят в 100 г белково-углеводной основы в соотношении 1:200, оставляют набухать при температуре 23°C в течение 20-30 минут. Нагревают белково-углеводную основу при температуре 60-90°C для полного растворения полисахарида и гидролизата сывороточных белков.
Затем полученную основу охлаждают до 23-25°C и осуществляют барботаж медицинского кислорода до прекращения роста высоты столба пены. В результате, получается однородная, устойчивая пена.
Соотношения молочной сыворотки, гидролизата сывороточных белков и полисахаридов были подобраны экспериментальным путем. При использовании полисахаридов с белково-углеводной основой в соотношении менее 1:100 и более 1:500 соответственно не образуется устойчивая белковая пена.
При соотношении смеси молочной сыворотки и гидролизата сывороточных белков с натуральным фруктово-ягодным соком в соотношении менее 1:1 и более 1,5:1 соответственно у готового продукта появляется специфический кисло-соленый привкус.
В таблице 1 представлены органолептические показатели пен кислородного коктейля функционального назначения на основе молочной сыворотки и клубничного сока в соотношении 1:1.
Figure 00000001
Figure 00000002
Данные таблицы 1 показывают, что кислородный коктейль, приготовленный предложенным способом, обладает высокими органолептическими характеристиками.
В таблице 2 представлены результаты исследований по влиянию способа приготовления кислородного коктейля на стабильность и кратность белковой кислородной пены.
Figure 00000003
Как видно из таблицы 2, кратность пен кислородных коктейлей, образованных молочной сывороткой, обогащенной гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%) и ПС высокая. Кроме того, стабильность пен кислородных коктейлей также высокая, пены остаются неизменными по структуре в течение длительного времени (30-40 мин). Этот процесс объясняется тем, что предложенный способ приготовления кислородного коктейля позволяет формировать пены на основе молочной сыворотки, обогащенной гидролизатом сывороточных белков с глубокой степенью гидролиза (около 60%) и ПС, активирует процессы образования устойчивой кислородной пены за счет образования так называемых интербиополимерных комплексов на основе сывороточных белков и ПС.
В таблице 3 представлены данные пищевой и энергетической ценности кислородных коктейлей с повышенной массовой долей белка животного происхождения в сравнении с кислородным коктейлем без гидролизата сывороточных белков.
Figure 00000004
Как видно из таблицы 3, энергетическая ценность кислородных коктейлей, обогащенных гидролизатом сывороточных белков, меняется незначительно, а содержание белка увеличивается от двух до четырех раз, по сравнению с кислородным коктейлем без гидролизата сывороточных белков. Это объясняется, во-первых, невысокой калорийностью белков. А, во-вторых, тем, что содержание наиболее емкой энергетической составляющей пищевой ценности - жира не меняется в аналоге (прототипе) и новом продукте.
Источники информации
1. Абрамов Д.В. Разработка ферментативных гидролизатов сывороточных белков молока - технологии, свойства и применение / Д.В. Абрамов, Ю.Я. Свириденко, Д.С. Мягконосов, Е.Г. Овчинникова, М.П. Кангин, Н.В. Кокарева // ГНУ ВНИИ маслоделия и сыроделия Россельхозакадемии [электронный ресурс] / Режим доступа: http://www.dairynews.ru/news/razrabotka-fermentativnvkh-gidrolizatov-syvorotoch.html
2. Королева О. В. Перспективы использования гидролизатов сывороточных белков в технологии кисломолочных продуктов / О.В. Королева, Е. Ю. Агаркова, С.Г. Ботина, И.В. Николаев, Н.В. Пономарева, Е.И. Мельникова, В.Д. Харитонов, А.Ю. Просеков, М.В. Крохмаль, И.В. Рожкова // Молочная промышленность. - 2013. - №7. - С. 66-68.
3. Королева, О. В. Функциональные свойства кисломолочных продуктов с гидролизатами сывороточных белков / О.В. Королева [и др.] // Молочная промышленность. - 2013. - №11. - С. 52-55.
4. Патент «Способ производства кислородных коктейлей» (РФ, №2422051), опубл. 27.06.2011, A23L 2/00.
5. «Патент Смесь для кислородного коктейля и способ приготовления кислородного коктейля» (РФ, №2150856) A23L 2/00, A23L 2/02, A23L 2/52, А61М 16/00.
6. Заявка на изобретение «Способ приготовления кислородного коктейля» (РФ №2010124368/13), опубл. 20.12.2011, A23L 2/00.
7. Патент «Способ получения кислородного коктейля» (РФ, №2539843), опубл. 27.01.2015 A23L 2/00.

Claims (5)

