RU2605867C2 - Приемник солнечного излучения - Google Patents

Приемник солнечного излучения Download PDF

Info

Publication number
RU2605867C2
RU2605867C2 RU2014107750/06A RU2014107750A RU2605867C2 RU 2605867 C2 RU2605867 C2 RU 2605867C2 RU 2014107750/06 A RU2014107750/06 A RU 2014107750/06A RU 2014107750 A RU2014107750 A RU 2014107750A RU 2605867 C2 RU2605867 C2 RU 2605867C2
Authority
RU
Russia
Prior art keywords
receiver
solar radiation
tubes
working fluid
layer
Prior art date
Application number
RU2014107750/06A
Other languages
English (en)
Other versions
RU2014107750A (ru
Inventor
КАБРЕРА Карлос ГАЛЬДОН
ГОНСАЛЕС Карлос НУНЬЕС
Original Assignee
КАБРЕРА Карлос ГАЛЬДОН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by КАБРЕРА Карлос ГАЛЬДОН filed Critical КАБРЕРА Карлос ГАЛЬДОН
Publication of RU2014107750A publication Critical patent/RU2014107750A/ru
Application granted granted Critical
Publication of RU2605867C2 publication Critical patent/RU2605867C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/748Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being otherwise bent, e.g. zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда. Приемник (2) содержит верхний слой (5), по меньшей мере один промежуточный слой (6), расположенный под верхним слоем (5). Трубки (8) проложены в виде лабиринта по всей поверхности промежуточного слоя или промежуточных слоев приемника. Нижний слой (7) расположен под по меньшей мере одним промежуточным слоем (6), в котором расположены впускной и выпускной коллекторы (9) для рабочей текучей среды. Верхний слой (5), по меньшей мере один промежуточный слой (6) с трубками (8) и нижний слой (7) выполнены как одна единая деталь из сплава, способного выдерживать температуры свыше 600°С. Изобретение обеспечивает увеличение протяженности трубок 8 по поверхности приемника (2), что приводит к оптимизации теплопередачи. 7 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение раскрывает приемник солнечного излучения, применимый для преобразования солнечной энергии в тепловую и электрическую энергию. В его использовании существенно заинтересована энергетическая промышленность.
УРОВЕНЬ ТЕХНИКИ
В настоящее время существуют три крупные технологии, использующие солнечную энергию для преобразования ее в тепловую и электрическую энергию, это цилиндрическо-параболические приемники, система солнечных башен с гелиостатическим полем и параболические антенны. Настоящее изобретение сосредоточено на последней технологии, в которой солнечное излучение попадает на параболоид ("параболическую антенну", которая обычно является параболоидом с круглым сечением), а тепловая машина расположена в его фокусе. Данная тепловая машина обычно представляет собой усовершенствованный двигатель Стирлинга (впервые описанный Робертом Стирлингом в его патенте от 1816 г., см документ GB 4081 A.D. 1816), который работает между горячим фокусом (приемником солнечного излучения) и холодным фокусом. Механическая энергия, которую производит двигатель Стирлинга или эквивалентный двигатель, приводит в действие генератор переменного тока, который вырабатывает электрическую энергию.
Как упоминалось выше, в системах с параболическими антеннами солнечное излучение принимается приемником. Упомянутый приемник нагревает рабочий газ, который приводит в действие тепловой двигатель. Для данной тепловой энергии повышение производительности приемника предполагает повышение температуры рабочего газа и, следовательно, увеличение коэффициента полезного действия двигателя. Это приводит к тому, что общая производительность машины становится более высокой.
