RU2606508C2 - Способ получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы - Google Patents
Способ получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы Download PDFInfo
- Publication number
- RU2606508C2 RU2606508C2 RU2015102090A RU2015102090A RU2606508C2 RU 2606508 C2 RU2606508 C2 RU 2606508C2 RU 2015102090 A RU2015102090 A RU 2015102090A RU 2015102090 A RU2015102090 A RU 2015102090A RU 2606508 C2 RU2606508 C2 RU 2606508C2
- Authority
- RU
- Russia
- Prior art keywords
- gas
- hydrogen
- fischer
- synthesis
- vol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0495—Composition of the impurity the impurity being water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1618—Modification of synthesis gas composition, e.g. to meet some criteria
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1659—Conversion of synthesis gas to chemicals to liquid hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
- Y02T50/678—Aviation using fuels of non-fossil origin
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к способу получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы. В способе осуществляют стадии: 1) смешивание сырого синтез-газа, полученного в газификаторе биомассы, с насыщенным водородом газом, где объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,7 и 2,1; 2) подачу газообразной смеси, полученной на стадии 1), на установку дегидратации для удаления влаги, углекислого газа и других вредных примесей, содержащихся в газе, получение синтез-газа, удовлетворяющего требованиям реакции синтеза Фишера-Тропша; 3) реагирование синтез-газа, полученного на стадии 2) в реакторе синтеза Фишера-Тропша, где синтез осуществляют в присутствии катализатора с целью производства жидкого углеводородного продукта при температуре от 150°C до 300°C и давлении от 2 до 4 МПа, осуществляют отведение воды, произведенной в синтезе, 4) возвращают от 70 об.% до 95 об.% отработанных газов, произведенных на стадии 3), на стадию 3) для смешивания с синтез-газом и подачу газовой смеси в реактор синтеза Фишера-Тропша. Технический результат – уменьшение количества углекислого газа по сравнению с известными способами. 9 з.п. ф-лы, 1 табл., 1 ил., 7 пр.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Изобретение относится к способу получения жидких углеводородных продуктов из синтез-газа биомассы, а более конкретно к улучшенному способу синтеза Фишера-Тропша для получения жидких углеводородных продуктов из синтез-газа биомассы, который относится к области приготовления жидких углеводородных продуктов с использованием синтеза Фишера-Тропша.
УРОВЕНЬ ТЕХНИКИ
[0002] Синтез Фишера-Тропша является процессом преобразования горючих ископаемых, таких как уголь и природный газ, или возобновляемых источников энергии, таких как биомасса, в синтез-газ, после чего производят жидкие углеводородные продукты с использованием синтез-газа в присутствии катализатора. Процесс играет важную роль в снижении зависимости от энергии нефти и производства химических веществ.
[0003] В установке для синтеза Фишера-Тропша сырой синтез-газ сначала подвергают риформингу посредством реакции конверсии водяного газа, а затем углекислый газ удаляют из сырого синтез-газа.
[0004] Китайская заявка на патент № CN 1354779 A и CN 1761734 A обе раскрывают способ синтеза Фишера-Тропша производства жидких углеводородов, однако в данном случае сырой синтез-газ имеет низкое отношение водорода к углероду.
[0005] Китайская заявка на патент CN 200610140020.4 раскрывает двухстадийный способ синтеза Фишера-Тропша. Углекислый газ в отработанных газах сначала удаляют с помощью способа щелочной промывки. Обработанные отработанные газы смешивают с сырым газом, подвергают риформингу посредством реакции конверсии водяного газа, обезуглероживают и транспортируют к установке синтеза Фишера-Тропша.
[0006] Китайская заявка на патент № CN 200310108146.X раскрывает двухстадийный способ синтеза Фишера-Тропша. Инертный газ, произведенный в первичной установке синтеза Фишера-Тропша, накапливается во вторичной установке синтеза Фишера-Тропша, так что выход отработанных газов из вторичной установки синтеза Фишера-Тропша должен быть увеличен, тем самым снижается экономическая эффективность всей системы. Кроме того, сырой синтез-газ имеет низкое отношение водорода к углероду.
