RU2611136C2 - Компрессор, система для подвода уплотнительного газа и способ - Google Patents

Компрессор, система для подвода уплотнительного газа и способ Download PDF

Info

Publication number
RU2611136C2
RU2611136C2 RU2014141999A RU2014141999A RU2611136C2 RU 2611136 C2 RU2611136 C2 RU 2611136C2 RU 2014141999 A RU2014141999 A RU 2014141999A RU 2014141999 A RU2014141999 A RU 2014141999A RU 2611136 C2 RU2611136 C2 RU 2611136C2
Authority
RU
Russia
Prior art keywords
rotor shaft
gas
seal
distributor
turbomachine
Prior art date
Application number
RU2014141999A
Other languages
English (en)
Other versions
RU2014141999A (ru
Inventor
Леонардо БАЛЬДАССАРРЕ
Андреа БЕРНОККИ
Original Assignee
Нуово Пиньоне СРЛ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуово Пиньоне СРЛ filed Critical Нуово Пиньоне СРЛ
Publication of RU2014141999A publication Critical patent/RU2014141999A/ru
Application granted granted Critical
Publication of RU2611136C2 publication Critical patent/RU2611136C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • F04D29/124Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Система для подвода уплотнительного газа для торцевого уплотнения роторного вала турбомашины содержит канал для подведения уплотнительного газа к торцевому уплотнению и распределитель уплотнительного газа, предназначенный для приема по меньшей мере части указанного уплотнительного газа из канала. Распределитель имеет отверстия, предназначенные для распределения уплотнительного газа вокруг роторного вала во время остановки турбомашины, и эти отверстия расположены на цилиндрической поверхности и, в типичном случае, расположены со всех сторон указанного роторного вала, предпочтительно равномерно со всех его сторон. Изобретение направлено на более равномерное распределение тепла от уплотнительного газа внутри торцевого уплотнения. 3 н. и 12 з.п. ф-лы, 7 ил.