Двигатели Стирлинга, которые применялись в данных солнечных электростанциях, использовали приемники, образованные трубным пучком, расположенным в направлении оси параболоида. Однако в данной конфигурации площадь поверхности, используемой тепловой энергией, исходящей от концентратора (параболической антенны), составляет только процентную долю площади проекции концентратора. Кроме того, трубные пучки, которые используются в современном уровне техники, являются устройствами, состоящими из множества деталей, которые привариваются друг к другу и к коллектору. В данном типе сварной конструкции, когда устройство подвергается циклическому нагреву, относительно часто возникают проблемы механических напряжений, приводящих к многократному нагружению материала и его последующему разрушению. С другой стороны, те устройства, которые осуществляют цикл Стирлинга, для улучшения своих характеристик довольно часто используют водород в качестве рабочей текучей среды. Учитывая, что Н2 горит в контакте с воздухом, модели, предусмотренные для этого в современном уровне техники, подразумевают риск возгорания и взрыва.
Для решения вышеуказанных проблем настоящее изобретение предлагает солнечный приемник (который в одних формах плоский, в других нет), который использует всю спроецированную поверхность концентратора, так что используемая площадь является максимальной. Кроме того, его конструкция является более прочной и безопасной, чем решение с трубными пучками, которое обычно использовалось вплоть до настоящего времени, поскольку она устраняет существующие в настоящее время проблемы, возникающие из-за сварных соединений различных компонентов.
В текущем уровне техники известны различные формы солнечных приемников, соединенных с двигателями Стирлинга. Так, в документе GB 2296047 А1 описан двигатель Стирлинга с коленчатым валом, на котором собирается конструкция, и присоединенная к ней группа гибких мембран, образующих горячие и холодные рабочие камеры, по которым течет рабочая текучая среда. Документ CN 201433829 Y описывает канальный поглотитель тепла для двигателя Стирлинга в солнечном устройстве с U-образными каналами.
Документ US 4114597 A раскрывает единый солнечный коллектор для переноса тепловой энергии, который является синтетическим термопластичным блоком. Этот блок имеет область передачи солнечной энергии и области поглощения солнечной энергии. Такой блок полезен для целей нагрева.
Однако не было раскрыто никакого устройства с конкретными характеристиками, представленными настоящим изобретением.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Описанное изобретение раскрывает приемник солнечного излучения, имеющий впускной и выпускной коллекторы и набор трубок, проходящих от впускного коллектора к выпускному коллектору, по которым течет рабочая текучая среда, нагреваемая при приеме солнечного излучения. Приемник включает в себя: a) верхний слой, на который попадает солнечное излучение; b) по меньшей мере один промежуточный слой, расположенный под верхним слоем, где расположены трубки, по которым течет рабочая текучая среда; и c) нижний слой, расположенный под по меньшей мере одним промежуточным слоем, в котором соединены впускной и выпускной коллекторы для рабочей текучей среды. Конструкция устройства выполнена таким образом, что верхний слой, по меньшей мере один промежуточный слой и нижний слой образуют единую деталь.
Трубки, по которым течет рабочая текучая среда, имеют либо треугольное сечение, либо прямоугольное с закругленными концами, либо эллиптическое, либо правильное многоугольное, либо круговое, либо комбинацию двух или более из вышеуказанных геометрических форм.
Когда в приемнике имеется более одного промежуточного слоя, внутри каждого из таких промежуточных слоев создаются трубки, по которой течет рабочая текучая среда.
Трубки, расположенные в промежуточном (промежуточных) слое (слоях), прокладываются в виде лабиринта, покрывающего всю используемую поверхность промежуточного (промежуточных) слоя (слоев) приемника.
Упомянутая деталь, из которой сделан приемник, представляет собой сплав, способный выдерживать температуры свыше 600°С, такой как сталь, нержавеющая сталь или сплавы типа Инконель (Inconel®) или Хастеллой (Hastelloy®).