[0007] Китайская заявка на патент № CN 101979468 A раскрывает то, что отработанные газы сначала обрабатывают с помощью установки риформинга углекислого газа. Насыщенные метаном неконденсируемые отработанные газы смешиваются и вступают в реакцию с углекислым газом с образованием синтез-газа. Синтез-газ транспортируется обратно и смешивается с необработанным газом, подвергается риформингу посредством реакции конверсии водяного газа для регулирования отношения водорода к углероду, а затем углекислый газ удаляется.
[0008] В общем, процедура риформинга является общепринятой стадией в способе синтеза Фишера-Тропша. Если объем обработки в процедуре риформинга может быть снижен, экономическая эффективность системы будет увеличиваться, а выбросы углекислого газа будут значительно сокращены. Кроме того, биомасса имеет низкую энергетическую плотность и ограниченный диапазон по сбору. Процедура риформинга приводит к потере углерода, который ограничивает производственную мощность установок по производству топлива из биомассы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0009] С учетом приведенных выше проблем, одна задача изобретения - предоставить способ приготовления жидкого углеводородного продукта из синтез-газа биомассы, который отличается высокой эффективностью, простотой и низкой себестоимостью. Способ не предполагает реакцию конверсии водяного газа, поэтому он имеет упрощенный процесс, и выбросы углекислого газа значительно снижаются.
[0010] Для достижения вышеуказанной задачи, в соответствии с одним из вариантов осуществления изобретения, предложен способ получения жидкого углеводородного продукта из синтез-газа биомассы, причем способ содержит:
[0011] 1) смешивание сырого синтез-газа из газификатора биомассы и газа, насыщенного (обогащенного) водородом, с целью производства смешанного газа, в котором объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,7 и 2,1;
[0012] 2) дегидратацию и обезуглероживание (декарбонизация) смешанного газа для удаления влаги, углекислого газа и примесей с целью производства синтез-газа высокого качества;
[0013] 3) подачу синтез-газа высокого качества на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в присутствии катализатора, регулирование температуры реакции синтеза Фишера-Тропша на уровне между 150 и 300°С и давления реакции между 2 и 4 МПа (А) с целью производства жидкого углеводородного продукта и воды, которую отводят из установки синтеза Фишера-Тропша; и
[0014] 4) возвращение 70-95% об. отработанных газов из установки синтеза Фишера-Тропша на стадию 3) для смешивания с синтез-газом высокого качества и подачу конечного смешанного газа на установку синтеза Фишера-Тропша.
[0015] В рамках этого варианта осуществления, на стадии 1) насыщенный водородом газ содержит 60-99% об. водорода.
[0016] В рамках этого варианта осуществления, на стадии 3) синтез-газ высокого качества имеет объемное соотношение Н2/СО между 1,8 и 3,0 и содержит 50-99% об. эффективных компонентов H2+CO.
[0017] В рамках этого варианта осуществления, на стадии 3) синтез-газ высокого качества имеет объемное соотношение Н2/СО между 2 и 2,5 и содержит 80-99% об. эффективных компонентов H2+CO.
[0018] В рамках этого варианта осуществления, на стадии 1) объемное соотношение обогащенного водородом газа к сырому синтез-газу находится между 0,7:1 и 1,34:1, и обогащенный водородом газ содержит 70-99% об. водорода.
[0019] В рамках этого варианта осуществления, на стадии 1) объемное соотношение обогащенного водородом газа к необработанному синтез-газу находится между 0,96:1 и 1,1:1, и обогащенный водородом газ содержит 80-90% об. водорода.
[0020] В рамках этого варианта осуществления, на стадии 3) температура реакции синтеза Фишера-Тропша находится между 180 и 230°С, а давление реакции находится между 2 и 2,5 МПа (А).
[0021] В рамках этого варианта осуществления, на стадии 3) часть отработанных газов используют для сжигания с целью производства электроэнергии или с целью обеспечения нагревания.