Description

Варианты выполнения раскрытого в данном документе изобретения, в целом, относятся к турбомашинам и, более конкретно, к подведению уплотнительного газа в торцевое уплотнение компрессора.
Компрессор является машиной, ускоряющей частицы технологической текучей среды, например газа, для увеличения, в итоге, ее давления за счет использования механической энергии. Компрессоры обычно используются в энергетических отраслях промышленности для создания, обработки, повторного введения и транспортировки различных газов. Среди различных компрессоров известны так называемые центробежные компрессоры, в которых механическая энергия воздействует в виде центробежного ускорения на поступающую в компрессор технологическую текучую среду, например, путем вращения центробежного рабочего колеса, обеспечивающего прохождение технологической текучей среды. В более общем смысле можно сказать, что центробежные компрессоры составляют часть класса машинного оборудования, известного как «турбомашины» или «ротационные турбомашины».
Во многих турбомашинах и, в частности, в центробежных компрессорах используются торцевые уплотнения вала, в которые может вводиться уплотнительный газ, например, для улучшения действия уплотнения, для создания препятствия утечке технологического газа. В настоящее время многие компрессоры выполняют с одним или более сухими газодинамическими уплотнениями, расположенными на любом или на обоих концах компрессора, для улучшения эксплуатационных качеств машины и уменьшения протечки технологической текучей среды. Например, и как показано на фиг. 1 и 2, компрессор 10 может содержать роторный вал 20, расположенный с возможностью вращения относительно статора 12. Между роторным валом 20 и статором 12 может быть расположено торцевое уплотнение вала, выполненное в виде сухого газодинамического уплотнения и обозначенное на фиг. 1 в целом номером 14 позиции. Сухое газодинамическое уплотнение 14 может содержать первичные и вторичные уплотнительные роторные кольца 26 и первичные и вторичные уплотнительные статорные кольца 28, каждое из которых поджато в направлении соответствующего одного из указанных первичных и вторичных роторных колец 26. В процессе работы компрессора 10 канавки (не показаны), расположенные в роторных кольцах 26 сухого газодинамического уплотнения и в его статорных кольцах 28, могут создавать гидродинамическую силу для создания рабочего зазора, выполняющего функцию бесконтактного уплотнения между указанными уплотнительными кольцами.
Уплотнительный газ, обычно профильтрованный технологический газ, может подаваться в сухое газодинамическое уплотнение для поддержания рабочего зазора и, в других отношениях, для улучшения эксплуатационных характеристик компрессора. Как показано на фиг. 1 и 2, уплотнительный газ может подводиться через отверстие 30 в статоре 12.
Во время работы компрессора 10 тепло, создаваемое в процессе сжатия, а также в других процессах, воздействию которых часто подвергается технологический газ, образуется в значительном количестве и может поглощаться уплотнительным (технологическим) газом. Помимо этого уплотнительный газ может дополнительно нагреваться специально предназначенным для этого устройством, таким как нагреватель или теплообменник, способствующим предотвращению или подавлению конденсации, которая может возникать во время расширения уплотнительного газа внутри сухого газодинамического уплотнения или до этого расширения. Таким образом, уплотнительный газ, поступающий в сухое газодинамическое уплотнение через отверстие 30, может иметь высокую температуру, например, относительно температуры окружающего воздуха и/или газа, уже присутствующего внутри уплотнения 14.
При временном отключении компрессора может продолжаться подведение этого уплотнительного газа к сухому газодинамическому уплотнению. Помимо этого в течение временного отключения компрессора температура уплотнительного газа может дополнительно повышаться вследствие поглощения остаточного тепла, например, от неподвижных компонентов компрессора.
Тепло в уплотнительном газе, непрерывно подаваемом к компрессору при его временном отключении, может вызвать неравномерный нагрев участка или участков вала 20, ближайших к уплотнению 14, т.е. температура одного или более участков вала 20 может отличаться от температуры соседних участков вала 20. Эти так называемые горячие точки потенциально являются проблематичными. Например, уплотнительный газ, поступающий в сухое газодинамическое уплотнение через отверстие 30, может ударяться о компоненты этого уплотнения, смежные с валом ротора компрессора, или, что еще хуже, непосредственно о поверхность самого вала ротора. В зависимости от определенных факторов, таких как скорость передачи тепла через компоненты сухого газодинамического уплотнения, смежные с роторным валом, расход уплотнительного газа, его температура и т.д., одна или более таких горячих точек может вызвать деформацию, например, изгиб, искажение и т.д., роторного вала. Во время последующего запуска компрессора может возникать вибрация во вращающемся сборочном узле вследствие деформации. Эта вибрация может иметь величину, достаточную, чтобы привести компрессор в состояние, близкое к повреждению, в частности, когда компрессор приближается к своей первой критической скорости. Такая вибрация может неизбежно приводить к одному или более дополнительным временным отключениям и повторным запускам компрессора, чтобы обеспечить возможность для рассеивания тепла от неравномерно нагретого вращающегося сборочного узла и уменьшения деформации. В серьезных случаях или в случае вибрации, способной вызвать повреждение компрессора, может потребоваться его полная остановка.
Соответственно, существует потребность в компрессоре и, более конкретно, в системе для подвода уплотнительного газа, которая равномерно распределяет тепло от уплотнительного газа внутри торцевого уплотнения, позволяет обеспечить более легкое повторное включение компрессора после временного отключения, предотвращает локализованное соударение горячего уплотнительного газа с роторным валом компрессора, предотвращает термическую деформацию роторного вала, обеспечивает техническое решение для небольшой модернизации, является менее дорогостоящим, сохраняет имеющийся вес, конфигурацию и способ работы компрессора и сухого газодинамического уплотнения, а также обеспечивает альтернативу для распределения тепла, являющегося следствием вращения вала компрессора.