1. Способ получения кислородного коктейля, заключающийся в приготовлении основы коктейля, введении стабилизатора пены, смешивании его с основой коктейля, насыщении кислородом, отличающийся тем, что в качестве пенообразователя используют молочную сыворотку, обогащенную гидролизатом сывороточных белков с глубокой степенью гидролиза около 60% в количестве 2-6% от объема сыворотки с, по крайней мере, одним полисахаридом растительного происхождения, в качестве стабилизатора пены, при соотношении полисахарида к общему объему основы с гидролизатом сывороточных белков с глубокой степенью гидролиза около 60% 1:100-500, при этом предварительно готовят основу коктейля путем смешения молочной сыворотки и фруктово-ягодного сока в соотношении 2:1 или 3:1, осуществляют внесение в подготовленную основу гидролизата сывороточных белков в количестве 2-6% и полисахарида в количестве 0,1-0,5%, осуществляют набухание полисахарида и гидролизата сывороточных белков в основе совместно в виде смеси в течение 20-30 минут, осуществляют нагрев полученной смеси до 50-90°C и охлаждение до 23-25°C.
2. Способ получения кислородного коктейля по п. 1, отличающийся тем, что в качестве полисахарида используют высокоэтерифицированный пектин.
3. Способ получения кислородного коктейля по п. 1, отличающийся тем, что в качестве полисахарида используют камедь рожкового дерева при соотношении камеди рожкового дерева к белково-углеводной основе, обогащенной гидролизатом сывороточных белков с глубокой степенью гидролиза около 60% в количестве 2-6% от объема основы, 1:100-167.
4. Способ получения кислородного коктейля по п. 1, отличающийся тем, что в качестве полисахарида используют смесь камеди рожкового дерева и высокоэтерифицированного пектина при соотношении данной смеси к белково-углеводной основе, обогащенной гидролизатом сывороточных белков с глубокой степенью гидролиза около 60% в количестве 2-6% от объема основы, 1:167-250.
5. Способ получения кислородного коктейля по п. 4, отличающийся тем, что смесь камеди рожкового дерева и высокоэтерифицированного пектина используют в соотношении компонентов 1:1-2.
RU2015145381A 2015-10-21 2015-10-21 Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения RU2612317C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145381A RU2612317C1 (ru) 2015-10-21 2015-10-21 Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145381A RU2612317C1 (ru) 2015-10-21 2015-10-21 Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения

Publications (1)

Publication Number Publication Date
RU2612317C1 true RU2612317C1 (ru) 2017-03-06

Family

ID=58459295

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145381A RU2612317C1 (ru) 2015-10-21 2015-10-21 Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения

Country Status (1)

Country Link
RU (1) RU2612317C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708331C2 (ru) * 2018-04-02 2019-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина" (ФГБОУ ВО Вологодская ГМХА) Способ производства десерта функционального назначения
RU2723185C1 (ru) * 2020-01-27 2020-06-09 Евгений Анатольевич Кондрашкин Способ и устройство для приготовления кислородного коктейля

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2281466A1 (en) * 2009-07-01 2011-02-09 Andrey Nikolaevitch Kalinkin A method for preparing an oxygen enriched cocktail
RU2422051C1 (ru) * 2009-12-01 2011-06-27 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная технологическая академия" Способ производства кислородных коктейлей
RU2539843C1 (ru) * 2013-07-01 2015-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный аграрный университет имени Н.И. Вавилова" Способ получения кислородного коктейля

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2281466A1 (en) * 2009-07-01 2011-02-09 Andrey Nikolaevitch Kalinkin A method for preparing an oxygen enriched cocktail
RU2422051C1 (ru) * 2009-12-01 2011-06-27 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная технологическая академия" Способ производства кислородных коктейлей
RU2539843C1 (ru) * 2013-07-01 2015-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный аграрный университет имени Н.И. Вавилова" Способ получения кислородного коктейля

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708331C2 (ru) * 2018-04-02 2019-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодская государственная молочнохозяйственная академия имени Н.В. Верещагина" (ФГБОУ ВО Вологодская ГМХА) Способ производства десерта функционального назначения
RU2723185C1 (ru) * 2020-01-27 2020-06-09 Евгений Анатольевич Кондрашкин Способ и устройство для приготовления кислородного коктейля

Similar Documents

Publication Publication Date Title
CN102106495A (zh) 一种魔芋果冻粉及使用该魔芋果冻粉制作果冻的方法
CN104172353B (zh) 一种大鲵多肽饮品及其制备方法
CN103859415B (zh) 聚合乳清蛋白基人参皂甙微胶囊及其制备方法
TWI741975B (zh) 肌肉合成促進劑
AU2007268967A1 (en) Visceral fat accumulation inhibitor, and agent for promoting the increase in and/or inhibiting the decrease in blood adiponectin level
CN102090639B (zh) 一种海参阿胶多肽营养制品及其制备方法
CN103636790B (zh) 红枣枸杞花生仁牛奶及其制备方法
RU2612317C1 (ru) Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения
CN103859025B (zh) 人参皂甙微胶囊酸奶及其制备方法
CN104720069A (zh) 一种山药大枣维生素强化固体饮料及其制备方法
RU2521671C1 (ru) Композиция для получения диабетического мороженого
CN103431411A (zh) 一种便于婴幼儿服用的乳钙口腔速溶片及其生产方法
KR100871049B1 (ko) 글루코사민을 함유한 미세캡슐의 제조방법
CN106912519A (zh) 一种添加蛋白配料改良蛋糕品质的方法
RU2539843C1 (ru) Способ получения кислородного коктейля
JP5877605B2 (ja) エネルギー補給用ゲル状食品及びその製造方法
RU2541683C1 (ru) Фруктово-овощной молочный желейный десерт
CN112931618A (zh) 一种南瓜酸奶及制备方法
RU2708331C2 (ru) Способ производства десерта функционального назначения
CN110897157A (zh) 一种保健制剂、制备工艺及用途
RU2548458C1 (ru) Взбитый десерт (мусс фруктово-ягодный) и способ его получения
WO2001074171A1 (en) Method for manufacturing a cultured dairy product containing exogenously added protein
CN108741102A (zh) 一种补肾壮腰强身的复方小分子肽功能食品及其制备方法
RU2253272C1 (ru) Способ производства молочного напитка
RU2402926C1 (ru) Способ получения пищевого функционального продукта

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181022