[0022] В рамках этого варианта осуществления, на стадии 1) объемное отношение обогащенного водородом газа к сырому синтез-газу составляет 0,96:1, и обогащенный водородом газ содержит 90% об. водорода; на стадии 3) температура реакции синтеза Фишера-Тропша составляет 200°С и давление реакции составляет 2,5 МПа (А); синтез-газ высокого качества имеет объемное соотношение Н2/СО, равное 2,15, и содержит 90% об. эффективных компонентов H2+CO.
[0023] В рамках этого варианта осуществления, на стадии 1) объемное соотношение обогащенного водородом газа к сырому синтез-газу составляет 1,1:1 и обогащенный водородом газ содержит 80% об. водорода; на стадии 3) температура реакции синтеза Фишера-Тропша составляет 190°С и давление реакции составляет 2,2 МПа (А); сырой синтез-газ имеет объемное соотношение Н2/СО, равное 2,2, и содержит 84% об. эффективных компонентов Н2+СО.
[0024] Преимущества в соответствии с вариантами осуществления изобретения заключаются в следующем:
[0025] 1. Изобретение использует богатый водородом газ, чтобы улучшить низкое соотношение водород/углерод синтез-газа биомассы, при этом нет необходимости использования реакции конверсии водяного газа. Углекислый газ удаляют из конечного смешанного газа, тем самым получая синтез-газ высокого качества. Таким образом, эффективность биомассы по углероду улучшается, а эффективность производства системы повышается.
[0026] 2. Производственный процесс упрощается, тем самым экономя капиталовложения и потребление энергии.
[0027] 3. Отработанные газы используются для сжигания с целью производства электроэнергии или обеспечения нагрева, что обеспечивает высокую эффективность использования ресурсов биомассы и сокращает выбросы CO2.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0028] Фиг. 1 является блок-схемой операций способа приготовления жидкого углеводородного продукта из синтез-газа биомассы.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0029] Фиг. 1 является блок-схемой операций способа приготовления жидкого углеводородного продукта из синтез-газа биомассы.
[0030] Способ приготовления жидкого углеводородного продукта из синтез-газа биомассы содержит:
[0031] 1) смешивание сырого синтез-газа из газификатора биомассы и богатого водородом газа с целью производства смешанного газа, где объемное отношение богатого водородом газа к сырому синтез-газу находится между 0,7 и 2,1, предпочтительно между 1,1 и 1,7;
[0032] 2) дегидратацию и обезуглероживание смешанного газа для удаления влаги, углекислого газа и примесей с целью производства синтез-газа высокого качества;
[0033] 3) подачу синтез-газа высокого качества на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в присутствии катализатора с целью производства жидкого углеводородного продукта и воды, которую отводят с установки синтеза Фишера-Тропша; и
[0034] 4) возвращение 70-95% об. отработанных газов с установки синтеза Фишера-Тропша на стадию 3) для смешивания с сырым синтез-газом и подачу конечного смешанного газа на установку синтеза Фишера-Тропша.
[0035] На стадии 1) обогащенный водородом газ содержит 60-99% об. водорода, предпочтительно, 77-84% об.
[0036] На стадии 3) синтез-газ высокого качества имеет объемное соотношение Н2/СО между 1,8 и 3,0 и содержит 50-99% об. эффективных компонентов Н2+СО.
[0037] Предпочтительно, когда на стадии 3) синтез-газ высокого качества имеет объемное соотношение Н2/СО между 2 и 2,5 и содержит 80-99% об. эффективных компонентов Н2+СО.
[0038] Температура реакции синтеза Фишера-Тропша находится между 150 и 300°С и давление реакции находится между 2 и 4 МПа (А). Катализатор является катализатором на основе Fe или на основе Со и реактор является реактором с неподвижным слоем, с псевдоожиженным слоем, с циркулирующим псевдоожиженным слоем или с трехфазным псевдоожиженным слоем.
[0039] На стадии 3) часть отработанных газов используется для сжигания с целью производства электроэнергии или с целью обеспечения нагревания. Тепловая энергия или произведенная электроэнергия направляется в локальные зоны или прилегающие зоны, чтобы обеспечить питание привода для турбин внутреннего сгорания или паровых турбин.
[0040] Обогащенный водородом газ - газ с заводов по производству удобрений, нефтехимических заводов, водно-электролитных установок или с других установок по производству водорода.