В соответствии с примерным вариантом выполнения система для подвода уплотнительного газа для торцевого уплотнения роторного вала турбомашины содержит канал для подведения уплотнительного газа к торцевому уплотнению и распределитель уплотнительного газа, предназначенный для приема по меньшей мере части уплотнительного газа из указанного канала, при этом распределитель уплотнительного газа имеет отверстия для распределения уплотнительного газа вокруг роторного вала во время остановки турбомашины, которые расположены на цилиндрической поверхности, при этом распределитель создает вихревое движение в уплотнительном газе вокруг вала.
Отверстия в типичном случае расположены в окружном направлении.
Отверстия предпочтительно расположены со всех сторон вокруг роторного вала, предпочтительнее равномерно со всех его сторон.
В соответствии с другим примерным вариантом выполнения турбомашина содержит статор, роторный вал, расположенный с возможностью вращения относительно статора, торцевое уплотнение, расположенное между статором и ротором, канал для подведения уплотнительного газа к торцевому уплотнению и распределитель уплотнительного газа, предназначенный для приема по меньшей мере части уплотнительного газа из указанного канала и распределения уплотнительного газа вокруг роторного вала, причем указанный распределитель имеет отверстия, которые расположены на цилиндрической поверхности, при этом во время остановки турбомашины формируется вихревое движение уплотнительного газа вокруг вала в соответствии с расположением отверстий в уплотнении.
В типичном случае имеется резервуар для уплотнительного газа, проточно соединенный с распределителем уплотнительного газа.
Способ работы турбомашины, содержащей торцевое уплотнение роторного вала, может включать этапы подведения уплотнительного газа к торцевому уплотнению во время остановки турбомашины и распределения уплотнительного газа вокруг роторного вала через отверстия, расположенные со всех сторон вокруг указанного роторного вала, для предотвращения неравномерного нагревания роторного вала.
Предпочтительно, чтобы создать более сильное вихревое движение в уплотнительном газе вокруг вала, уплотнительный газ, выходящий по меньшей мере из нескольких, предпочтительно из всех отверстий, проводят с наклоном относительно соответствующего радиального направления, определенного относительно продольной оси указанного роторного вала.
Сопроводительные чертежи, включенные в данное описание и составляющие его часть, иллюстрируют один или более вариантов выполнения и совместно с описанием объясняют эти варианты выполнения. На чертежах:
фиг. 1 изображает частичный разрез компрессора;
фиг. 2 изображает часть компрессора, показанного на фиг. 1, с частичным вырезом;
фиг. 3 изображает частичный разрез компрессора в соответствии с иллюстративным вариантом выполнения;
фиг. 4 изображает частичный вид в аксонометрии распределителя компрессора, показанного на фиг. 3;
фиг. 5 изображает частичный разрез компрессора в соответствии с еще одним иллюстративным вариантом выполнения;
фиг. 6 изображает частичный вид в аксонометрии распределителя компрессора, показанного на фиг. 5;
фиг. 7 иллюстрирует способ в соответствии с иллюстративным вариантом выполнения.
Нижеследующее подробное описание иллюстративных вариантов выполнения приведено со ссылкой на сопроводительные чертежи. Одинаковыми номерами позиций на различных чертежах обозначены одинаковые или подобные элементы. Нижеследующее подробное описание не ограничивает данное изобретение. Вместо этого объем правовой охраны данного изобретения определен в прилагаемой формуле изобретения. Нижеследующие варианты выполнения рассмотрены для упрощения с использованием терминологии и конструкции, относящихся к турбомашинам. Однако обсуждаемые далее варианты выполнения не ограничиваются этими иллюстративными системами и могут быть использованы для других систем.
Ссылка в данном описании на «один вариант выполнения» или «вариант выполнения» означает, что конкретный признак, конструкция или характеристика, описанная в отношении одного варианта выполнения, включена по меньшей мере в один вариант выполнения рассматриваемого изобретения. Таким образом, формулировка «в одном варианте выполнения» или «в варианте выполнения» в различных местах описания не обязательно относится к одному и тому же варианту выполнения. Кроме того, конкретные признаки, конструкции или характеристики могут быть объединены любым подходящим способом в одном или более вариантах выполнения.
Фиг. 3 и 4 показывают иллюстративный вариант выполнения предложенной системы для подвода уплотнительного газа. В этом случае компрессор 110 содержит статор 112 с каналом для уплотнительного газа, проходящим через статор 112 к сухому газодинамическому уплотнению 114. Уплотнительный газ может подаваться через первичное отверстие 154 в статоре 112 к уплотнению 114.
Компрессор 110 дополнительно содержит лабиринтное уплотнение 158, расположенное вблизи уплотнения 114. Как показано на фиг. 3, лабиринтное уплотнение 158 выполнено с распределителем 140 в виде кольцевой части, проходящей от лабиринтного уплотнения 158. Распределитель 140 имеет множество отверстий 160 для ввода газа, расположенных на цилиндрической поверхности, в частности, они расположены в окружном направлении по одной окружности.
Как изложено выше, в течение временной остановки или холостого хода компрессора 110 может продолжаться подведение уплотнительного газа к уплотнению 114. По меньшей мере часть уплотнительного газа может поступать в распределитель 140 и выходить из него вокруг периферии роторного вала 120 через все отверстия 160 для ввода уплотнительного газа. Такой механизм действия может улучшить равномерное распределение уплотнительного газа вокруг вала с образованием вихревого движения или без него и тем самым препятствовать локализованному нагреванию вала 120.