Приемник может быть сформирован в соответствии с различающимися геометрическими формами, имеющими некоторые из данных геометрических конфигураций, таких как: круг или сектор круга, полый полуконус, полая полусфера или полый многогранник, разрезанный пополам.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение легко понять по содержанию описания совместно с фигурами, на которых числовые ссылки используются для обозначения различающихся элементов, составляющих изобретение.
На Фиг.1 дано схематическое изображение теплового двигателя внешнего сгорания, применимого в гелиотермальных устройствах с параболическими антеннами.
На Фиг.2 показан вид плоского приемника в перспективе, с частичным сечением, на котором можно рассмотреть трубки, по которым течет рабочая текучая среда.
На Фиг.3 дано подробное изображение сечения приемника, на котором показаны различающиеся формы трубок.
На Фиг.4 в качестве альтернатив плоской форме приемника показаны другие формы, такие как форма полуконуса (Фиг.4A), форма полусферы (Фиг.48) или форма правильного многогранника, разрезанного пополам (Фиг.4C), такого как додекаэдр.
Ниже приведен список, содержащий различающиеся элементы, составляющие изобретение, которые представлены на фигурах: 1 - солнечное излучение (прямое или отраженное); 2 - приемник; 3 - тепловой двигатель, соединенный с параболической антенной; 4 - генератор переменного тока; 5 - верхний слой; 6 - промежуточный слой; 7 - нижний слой; 8 - трубки; 9 - впускной и выпускной коллекторы рабочей текучей среды; a - малая полуось эллипса; b - большая полуось эллипса; c - радиус; d - толщина верхнего слоя; e - толщина промежуточного слоя; f - толщина нижнего слоя; m - сторона многогранника; r - радиус круга; t - основание трубки; I - стороны трубки; v - вершина трубки.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Как уже было заявлено и как можно видеть на Фиг.1, изобретение состоит из солнечного приемника, который применяется в гелиотермических параболических антеннах, использующих двигатели внешнего сгорания. Двигатель (3) Стирлинга или подобный ему располагается в фокусе параболической антенны (не показана); тепловой двигатель (3) содержит приемник (2) солнечного излучения (1) с системой трубок, по которым течет рабочая текучая среда (обычно H2), и комплект регенераторов с охлаждением. Все данные элементы собираются на основе двигателя, раскрываемого в документах современного уровня техники, и поэтому они не показаны на Фиг.1. Обычно каждое цилиндрическое устройство теплового двигателя (3) содержит охладитель, регенератор и присоединенный к нему приемник (2); в конкретном случае приемник (2) имеет "плоскую" форму в виде диска или круга, хотя, как будет описано ниже в данном документе, возможны также другие конфигурации.
Рабочая текучая среда, которая течет в тепловом двигателе (3), достигает солнечного приемника (2), когда цикл теплового двигателя (3) завершен; таким образом, и благодаря процессам теплопередачи, происходящим в приемнике (2) при получении солнечного излучения (1), рабочая текучая среда увеличивает свою энтальпию и течет по направлению к тепловому двигателю (3) Стирлинга. В тепловом двигателе (3) рабочая текучая среда расширяется, приводя в движение коленчатый вал или его аналог (не показан), который приводит в действие генератор (4) переменного тока, таким образом вырабатывая электрическую энергию. Следовательно, задачей приемника (2) является увеличение энтальпии рабочей текучей среды, циркулирующей в тепловом двигателе (3), для выработки электричества генератором (4) переменного тока.
Приемник (2) принимает солнечное излучение (1) путем отражения от внутренней поверхности параболоида при условии, что упомянутый приемник (2) располагается в фокусе параболической антенны (не показана) и сориентирован в направлении параболоида. Таким образом, солнечное излучение (1), попадающее на параболическую антенну, концентрируется в ее фокусе, равномерно нагревая приемник (2). В другом случае излучение может достигать приемник через концентрирующие линзы, такие как линзы типа Френеля или т.п.