[0041] На стадии 1) объемное соотношение водород/окись углерода сырого синтез-газа составляет 0,1-2. Если в газификаторе отсутствует влага, объемное соотношение во многих случаях составляет 0,1-1.
[0042] На стадии 2) примеси содержат сульфиды, оксинитриды, соединения металлов или другие соединения, которые могут дезактивировать или понизить активность катализаторов.
[0043] Рециркулируемые отработанные газы представляют собой смесь, содержащую синтез-газ, инертный газ и углеводороды, которые отводят с установки синтеза Фишера-Тропша, и возвращают на синтез Фишера-Тропша посредством оборудования с наддувом.
[0044] Жидкий углеводородный продукт на стадии 3) содержит нафту, дизельное топливо, парафин Фишера-Тропша, который может быть дополнительно обработан с целью синтеза дизельного топлива, авиационного керосина, этилена, пропилена.
Пример 1
[0045] Газификатор биомассы производит сырой синтез-газ с производительностью 4000 нм3/ч. Компоненты сырого синтез-газа приведены в Таблице 1. Объемное соотношение водород/окись углерода составляет 0,39.
[0046] Условия реакции синтеза Фишера-Тропша заданы следующим образом:
[0047] 1) Объемное отношение богатого водородом газа к сырому синтез-газу составляет 1,7:1, и обогащенный водородом газ содержит 60% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0048] 2) Температура реакции синтеза Фишера-Тропша составляет 180°С.
[0049] 3) Давление реакции синтеза Фишера-Тропша составляет 2,0 МПа (А).
[0050] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0051] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 2,5, и содержит 65% об. эффективных компонентов Н2+СО;
78% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0052] 2) Производительность жидкого углеводорода составляет 805 кг в час;
[0053] 3) Углекислый газ в количестве 2,3 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 77% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 2
[0054] Применяемый сырой синтез-газ является таким же, как в Примере 1. Условия реакции синтеза Фишера-Тропша заданы следующим образом:
[0055] 1) Объемное отношение богатого водородом газа к сырому синтез-газу составляет 1,34:1 и обогащенный водородом газ содержит 70% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0056] 2) Температура реакции синтеза Фишера-Тропша составляет 220°С.
[0057] 3) Давление реакции синтеза Фишера-Тропша составляет 3,5 МПа (А).
[0058] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0059] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 2,3, и содержит 77% об. эффективных компонентов Н2+СО;
82% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0060] 2) Производительность жидкого углеводорода составляет 844 кг в час;
[0061] 3) Углекислый газ в количестве 2,2 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 80% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 3
[0062] 1) Объемное отношение богатого водородом газа к сырому синтез-газу составляет 1,1:1, и обогащенный водородом газ содержит 8 0% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0063] 2) Температура реакции синтеза Фишера-Тропша составляет 190°С.
[0064] 3) Давление реакции синтеза Фишера-Тропша составляет 2,2 МПа (А).
[0065] На основании приведенных выше заданных условий реакции, основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0066] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 2,2, и содержит 8 4% об. эффективных компонентов Н2+СО;
87% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0067] 2) Производительность жидкого углеводорода составляет 880 кг в час.
[0068] 3) Углекислый газ в количестве 2,14 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 79% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 4
[0069] 1) Объемное соотношение богатого водородом газа к сырому синтез-газу составляет 0,96:1, и обогащенный водородом газ содержит 90% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0070] 2) Температура реакции синтеза Фишера-Тропша составляет 200°С.
[0071] 3) Давление реакции синтеза Фишера-Тропша составляет 2,5 МПа (А).
[0072] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0073] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 2,15, и содержит 90% об. эффективных компонентов Н2+СО.
90% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0074] 2) Производительность жидкого углеводорода составляет 914 кг в час.
[0075] 3) Углекислый газ в количестве 2,06 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 79% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 5
[0076] 1) Объемное соотношение богатого водородом газа к сырому синтез-газу составляет 0,9:1, и обогащенный водородом газ содержит 99% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0077] 2) Температура реакции синтеза Фишера-Тропша составляет 230°С.