Помимо этого распределитель 140 также может препятствовать соударению уплотнительного газа, выходящего из отверстия 154, непосредственно с валом 120. Например, как показано на фиг. 3, лабиринтное уплотнение 158 и сухое газодинамическое уплотнение 114 ограничивают полость 156, в которой поверхность вала 120 обращена непосредственно к уплотнительному газу. Поскольку распределитель 140 расположен между роторным валом 120 и выпускным отверстием 130, то происходит сдерживание или предотвращение непосредственного соударения потенциально горячего уплотнительного газа с этой поверхностью.
Как можно дополнительно понять из фиг. 4, отверстия 160 также могут быть выполнены для создания периферического вихревого движения уплотнительного газа внутри полости 156 для дополнительного содействия циркуляции газа и равномерному распределению тепла вокруг вала 120. Как показано на фиг. 4, каждое отверстие 160 может иметь ось 164, расположенную под углом 168 к радиальной линии 166, проходящей от продольной оси вала 120 через центр отверстия 160. Другими словами, поток уплотнительного газа, выпускаемый из отверстий 160, проходит с наклоном относительно соответствующего радиального направления, определенного относительно продольной оси роторного вала. Как вариант, угол 168 может изменяться между отверстиями распределителя 140, чтобы, например, создавать большую степень турбулентности, обеспечивающую равномерное нагревание вала 120 в полости 156.
Фиг. 5 и 6 показывают другой иллюстративный вариант выполнения. В этом случае система для подведения газа содержит канал 222 для уплотнительного газа, проходящий через статор 212 к отверстию 254. Уплотнительный газ, выходящий из отверстия 254, поступает в канавку 255, выполненную в статоре 212.
Рядом с выпускным отверстием 254 внутри канавки 255 расположен распределитель в форме дугообразного сегмента или полного цилиндра 240, имеющего концы 278. Распределитель 240 может быть закреплен внутри канавки 255 механическим способом, например, фрикционной посадкой или крепежным средством, или химическим способом, например, посредством связующего вещества, или сваркой. В варианте выполнения, показанном на фиг. 5 и 6, средняя точка распределителя 240 может быть расположена между выпускным отверстием 254 и роторным валом компрессора 210 для приема уплотнительного газа, выходящего из выпускного отверстия 254. Уплотнительный газ, выходящий из отверстия 254, сначала может быть отклонен и таким образом проведен вдоль канавки 255, например, по часовой стрелке и против часовой стрелки. Уплотнительный газ также может проходить через какое-либо из отверстий 276. При этом способе уплотнительный газ может распределяться вокруг роторного вала компрессора 210 с предотвращением или сдерживанием тем самым образования локализованного участка с высокой температурой на валу или около него в течение временного отключения компрессора 210. Распределитель 240 может быть выполнен внутри канавки 255 в процессе изготовления компрессора 210, т.е. в виде изначальной детали, или, как вариант, распределитель 240 может быть выполнен в виде дополнительно устанавливаемого компонента, вводимого в канавку 255 во время модернизации.
В варианте выполнения, показанном на фиг. 5 и 6, распределитель 240 показан в виде дугообразного сегмента с множеством отверстий 260, которые расположены на цилиндрической поверхности, в частности, они расположены кругообразно в соответствии с количеством (конкретнее пять) параллельных окружностей, при этом отверстия 260 расположены со всех сторон роторного вала. В соответствии с предпочтительным примером, показанным на фиг 6, отверстия расположены равномерно со всех сторон роторного вала. Однако распределитель 240 также может быть выполнен с другой конструкцией. Например, распределитель 240 может быть выполнен без отверстий 276, так что весь поступающий в распределитель 240 уплотнительный газ отклоняется вдоль канавки 255. В качестве другого примера распределитель 240 может быть выполнен в виде полного кольца или ряда сегментов кольца. Размер и форма отверстий 260 в распределителе 240 также могут изменяться. Например, если распределитель 240 выполнен в виде ряда сегментов кольца, то пространство между каждыми сегментами может ограничивать отверстия, посредством которых можно регулировать поток уплотнительного газа.
Таким образом, в соответствии с иллюстративным вариантом выполнения, как показано на блок-схеме, изображенной на фиг. 7, способ (1000) работы турбомашины, содержащей торцевое уплотнение на роторном валу, может включать этапы подведения (1002) уплотнительного газа к торцевому уплотнению во время остановки турбомашины и распределения (1004) уплотнительного газа вокруг роторного вала через отверстия, расположенные со всех сторон указанного роторного вала, для предотвращения неравномерного нагревания роторного вала.
Несмотря на то, что распределитель уплотнительного газа описан в качестве компонента компрессора, тем не менее, такой распределитель может быть выполнен в виде компонента самого торцевого уплотнения. Например, специалисту в данной области техники будет понятно, что система для подвода уплотнительного газа может быть выполнена так, что распределитель может быть встроен в держатель сухого газодинамического уплотнения.
В типичном случае уплотнительный газ поступает к распределителю из резервуара, являющегося частью турбомашины, и такой резервуар может быть маленьким или большим, но необязательно предназначенным только для содержания уплотнительного газа.
Предполагается, что вышеприведенные варианты выполнения данного изобретения во всех отношениях являются иллюстративными, а не ограничительными. Подразумевается, что все подобные изменения и модификации подпадают под объем правовой охраны данного изобретения, определенный в формуле изобретения. Ни один или одно из элементов, действий или указаний, используемых в описании, не должны быть истолкованы как важные или существенные для данного изобретения, если на это не будет прямо указано. Кроме того, подразумевается, что упоминание элементов в единственном числе распространяется на один или более элементов.