На Фиг.2 показан вид приемника (2), на котором вырезана одна из его четвертей. Упомянутое сечение в свою очередь вырезано по плоскости AA, чтобы показать трубки (8), по которым течет нагреваемая в приемнике (2) рабочая текучая среда, и затем упомянутая текучая среда течет в тепловой двигатель (3) Стирлинга или т.п. Приемник (2) обеспечен системой коллекторов (9), через которые рабочая текучая среда входит и выходит. Сначала рабочая текучая среда, поступающая из двигателя (3) Стирлинга, достигает одного из впускных коллекторов (9), течет по трубкам (8) приемника (2), нагреваясь благодаря падающему солнечному излучению (1), попадающему на приемник (2). После того, как рабочая текучая среда проходит по траектории, заданной трубкой (8), она покидает приемник (2), направляясь в двигатель (3) Стирлинга через соответствующий выпускной коллектор (9), при этом упомянутая рабочая текучая среда перетекает в двигатель (3).
Приемник (2) представляет собой элемент, выполненный из отдельной единой детали, несмотря на то, что, как можно видеть на Фиг.2 и более подробно на Фиг.3, его конструкция гипотетически может быть разделена на три слоя или уровня. Имеется первый верхний слой (5), внешняя часть которого принимает солнечное излучение (1), поскольку эта внешняя часть является поверхностью приемника (2). Упомянутый верхний слой (5) имеет толщину "d". Под первым верхним слоем (5) имеется по меньшей мере один промежуточный слой (6) толщиной "e", хотя другие варианты осуществления могут включать в себя более одного из упомянутых промежуточных слоев (6). В любом случае все и каждый из промежуточных слоев (6) снабжены трубками (8), по которым рабочая текучая среда течет в направлении двигателя (3) Стирлинга. Чтобы сделать изобретение понятным, на Фиг.2 и 3 показан только один промежуточный слой (6). Наконец, нижний слой (7) толщиной "f" расположен под промежуточным слоем (6).
Схематически процесс теплопередачи заключается в следующем: когда солнечное излучение (1) попадает на поверхность приемника (2), путем теплопроводности теплота передается вдоль верхнего слоя (5). Далее упомянутая передача путем теплопроводности распространяется на остальные элементы приемника (2): вдоль имеющихся промежуточных слоев (6) вниз к нижнему слою (7) и в направлении трубок (8). Таким образом, рабочая текучая среда, втекающая в трубки (8), повышает свою энтальпию за счет передачи теплоты, полученной путем конвекции и, в меньшей степени, также за счет излучения. Форма трубок (8) в промежуточном(-ых) слое(-ях) (6) является лабиринтообразной для увеличения ее протяженности по отношению к используемой поверхности приемника (2) и, тем самым, для оптимизации теплопередачи. Таким образом, большая часть передачи теплоты происходит от всех слоев (5, 6, 7) в направлении потока текучей среды через трубки (8). Тем не менее, часть теплоты все же передается в направлении к области нижнего слоя (7). Специалистам в данной области техники хорошо известно, что также имеют место другие явления переноса теплоты в атмосферу за счет излучения и конвекции по всей поверхности приемника (2), даже в том случае, если упомянутые процессы могут считаться менее существенными, чем передача теплоты от различных слоев (5, 6, 7) в текучую среду, текущую по трубкам (8).
На Фиг.2 и 3 показаны (на последней более подробно, чем на первой) возможные варианты осуществления конфигурации трубок (8). Для простоты описания показаны (Фиг.3) пять вариантов реализации сечений трубок (8), а именно: A, треугольное; B, прямоугольное с закругленными концами; C, эллиптическое; D, правильное многоугольное; и Е, круговое. Сечение А имеет треугольную форму (как правило, равнобедренную) с основанием (t) и сторонами (I), сходящимися в вершине (v), направленной в сторону нижнего слоя (7). Сечение B имеет прямоугольную форму со стороной "е", равной толщине промежуточного слоя (6), даже хотя верх и низ заканчиваются в полукруге с радиусом "с". Сечение C является эллипсом с малой полуосью "a" и большой полуосью "b". Сечение D является правильным многоугольником со стороной "m"; на Фиг.3 показан случай правильного восьмиугольника. Сечение E представляет собой круг с радиусом "r". Опыт показал, что геометрические формы данных трубок (8) являются наиболее подходящими с точки зрения различных физических параметров рабочей текучей среды, таких как число Рейнольдса, скорость, давление и температура текучей среды.