[0078] 3) Давление реакции синтеза Фишера-Тропша составляет 3,0 МПа (А).
[0079] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0080] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 2, и содержит 94% об. эффективных компонентов Н2+СО;
93% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша;
[0081] 2) Производительность жидкого углеводорода составляет 94 6 кг в час;
[0082] 3) Углекислый газ в количестве 1,99 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 80% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 6
[0083] 1) Объемное соотношение богатого водородом газа к сырому синтез-газу составляет 0,7:1, и обогащенный водородом газ содержит 99% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0084] 2) Температура реакции синтеза Фишера-Тропша составляет 250°С.
[0085] 3) Давление реакции синтеза Фишера-Тропша составляет 3, 2 МПа (А).
[0086] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа формулируют следующим образом:
[0087] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 1,8, и содержит 96% об. эффективных компонентов Н2+СО;
95% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0088] 2) Производительность жидкого углеводорода составляет 963 кг в час.
[0089] 3) Углекислый газ в количестве 1,9 тонн подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 82% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Пример 7
[0090] 1) Объемное соотношение богатого водородом газа к сырому синтез-газу составляет 2,1:1, и обогащенный водородом газ содержит 60% об. водорода.
Сырой синтез-газ подвергают дегидратации вплоть до 0% посредством установки для дегидратации.
Также, сырой газ синтез-газ подвергают обезуглероживанию в установке обезуглероживания, причем эффективность удаления достигает 99% после того, как синтез-газ был обработан в установке обезуглероживания.
[0091] 2) Температура реакции синтеза Фишера-Тропша составляет 190°С.
[0092] 3) Давление реакции синтеза Фишера-Тропша составляет 2,3 МПа (А).
[0093] На основании приведенных выше заданных условий реакции основные материально-технические данные и параметры работы способа резюмируют следующим образом:
[0094] 1) Синтез-газ высокого качества для синтеза Фишера-Тропша имеет объемное соотношение Н2/СО, равное 3,0, и содержит 66% об. эффективных компонентов Н2+СО;
75% отработанных газов с реакции Фишера-Тропша используют в качестве рециркулируемого газа и возвращают в реактор для синтеза Фишера-Тропша.
[0095] 2) Производительность жидкого углеводорода составляет 780 кг в час.
[0096] 3) Углекислый газ в количестве 2,4 тонны подают для производства каждой тонны жидкого углеводорода, количество углекислого газа уменьшается на 84% по сравнению с обычными способами, внедряющими реакцию конверсии водяного газа при тех же рабочих условиях.
Claims (14)
1. Способ получения жидкого углеводородного продукта из синтез-газа биомассы, включающий:
1) смешивание сырого синтез-газа из газификатора биомассы и насыщенного водородом газа с целью производства смешанного газа, в котором объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,7 и 2,1;
2) дегидратацию и обезуглероживание смешанного газа для удаления влаги, углекислого газа и примесей с целью производства синтез-газа высокого качества;
3) подачу синтез-газа высокого качества на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в присутствии катализатора, регулирование температуры реакции синтеза Фишера-Тропша на уровне между 150 и 300˚С и давления реакции между 2 и 4 МПа (А) с целью производства жидкого углеводородного продукта и воды, которую отводят с установки синтеза Фишера-Тропша; и
4) возвращение 70-95 об.% отработанных газов с установки синтеза Фишера-Тропша на стадию 3) для смешивания с синтез-газом высокого качества и подачу конечного смешанного газа на установку синтеза Фишера-Тропша.
2. Способ по п. 1, отличающийся тем, что на стадии 1) насыщенный водородом газ содержит 60-99 об.% водорода.
3. Способ по п. 1 или 2, отличающийся тем, что на стадии 3) синтез-газ высокого качества имеет объемное соотношение H2/CO между 1,8 и 3,0 и содержит 50-99 об.% эффективных компонентов H2+CO.
4. Способ по п. 1 или 2, отличающийся тем, что на стадии 3) синтез-газ высокого качества имеет объемное соотношение H2/CO между 2 и 2,5 и содержит 80-99 об.% эффективных компонентов H2+CO.