Claims (24)

1. Система для подвода уплотнительного газа для торцевого уплотнения роторного вала турбомашины, содержащая
канал для подведения уплотнительного газа к указанному торцевому уплотнению,
распределитель уплотнительного газа, предназначенный для приема по меньшей мере части уплотнительного газа из указанного канала и имеющий отверстия, предназначенные для распределения уплотнительного газа вокруг роторного вала во время остановки турбомашины,
причем указанные отверстия расположены на цилиндрической поверхности.
2. Система по п. 1, в которой указанные отверстия расположены в окружном направлении.
3. Система по п. 1, в которой указанные отверстия расположены со всех сторон указанного роторного вала, предпочтительно равномерно со всех его сторон.
4. Система по п. 1, в которой указанные отверстия расположены на расстоянии от периферической поверхности роторного вала.
5. Система по п. 1, в которой указанные отверстия расположены на расстоянии от продольной поверхности роторного вала.
6. Система по п. 1, в которой каждое из указанных отверстий имеет ось, расположенную под отличающимся от нуля углом относительно радиальной линии, проходящей от продольной оси роторного вала через центр указанного отверстия.
7. Система по п. 1, в которой вблизи торцевого уплотнения расположено лабиринтное уплотнение, при этом указанный распределитель содержит кольцевую часть, проходящую от указанного лабиринтного уплотнения.
8. Система по п. 1, в которой указанный распределитель содержит дугообразный сегмент или полный цилиндр.
9. Система по п. 1, в которой распределитель уплотнительного газа содержит кольцо.
10. Система по любому из пп. 1-9, в которой торцевое уплотнение является сухим газодинамическим уплотнением.
11. Турбомашина, содержащая
статор,
роторный вал, расположенный с возможностью вращения относительно статора,
торцевое уплотнение, расположенное между статором и ротором,
канал для подведения уплотнительного газа к торцевому уплотнению, и
распределитель уплотнительного газа, предназначенный для приема по меньшей мере части уплотнительного газа из указанного канала и распределения указанного уплотнительного газа вокруг роторного вала во время остановки турбомашины,
причем указанный распределитель имеет отверстия, которые расположены на цилиндрической поверхности.
12. Турбомашина по п. 11, содержащая систему для подвода уплотнительного газа по любому из пп. 1-10.
13. Турбомашина по п. 11 или 12, содержащая резервуар, предназначенный для уплотнительного газа и проточно соединенный с указанным распределителем.
14. Способ работы турбомашины, содержащей торцевое уплотнение на роторном валу, включающий подведение уплотнительного газа к указанному торцевому уплотнению во время остановки турбомашины и распределение указанного уплотнительного газа вокруг роторного вала через отверстия, расположенные со всех сторон вокруг указанного роторного вала, для предотвращения неравномерного нагревания роторного вала.
15. Способ по п. 14, в котором поток уплотнительного газа, выпускаемый по меньшей мере из нескольких отверстий, предпочтительно из всех, проводят с наклоном относительно соответствующего радиального направления, определенного относительно продольной оси роторного вала.
RU2014141999A 2012-04-27 2013-04-25 Компрессор, система для подвода уплотнительного газа и способ RU2611136C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITCO2012A000020 2012-04-27
IT000020A ITCO20120020A1 (it) 2012-04-27 2012-04-27 Compressore, alimentazione del gas di tenuta e metodo
PCT/EP2013/058663 WO2013160416A1 (en) 2012-04-27 2013-04-25 Compressor, seal gas delivery, and method