Обеспечены только некоторые из пяти конфигураций (A, B, C, D или E), показанных на Фиг.2 и 3, или их комбинаций; например, трубка в форме половины многоугольника - полукруга, или другие возможные комбинации на основе конфигураций A, B, C, D или E. Чтобы показать возможные альтернативы, на Фиг.3 представлены все начальные конфигурации в одном и том же приемнике, но должно быть понятно, что геометрическая форма трубки (8) для данного приемника (2) является только одним из показанных вариантов от A до E (или их комбинацией).
Экспериментально было доказано, что наилучшим вариантом изготовления приемника (2) является производственный процесс добавления слоя. В этом случае верхний слой (5), промежуточный(-ые) слой(-и) (6) и нижний слой (7) изготавливаются как единая деталь; упомянутая деталь предпочтительно выполнена из сплава, который способен выдерживать высокие температуры, превышающие 600°С. Экспериментально было доказано, что соответствующими материалами, способными выдерживать эти тепловые нагрузки, являются сталь, нержавеющая сталь или сплавы типа Инконель® или Хастеллой®.
Можно обеспечить различные варианты осуществления солнечных приемников (2), иногда сохраняя ранее описанную дисковую конфигурацию или используя другие геометрические формы, которые описаны ниже. При использовании дисковой геометрии, солнечному приемнику (2) можно придать форму либо полного круга, либо секторов круга типа одной четверти, одной восьмой или иных долей круга. Таким образом, солнечный приемник (2), показанный на Фиг.2, является полностью пригодным для двигателя (3) Стирлинга, либо для питания цилиндров упомянутого двигателя (3) Стирлинга может использоваться вырезанная четверть круга на упомянутой Фиг.2. В любом случае любому специалисту в данной области понятно, что выбранный вариант осуществления не влияет на описанную в данном документе конфигурацию или на сущность изобретения.
На Фиг.4 показаны другие возможные варианты осуществления приемника (2) с геометрическими формами, отличающимися от антенны, показанной на Фиг.2. На Фиг.4A, например, показан приемник в форме полого полуконуса, так что солнечное излучение (1) попадает внутрь полуконуса, и упомянутое излучение (1) отражается всей поверхностью полуконуса. Внутри стенок полуконуса структура трубок (8), описанная для приемника на Фиг.2, повторяется, что не показано на Фиг.4 из соображений ясности. Возможны также и другие геометрические формы, такие как полая полусфера, как показано на Фиг.4B, где солнечное излучение (1) также попадает на внутреннюю поверхность полусферы, нагревая ее и нагревая затем рабочую текучую среду, текущую по внутренним трубкам (не показаны). На Фиг.4C показан последний вариант осуществления приемника (2) в конфигурации полого правильного многогранника, как например, восьмигранник, додекаэдр, икосаэдр или другие многогранники. Аналогично предыдущим случаям солнечное излучение (1) попадает на внутренние стенки многогранника, претерпевая последовательные процессы отражения и нагревая внутреннюю поверхность многогранника. При нагреве эти стенки выполняют передачу теплоты текучей среде, текущей внутри них по уже описанным соответствующим трубкам (не показанным на Фиг.4).
Любой специалист в данной области техники поймет объем изобретения и вытекающие из него преимущества. Термины, используемые для описания изобретения, должны приниматься в широком, а не в ограничивающем смысле, при этом основные отличительные признаки этого изобретения описаны в нижеследующей формуле изобретения.