5. Способ по п. 1 или 2, отличающийся тем, что на стадии 1) объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,7:1 и 1,34:1, и насыщенный водородом газ содержит 70-99 об.% водорода.
6. Способ по п. 1 или 2, отличающийся тем, что на стадии 1) объемное отношение насыщенного водородом газа к сырому синтез-газу находится между 0,96:1 и 1,1:1, и насыщенный водородом газ содержит 80-90 об.% водорода.
7. Способ по п. 1 или 2, отличающийся тем, что на стадии 3) температура реакции синтеза Фишера-Тропша находится между 180 и 230˚С, а давление реакции находится между 2 и 2,5 МПа (А).
8. Способ по п. 1 или 2, отличающийся тем, что на стадии 3) часть отработанных газов используется для сжигания с целью производства электроэнергии или обеспечения нагревания.
9. Способ по п. 1 или 2, отличающийся тем, что на стадии 1) объемное отношение насыщенного водородом газа к сырому синтез-газу составляет 0,96:1, и насыщенный водородом газ содержит 90 об.% водорода; на стадии 3) температура реакции синтеза Фишера-Тропша составляет 200˚C и давление реакции составляет 2,5 МПа (А); синтез-газ высокого качества имеет объемное соотношение H2/CO, равное 2,15, и содержит 90 об.% эффективных компонентов H2+CO.
10. Способ по п. 1 или 2, отличающийся тем, что на стадии 1) объемное отношение насыщенного водородом газа к сырому синтез-газу составляет 1,1:1, и насыщенный водородом газ содержит 80 об.% водорода; на стадии 3) температура реакции синтеза Фишера-Тропша составляет 190˚С и давление реакции составляет 2,2 МПа (А); синтез-газ высокого качества имеет объемное соотношение H2/CO, равное 2,2, и содержит 84 об.% эффективных компонентов H2+CO.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210212941.2 | 2012-06-26 | ||
CN201210212941.2A CN102703107B (zh) | 2012-06-26 | 2012-06-26 | 一种由生物质生产的合成气制造液态烃产品的方法 |
PCT/CN2013/074726 WO2014000503A1 (zh) | 2012-06-26 | 2013-04-25 | 一种由生物质生产的合成气制造液态烃产品的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015102090A RU2015102090A (ru) | 2016-08-20 |
RU2606508C2 true RU2606508C2 (ru) | 2017-01-10 |
Family
ID=46896167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015102090A RU2606508C2 (ru) | 2012-06-26 | 2013-04-25 | Способ получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы |
Country Status (5)
Country | Link |
---|---|
US (1) | US9255225B2 (ru) |
EP (1) | EP2865732A4 (ru) |
CN (1) | CN102703107B (ru) |
RU (1) | RU2606508C2 (ru) |
WO (1) | WO2014000503A1 (ru) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703107B (zh) * | 2012-06-26 | 2015-04-01 | 武汉凯迪工程技术研究总院有限公司 | 一种由生物质生产的合成气制造液态烃产品的方法 |
KR20160087618A (ko) * | 2015-01-14 | 2016-07-22 | 한화토탈 주식회사 | 폴리프로필렌 수지 조성물 |
CN105295986B (zh) * | 2015-10-13 | 2017-05-03 | 武汉凯迪工程技术研究总院有限公司 | 生物质制造液态烃产品的装置及工艺 |
CN108361734A (zh) * | 2018-02-10 | 2018-08-03 | 山东省环能设计院股份有限公司 | 沼气天然气混合燃烧发电系统 |
GB2572409A (en) * | 2018-03-29 | 2019-10-02 | Hurudza Munyaradzi Mkushi George | Methods and systems of upgrading syngas via CO² recovery |
MX2021009137A (es) * | 2019-01-30 | 2021-09-10 | Greenfield Global Inc | Un proceso para producir turbosina sintetica. |