Publications (2)

Publication Number Publication Date
RU2014141999A RU2014141999A (ru) 2016-06-20
RU2611136C2 true RU2611136C2 (ru) 2017-02-21

Family

ID=46466641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014141999A RU2611136C2 (ru) 2012-04-27 2013-04-25 Компрессор, система для подвода уплотнительного газа и способ

Country Status (11)

Country Link
US (1) US20150118018A1 (ru)
EP (1) EP2841825B1 (ru)
JP (1) JP6266595B2 (ru)
KR (1) KR20150020274A (ru)
CN (1) CN104395653B (ru)
AU (1) AU2013254655A1 (ru)
CA (1) CA2870624A1 (ru)
IT (1) ITCO20120020A1 (ru)
MX (1) MX2014012988A (ru)
RU (1) RU2611136C2 (ru)
WO (1) WO2013160416A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011042A1 (de) * 2014-07-26 2016-01-28 Man Diesel & Turbo Se Strömungsmaschine
ITUB20152676A1 (it) * 2015-07-30 2017-01-30 Nuovo Pignone Tecnologie Srl Disposizione di raffreddamento di tenute a gas secco e metodo
DE102015013659A1 (de) * 2015-10-22 2017-04-27 Man Diesel & Turbo Se Trockengasdichtungssystem und Strömungsmaschine mit einem Trockengasdichtungssystem
US10577962B2 (en) * 2016-09-07 2020-03-03 General Electric Company Turbomachine temperature control system
US10563663B2 (en) 2018-04-06 2020-02-18 Solar Turbines Incorporated Nitrogen purge of compressor dry seal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH514804A (de) * 1970-04-09 1971-10-31 Buss Ag Einrichtung zur Abdichtung von Wellen-Durchführungen
CH585361A5 (ru) * 1975-06-10 1977-02-28 Bbc Brown Boveri & Cie
RU2172440C1 (ru) * 2000-03-13 2001-08-20 Тярасов Анатолий Кириллович Торцовое уплотнение вращающегося вала
EP2233802A2 (en) * 2009-03-24 2010-09-29 Hitachi Plant Technologies, Ltd. Shaft-seal device for a high-speed rotation apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52170704U (ru) * 1976-06-18 1977-12-24
JPS6223503A (ja) * 1985-07-22 1987-01-31 Mitsubishi Heavy Ind Ltd タ−ボ機械の軸シ−ル装置
US5217233A (en) * 1989-10-30 1993-06-08 John Crane Inc. Spiral groove seal system for sealing a high pressure gas
US5375853B1 (en) * 1992-09-18 1998-05-05 Crane John Inc Gas lubricated barrier seal
US5718560A (en) * 1995-12-29 1998-02-17 Sulzer Turbo Ag Turbocompressor for non-ideal process gases
US6330790B1 (en) * 1999-10-27 2001-12-18 Alliedsignal, Inc. Oil sump buffer seal
US6976679B2 (en) * 2003-11-07 2005-12-20 The Boeing Company Inter-fluid seal assembly and method therefor
US7600967B2 (en) * 2005-07-30 2009-10-13 United Technologies Corporation Stator assembly, module and method for forming a rotary machine
US7544039B1 (en) * 2006-06-14 2009-06-09 Florida Turbine Technologies, Inc. Dual spool shaft with intershaft seal
US7854584B2 (en) * 2007-05-24 2010-12-21 General Electric Company Barrier sealing system for centrifugal compressors
DE102009012038B4 (de) * 2009-03-10 2014-10-30 Siemens Aktiengesellschaft Wellendichtung für eine Strömungsmaschine
JP5535749B2 (ja) * 2010-04-28 2014-07-02 三菱重工業株式会社 ドライガスシール構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH514804A (de) * 1970-04-09 1971-10-31 Buss Ag Einrichtung zur Abdichtung von Wellen-Durchführungen
CH585361A5 (ru) * 1975-06-10 1977-02-28 Bbc Brown Boveri & Cie
RU2172440C1 (ru) * 2000-03-13 2001-08-20 Тярасов Анатолий Кириллович Торцовое уплотнение вращающегося вала
EP2233802A2 (en) * 2009-03-24 2010-09-29 Hitachi Plant Technologies, Ltd. Shaft-seal device for a high-speed rotation apparatus