Claims (8)

1. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны, который имеет тепловой двигатель (3), расположенный в его фокусе, при этом упомянутый приемник (2) солнечного излучения (1) имеет впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет рабочая текучая среда, причем эта рабочая текучая среда нагревается при приеме солнечного излучения (1), отличающийся тем, что приемник (2) содержит:
- верхний слой (5), на который непосредственно попадает солнечное излучение (1);
- по меньшей мере один промежуточный слой (6), расположенный под верхним слоем (5), причем трубки (8), по которым течет рабочая текучая среда, проложены в виде лабиринта, покрывающего всю используемую поверхность промежуточного слоя или промежуточных слоев приемника;
- нижний слой (7), расположенный под по меньшей мере одним промежуточным слоем (6), в котором соединены впускной и выпускной коллекторы (9) для рабочей текучей среды;
при этом верхний слой (5), по меньшей мере один промежуточный слой (6) с трубками (8) и нижний слой (7) выполнены как одна единая деталь, и упомянутая деталь выполнена из сплава, способного выдерживать температуры свыше 600°С.
2. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что трубки (8), по которым течет рабочая текучая среда, имеют форму, которая может быть треугольной или прямоугольной с закругленными концами, или эллиптической, или правильной многоугольной или круглой, или комбинацией двух или более из вышеупомянутых геометрических форм.
3. Приемник (2) солнечного излучения (1) по любому из пп.1-2, отличающийся тем, что в случае, если есть более чем один промежуточный слой (6), каждый из упомянутых промежуточных слоев (6) снабжен в своей внутренней части трубками (8), по которым течет рабочая текучая среда.
4. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что приемник (2) имеет геометрическую форму круга или сектора круга.
5. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что приемник (2) имеет геометрическую форму полого конуса.
6. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что приемник (2) имеет геометрическую форму полой полусферы.
7. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что приемник (2) имеет геометрическую форму половины полого многогранника.
8. Приемник (2) солнечного излучения (1) по п.1, отличающийся тем, что рабочей текучей средой является водород.
RU2014107750/06A 2011-08-01 2012-07-30 Приемник солнечного излучения RU2605867C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES201131334A ES2417079B1 (es) 2011-08-01 2011-08-01 Receptor de radiación solar
ESP201131334 2011-08-01
PCT/ES2012/070583 WO2013017721A1 (es) 2011-08-01 2012-07-30 Receptor de radiación solar