GB2586867A (en) * | 2019-09-06 | 2021-03-10 | English Michael | Process for producing one or more hydrocarbon products |
GB2593231B (en) | 2020-03-17 | 2022-03-23 | Velocys Tech Limited | Process |
CN114023176B (zh) * | 2021-11-03 | 2024-11-01 | 杭州吉幔铁氢能科技有限公司 | 地球深处石油生成原理的科学演示装置及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA001723B1 (ru) * | 1998-07-27 | 2001-08-27 | Институт Катализа Им. Г.К.Борескова Сибирского Отделения Ран | Способ получения моторных топлив из углеродсодержащего сырья |
RU2247701C2 (ru) * | 1999-12-09 | 2005-03-10 | Статоил Аса И Энд К Ир Пат | Способ превращения природного газа в высшие углеводороды |
RU2316530C2 (ru) * | 2002-06-05 | 2008-02-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ получения углеводородов из газообразного углеводородного сырья |
RU2342355C2 (ru) * | 2003-05-16 | 2008-12-27 | Сэсол Текнолоджи (Проприетери) Лимитед | Способ получения жидких и газообразных продуктов из газообразных реагентов |
RU2375407C2 (ru) * | 2008-02-04 | 2009-12-10 | Закрытое Акционерное Общество "Сибирская Технологическая Компания "Цеосит" | Способ переработки смеси водорода и оксидов углерода (варианты) |
CN102026911A (zh) * | 2008-03-12 | 2011-04-20 | 沙索技术有限公司 | 烃类合成 |
WO2011141635A1 (en) * | 2010-05-10 | 2011-11-17 | Neste Oil Oyj | Method of producing a hydrocarbon composition |
RU2010121237A (ru) * | 2007-07-20 | 2011-12-10 | ЮПМ-Киммене ОЙЙ (FI) | Способ и устройство для получения жидкого биотоплива из твердой биомассы |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306917B1 (en) * | 1998-12-16 | 2001-10-23 | Rentech, Inc. | Processes for the production of hydrocarbons, power and carbon dioxide from carbon-containing materials |
EA002794B1 (ru) | 1999-04-06 | 2002-10-31 | Сэсол Текнолоджи (Пти) Лтд. | Способ получения синтетического бензинового топлива и бензиновое топливо, полученное таким способом |
CN1167650C (zh) * | 2000-07-17 | 2004-09-22 | 中国科学院山西煤炭化学研究所 | 一种由合成气合成烃的生产方法 |
US20030083390A1 (en) * | 2001-10-23 | 2003-05-01 | Shah Lalit S. | Fischer-tropsch tail-gas utilization |
US6846404B2 (en) * | 2002-04-09 | 2005-01-25 | Chevron U.S.A. Inc. | Reducing CO2 levels in CO2-rich natural gases converted into liquid fuels |
DE602004031423D1 (de) | 2003-07-04 | 2011-03-31 | Shell Int Research | Verfahren zur herstellung eines fischer-tropsch-produkts |
FI20085400A0 (fi) * | 2007-11-09 | 2008-04-30 | Upm Kymmene Oyj | Menetelmä jäteveden integroidulle käsittelylle |
CN102041019B (zh) * | 2009-10-22 | 2013-06-26 | 中国石油化工股份有限公司 | 一种煤制油联产代用天然气的方法 |
CN101979468A (zh) * | 2010-11-11 | 2011-02-23 | 中国科学院山西煤炭化学研究所 | 一种低碳排放的费托合成反应工艺 |
CN102703107B (zh) * | 2012-06-26 | 2015-04-01 | 武汉凯迪工程技术研究总院有限公司 | 一种由生物质生产的合成气制造液态烃产品的方法 |
-
2012
- 2012-06-26 CN CN201210212941.2A patent/CN102703107B/zh active Active
-
2013
- 2013-04-25 WO PCT/CN2013/074726 patent/WO2014000503A1/zh unknown
- 2013-04-25 EP EP13810698.4A patent/EP2865732A4/en not_active Ceased
- 2013-04-25 RU RU2015102090A patent/RU2606508C2/ru not_active IP Right Cessation
-
2014
- 2014-12-14 US US14/569,774 patent/US9255225B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA001723B1 (ru) * | 1998-07-27 | 2001-08-27 | Институт Катализа Им. Г.К.Борескова Сибирского Отделения Ран | Способ получения моторных топлив из углеродсодержащего сырья |