Also Published As

Publication number Publication date
CA2870624A1 (en) 2013-10-31
US20150118018A1 (en) 2015-04-30
WO2013160416A1 (en) 2013-10-31
ITCO20120020A1 (it) 2013-10-28
JP2015520317A (ja) 2015-07-16
EP2841825B1 (en) 2020-05-27
JP6266595B2 (ja) 2018-01-24
KR20150020274A (ko) 2015-02-25
RU2014141999A (ru) 2016-06-20
MX2014012988A (es) 2015-01-26
AU2013254655A1 (en) 2014-10-30
CN104395653B (zh) 2017-05-24
CN104395653A (zh) 2015-03-04
EP2841825A1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
RU2611136C2 (ru) Компрессор, система для подвода уплотнительного газа и способ
JP6266197B2 (ja) タービンエンジンシール
RU2435039C2 (ru) Корпус для турбины, турбина, а также турбомашина, содержащая такую турбину
RU2633319C2 (ru) Крепление и уплотнение отражательных элементов кольца
US8444379B2 (en) Sealing device for rotary fluid machine, and rotary fluid machine
EP3159491B1 (en) Turbine's sealing assembly
JP2007303463A (ja) 蒸気タービン用可変隙間正圧パッキンのための引張ばねアクチュエータ
RU2678861C1 (ru) Устройство для газовой турбины
US20140348642A1 (en) Conjoined gas turbine interface seal
CN102918230A (zh) 带有用于防止喷嘴导流叶片组件的扇段在壳体内旋转的装置的涡轮机;防旋转栓
US10024434B2 (en) Shaft seal device and rotary machine
US10428673B2 (en) Aspirating face seal assembly and a method of operating the same
KR102272728B1 (ko) 증기 터빈 및 증기 터빈 조립 방법
CN108699915B (zh) 密封构造及涡轮机械
EP3159488B1 (en) Sealing assembly and corresponding turbine
US20160040542A1 (en) Cover plate for a rotor assembly of a gas turbine engine
KR20170140347A (ko) 시일 장치 및 회전 기계
JP7320075B2 (ja) 特に高温媒体に用いるメカニカルシール装置、及びポンプ装置
US20180171810A1 (en) Gas turbine
US9982783B2 (en) Aircraft gas turbine with a seal for sealing an igniter plug on the combustion chamber wall of a gas turbine
EP2527693B1 (en) Shaft sealing structure and rotary fluid machine
JP2017160861A (ja) ターボ機械
JP6554713B2 (ja) ブラシシールアセンブリ
JP5892880B2 (ja) 回転機械のシール構造及び回転機械
US10060534B2 (en) Sealing structure for turbine