Publications (2)

Publication Number Publication Date
RU2014107750A RU2014107750A (ru) 2015-09-10
RU2605867C2 true RU2605867C2 (ru) 2016-12-27

Family

ID=47143939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014107750/06A RU2605867C2 (ru) 2011-08-01 2012-07-30 Приемник солнечного излучения

Country Status (18)

Country Link
US (1) US9816730B2 (ru)
EP (1) EP2741024B1 (ru)
JP (1) JP6105581B2 (ru)
KR (1) KR20140073494A (ru)
CN (1) CN103842739B (ru)
AU (1) AU2012292010B2 (ru)
BR (1) BR112014002476A2 (ru)
CA (1) CA2879318C (ru)
CL (1) CL2014000228A1 (ru)
ES (2) ES2417079B1 (ru)
HR (1) HRP20160847T8 (ru)
IL (1) IL230735B (ru)
MX (1) MX350806B (ru)
PL (1) PL2741024T3 (ru)
PT (1) PT2741024T (ru)
RU (1) RU2605867C2 (ru)
SG (1) SG2014013700A (ru)
WO (1) WO2013017721A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200899B1 (ko) * 2018-05-14 2021-01-12 주식회사 쓰리텍 태양 복사 에너지를 유도하는 혼 도파관 패널 및 이를 이용한 하우징
DE102018126393A1 (de) * 2018-10-23 2020-04-23 Kraftanlagen München Gmbh Absorbermodul
CN113108491B (zh) * 2020-01-11 2022-08-09 山东鑫瑞安装工程有限公司 一种太阳能集热管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1416745A1 (ru) * 1985-11-10 1988-08-15 Ю.М.Бел ев Энергетическа установка
SU1620786A1 (ru) * 1989-02-24 1991-01-15 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Полостной приемник солнечного излучени
FR2816397B3 (fr) * 2000-11-08 2003-01-10 Maurice Villibord Dispositif solaire recuperateur de chaleur
CN201433829Y (zh) * 2009-05-27 2010-03-31 中国科学院工程热物理研究所 太阳能斯特林发动机用u形通道腔式吸热器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2358476A (en) * 1943-05-17 1944-09-19 Clinton A Routh Solar water heater
DE2517898A1 (de) * 1975-04-23 1976-11-04 Eduard Prof Dr Techn Justi Verlustarme sonnenwaerme-kollektoren
JPS5267827A (en) * 1975-12-03 1977-06-04 Hitachi Ltd Solar heat collector
US4271823A (en) * 1975-12-31 1981-06-09 The Franklin Institute Unitary solar collector panel
US4114597A (en) * 1975-12-31 1978-09-19 The Franklin Institute Unitary solar collector
US4136675A (en) * 1976-08-09 1979-01-30 Karasick Norman M Solar collector
US4172441A (en) * 1977-09-26 1979-10-30 Sunburst Solar Energy Solar heat collector panel and method of forming same
US4206746A (en) * 1978-03-10 1980-06-10 The United States Of America As Represented By The Secretary Of The Navy Spiral-passage heat exchanger
US4267822A (en) * 1978-11-08 1981-05-19 Grumman Energy Systems, Inc. Integrated solar energy system
US4291681A (en) * 1980-02-19 1981-09-29 Berringer Robert T Flat plate heat exchangers
JPH0715942Y2 (ja) * 1988-03-28 1995-04-12 ワイケイケイ株式会社 太陽エネルギーのコレクター装置
JPH02298760A (ja) * 1989-05-11 1990-12-11 Sanyo Electric Co Ltd 太陽熱集熱器
DE4011233A1 (de) * 1990-04-06 1991-10-10 Nikolaus Laing Erhitzerkopf, insbesondere fuer stirling-motoren
HU9200257D0 (en) * 1992-01-28 1992-08-28 Jozsef Ferencz Roof- and wall covering element for the use of solar energy
DE9206656U1 (ru) * 1992-05-15 1992-08-20 Lee, Tony, Lu Jou Hsiang, Taipeh, Tw
GB2296047B (en) 1994-12-15 1998-04-08 Jonathan Maxwell Boardman Diaphragm stirling engine
CA2240214A1 (en) * 1998-05-05 1999-11-05 James Thomas Beck Process for the production of hydrogen by solar decomposition of water
IL137562A (en) * 2000-07-27 2004-06-01 Yeda Res & Dev Miniature thermal device
ITRM20010131A1 (it) * 2001-03-14 2002-09-16 Libero Borra Impianto termico ad acqua surriscaldata alimentato ad energia solare e relativo metodo di produzione di energia elettrica.
TWI237920B (en) * 2004-12-08 2005-08-11 Delta Electronics Inc Stacked fuel cell assembly
US20080184989A1 (en) * 2005-11-14 2008-08-07 Mecham Travis W Solar blackbody waveguide for high pressure and high temperature applications
US20090173376A1 (en) * 2008-01-07 2009-07-09 Solfocus, Inc. Solar collector desiccant system
US20090095282A1 (en) * 2007-10-12 2009-04-16 Neal Cramer Solar panel
US20090277442A1 (en) * 2008-05-10 2009-11-12 Reed Jensen Coiled heat exchanger with beam spreader especially for use with solar-powered gas processors
US8776784B2 (en) * 2008-06-27 2014-07-15 The Boeing Company Solar power device
CN103743135A (zh) * 2008-08-31 2014-04-23 耶达研究与发展有限公司 太阳能接收器系统
GB2463671B (en) 2008-09-19 2011-04-27 Richard David Bankart Building construction
CN102257331A (zh) * 2008-12-24 2011-11-23 三鹰光器株式会社 太阳光线热转换装置
US20100314081A1 (en) * 2009-06-12 2010-12-16 Reis Bradley E High Temperature Graphite Heat Exchanger
EP2464916A1 (en) * 2009-08-10 2012-06-20 Graphite Energy N.v. Release of stored heat energy to do useful work
CN101813038B (zh) * 2010-04-13 2011-12-14 上海兆阳新能源科技有限公司 一种镜面聚焦自动随转式太阳能热机发电系统
CN102062016A (zh) * 2010-12-06 2011-05-18 唐大伟 用于太阳能碟式热发电系统的高温钠热管集热器
US20130276776A1 (en) * 2012-04-24 2013-10-24 Rodomach Speciaalmachines B.V. Method for producing an absorber for a solar collector, and a solar collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1416745A1 (ru) * 1985-11-10 1988-08-15 Ю.М.Бел ев Энергетическа установка
SU1620786A1 (ru) * 1989-02-24 1991-01-15 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Полостной приемник солнечного излучени
FR2816397B3 (fr) * 2000-11-08 2003-01-10 Maurice Villibord Dispositif solaire recuperateur de chaleur
CN201433829Y (zh) * 2009-05-27 2010-03-31 中国科学院工程热物理研究所 太阳能斯特林发动机用u形通道腔式吸热器