RU2247701C2 (ru) * | 1999-12-09 | 2005-03-10 | Статоил Аса И Энд К Ир Пат | Способ превращения природного газа в высшие углеводороды |
RU2316530C2 (ru) * | 2002-06-05 | 2008-02-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ получения углеводородов из газообразного углеводородного сырья |
RU2342355C2 (ru) * | 2003-05-16 | 2008-12-27 | Сэсол Текнолоджи (Проприетери) Лимитед | Способ получения жидких и газообразных продуктов из газообразных реагентов |
RU2010121237A (ru) * | 2007-07-20 | 2011-12-10 | ЮПМ-Киммене ОЙЙ (FI) | Способ и устройство для получения жидкого биотоплива из твердой биомассы |
RU2375407C2 (ru) * | 2008-02-04 | 2009-12-10 | Закрытое Акционерное Общество "Сибирская Технологическая Компания "Цеосит" | Способ переработки смеси водорода и оксидов углерода (варианты) |
CN102026911A (zh) * | 2008-03-12 | 2011-04-20 | 沙索技术有限公司 | 烃类合成 |
WO2011141635A1 (en) * | 2010-05-10 | 2011-11-17 | Neste Oil Oyj | Method of producing a hydrocarbon composition |
Also Published As
Publication number | Publication date |
---|---|
US9255225B2 (en) | 2016-02-09 |
EP2865732A4 (en) | 2016-03-09 |
WO2014000503A1 (zh) | 2014-01-03 |
CN102703107B (zh) | 2015-04-01 |
CN102703107A (zh) | 2012-10-03 |
EP2865732A1 (en) | 2015-04-29 |
US20150099814A1 (en) | 2015-04-09 |
RU2015102090A (ru) | 2016-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2606508C2 (ru) | Способ получения жидкого углеводородного продукта из синтез-газа, полученного из биомассы | |
RU2608406C2 (ru) | Процесс использования в полном объеме остаточного газа синтеза фишера-тропша с низким выделением углерода | |
RU2594723C2 (ru) | Способ синтеза фишера-тропша и способ применения отработанных газов | |
Ptasinski | Thermodynamic efficiency of biomass gasification and biofuels conversion | |
US20190337876A1 (en) | Integrated system and method for producing methanol product | |
CN102517108A (zh) | 一种利用焦炉气制液化天然气联产液氨的工艺 | |
CN103497840B (zh) | 一种焦化行业废弃油综合利用的方法 | |
CN101918305A (zh) | 利用甲醇生产氢气和燃料,生产氢气和燃料的方法及设备 | |
CN104177227A (zh) | 焦炉气和煤气制甲醇联产天然气的方法 | |
CN103303863A (zh) | 由焦炉气制取氨合成气的方法 | |
JP2017007872A (ja) | 合成ガスの製造方法および装置 | |
CN103214334A (zh) | 一种煤和天然气制取烯烃和氨的热电联产方法及装置 | |
CN105883851B (zh) | 一种新型气化与热解耦合煤气多联产工艺 | |
CN105001899A (zh) | 清洁煤基合成制蜡的方法 | |
CN103289769A (zh) | 无循环回路的合成气完全甲烷化制合成天然气的方法 | |
CN202744473U (zh) | 一种以煤和天然气为原料制烯烃的多联产装置 | |
CN105000533B (zh) | 一种焦炉煤气和煤制气生产合成气的方法 | |
US20230312341A1 (en) | Process for renewable energy formation | |
Stiller et al. | Use of conventional and green hydrogen in the chemical industry | |
CN209854067U (zh) | 全流程整合提质并高效利用半焦尾气的联合装置 | |
RU2533149C2 (ru) | Способ эксплуатации коксовой печи | |
Landälv | Status report on Demonstration Plants for Advances Biofuels Production-Thermochemical Pathways | |
CN101792366A (zh) | 一种生产甲醇的新方法 | |
Kiss et al. | Optimization of Biogas to Syngas via Combined Super-Dry and Tri-Reforming. Analysis of Fischer-Tropsch Fuels Production | |
CN116120958A (zh) | 一种生物柴油副产植物沥青高值化利用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190426 |