Also Published As

Publication number Publication date
MX2014001281A (es) 2015-03-05
US9816730B2 (en) 2017-11-14
BR112014002476A2 (pt) 2017-10-31
KR20140073494A (ko) 2014-06-16
SG2014013700A (en) 2014-05-29
CN103842739A (zh) 2014-06-04
CA2879318A1 (en) 2013-02-07
HRP20160847T1 (hr) 2016-09-23
EP2741024B1 (en) 2016-04-13
WO2013017721A1 (es) 2013-02-07
IL230735B (en) 2018-06-28
JP2014524559A (ja) 2014-09-22
PT2741024T (pt) 2016-07-19
CL2014000228A1 (es) 2014-09-05
ES2417079B1 (es) 2014-09-22
PL2741024T3 (pl) 2016-12-30
CA2879318C (en) 2018-07-24
MX350806B (es) 2017-09-19
IL230735A0 (en) 2014-03-31
ES2417079A2 (es) 2013-08-05
ES2417079R1 (es) 2013-10-18
CN103842739B (zh) 2016-08-17
US20150068514A1 (en) 2015-03-12
JP6105581B2 (ja) 2017-03-29
AU2012292010A1 (en) 2014-03-20
ES2582286T3 (es) 2016-09-12
AU2012292010B2 (en) 2018-01-18
EP2741024A1 (en) 2014-06-11
HRP20160847T8 (hr) 2016-10-21
RU2014107750A (ru) 2015-09-10

Similar Documents

Publication Publication Date Title
US8613278B2 (en) Solar thermal receiver for medium- and high-temperature applications
JP5145461B2 (ja) 太陽熱受熱器
Patel " Comparative Thermal Performance Investigation of Box Typed Solar Air heater with V Trough Solar Air Heater
CN102252433B (zh) 一种碟式太阳能热发电系统及其集热器
JP6011827B2 (ja) 太陽光集光器およびタービンが組み合わされた装置
RU2605867C2 (ru) Приемник солнечного излучения
US20130233304A1 (en) Design of Integrated Heat Exchanger into Solar Absorber for Affordable Small-scale Concentrated Solar Power Generation (SCU)
US11085424B2 (en) Solar power collection system and methods thereof
WO2012152189A1 (zh) 一种碟式太阳能热发电系统及其集热器
JP2007205646A (ja) 太陽熱集熱器およびこれを有する太陽熱利用装置
EP2981770B1 (en) Concentrating central solar receiver
US20140060518A1 (en) Solar Absorber for Concentrated Solar Power Generation
JP2011007150A (ja) 受熱器
JP5890067B2 (ja) トラフ型集光器用の吸収構造体
JP2011220557A (ja) 太陽熱受熱器
Bholanda Effect of Glass Covered Absorber Plate on the Performance of Solar Water Heater
Kalbhor Modified solar central receiver in concentrated solar power systems
WO2013038555A1 (ja) 太陽熱受熱器
SE1200019A1 (sv) Termodynamiskt solkraftverk baserat på gasturbin med flexibel elektrisk dynamik gentemot kraftnätet
JP2011163592A (ja) 太陽熱受熱器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200731