RU2601981C2 - Способ обработки содержащего диоксид углерода отходящего газа с процесса электроплавки - Google Patents

Способ обработки содержащего диоксид углерода отходящего газа с процесса электроплавки Download PDF

Info

Publication number
RU2601981C2
RU2601981C2 RU2013137766/02A RU2013137766A RU2601981C2 RU 2601981 C2 RU2601981 C2 RU 2601981C2 RU 2013137766/02 A RU2013137766/02 A RU 2013137766/02A RU 2013137766 A RU2013137766 A RU 2013137766A RU 2601981 C2 RU2601981 C2 RU 2601981C2
Authority
RU
Russia
Prior art keywords
gas
exhaust gas
carbon dioxide
carbon monoxide
hydrogen
Prior art date
Application number
RU2013137766/02A
Other languages
English (en)
Other versions
RU2013137766A (ru
Inventor
Манфред БАЛЬДАУФ
Томас МАЧУЛЛАТ
Original Assignee
Прайметалз Текнолоджиз Джермани Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прайметалз Текнолоджиз Джермани Гмбх filed Critical Прайметалз Текнолоджиз Джермани Гмбх
Publication of RU2013137766A publication Critical patent/RU2013137766A/ru
Application granted granted Critical
Publication of RU2601981C2 publication Critical patent/RU2601981C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5294General arrangement or layout of the electric melt shop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/02Treatment of the exhaust gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/06Energy from waste gas used in other processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при обработке содержащего диоксид углерода отходящего газа с процесса электроплавки. Способ включает дожигание отходящего газа с использованием горючего газа, добавление углеводородсодержащего газа в отходящий газ и конверсию диоксид углерода отходящего газа по меньшей мере частично в моноксид углерода и водород, охлаждение отходящего газа в процессе теплообмена и использование смеси моноксида углерода с водородом для тепловых нужд. Изобретение позволяет улучшить улавливание отходящего газа, образующегося при работе электродуговой печи и одновременно снизить выбросы образующегося в процессе плавки диоксида углерода. 9 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу обработки содержащего диоксид углерода отходящего газа с процесса электроплавки согласно пункту 1 формулы изобретения.
При работе традиционных электродуговых печей (EAF = electric arc furnace) выделяются горячие отходящие газы с температурой выше 1000°C. Для удаления вредных веществ и остатков горючих компонентов газ сначала подвергают дожиганию. Затем отходящие газы смешивают с воздухом из окружения печи, то есть с так называемым цеховым воздухом, который имеет очень высокое содержание пыли. В электростатическом пылеуловителе или в рукавной фильтрующей установке из отходящего газа удаляют всю пыль. Для этого отходящий газ перед фильтрацией должен быть охлажден до температуры ниже 180°.
В шахтной дуговой печи энтальпия печного газа используется для нагревания лома. В результате этого возникают высокие концентрации вредных веществ (например, VOC (летучие органические соединения), диоксин, фуран или подобное), так что необходимо дожигание для уничтожения этих вредных веществ. После этого отходящие газы нужно быстро охладить (погасить), чтобы предотвратить новое образование вредных веществ. Затем, как описано выше, проводится также обеспыливание. Согласно уровню техники, теплота у отходящего газа отбирается путем охлаждения водой и/или смешением с более холодным запыленным воздухом цеха и дальше не используется. Отходящее тепло отводится и в других процессах не применятся. В известных случаях на некоторых установках применяется теплообменник, чтобы использовать отходящий газ для генерации пара. В частности, содержащийся в отходящих газах диоксид углерода не подвергают конверсии, а выбрасывают через дымовую трубу в окружающую среду.
Японский патент JP 2010223573 раскрывает способ обработки отходящего газа с производства чугуна или стали, например, из электродуговой печи. Газ, содержащий диоксид углерода, в результате эндотермической реакции с углеводородсодержащим газом, например метаном, превращается в моноксид углерода и водород. Образующийся газ применяется дальше в качестве горючего газа.
Далее в документе US 3976472A раскрывается способ получения металла в электропечи. Газ, содержащий диоксид углерода, в результате реакции, например, с водой и/или углеводородами охлаждается с образованием монооксида углерода и водорода.
Задача изобретения состоит в том, чтобы лучше, по сравнению с уровнем техники, использовать отходящее тепло, образующееся при работе электродуговой печи, и одновременно снизить выброс образующегося в процессе CO2.
Задача решена способом с отличительными признаками согласно п.1 формулы изобретения. После предлагаемого изобретением способа обработки содержащего диоксид углерода отходящего газа с процесса плавки железного лома в отходящий газ подают углеводородсодержащий газ. Этот углеводородсодержащий газ участвует в реакции, по меньшей мере частично, с диоксидом углерода, имеющимся в отходящем газе, с образованием моноксида углерода и водорода. Эту смесь моноксид углерода/водород предпочтительно без дополнительного разделения, вместе с остальными компонентами отходящего газа применяют в дополнительном процессе горения, причем до этого она может при необходимости где-то временно храниться. Этот дополнительный процесс горения может, но не обязательно должен, быть неизбежным компонентом способа, в котором образуется обработанный отходящий газ.
Благодаря способу согласно изобретению образующийся диоксид углерода (CO2) восстанавливается и в химически преобразованной форме снова подается на процесс горения.
Этот способ целесообразен, в частности, тогда, когда диоксид углерода в отходящем газе вступает в эндотермическую реакцию с углеводородсодержащим газом, и отходящий газ в результате этой реакции охлаждается. Смесь моноксид углерода/водород (для простоты называемая далее горючим газом) имеет в предпочтительной форме осуществления более высокую теплотворную способность, чем введенный углеводородсодержащий газ (называемый далее газом риформинга). Это ведет к уже упоминавшейся выгодной эндотермической реакции.
Таким образом, благодаря изобретению существенная часть экологически вредного диоксида углерода удаляется из отходящего газа, и он может в преобразованной форме подаваться на следующий процесс горения как горючий газ. Тем самым тепловая энергия отходящего газа превращается в химическую энергию образованного горючего газа.
Оказалось целесообразным в качестве углеводородсодержащего газа риформинга использовать метан, в частности, в виде природного газа. При этом для улавливания диоксида углерода запускается сильно эндотермическая реакция, которая ведет к образованию моноксида углерода и водорода.
В следующей предпочтительной форме осуществления изобретения в описанном способе обработки отходящего газа используется электродуговая печь.
В следующей подробно описываемой форме осуществления способа он включает следующие этапы: в отходящий газ, предпочтительно с процесса электроплавки (например, электроплавки лома) подают воздух, далее проводится процесс дожигания с применением горючего газа, затем в отходящий газ добавляют углеводородсодержащий газ, то есть газ риформинга, и идет реакция превращения газа риформинга в смесь моноксид углерода/водород (далее называемая сухим риформингом). Далее следует охлаждение отходящего газа в процессе теплообмена, а также последующая фильтрация охлажденного отходящего газа.
В следующей форме осуществления изобретения горючий газ временно хранится в предусмотренном для этого газовом резервуаре. Таким образом, его можно использовать для различных других процессов горения, в том числе для процесса дожигания, и целенаправленно вводить по потребности.
В одной форме осуществления изобретения в отходящий газ, помимо газа риформинга, можно добавлять также воду, предпочтительно в виде пара. В результате добавления дополнительной воды изменяется отношение моноксида углерода к водороду, что целесообразно для различных применений в качестве горючего газа.
В следующей предпочтительной форме осуществления отходящий газ может контролироваться с помощью газового датчика в целях регулирования подачи газа риформинга.
Следующие выгодные варианты осуществления и отличительные признаки изобретения подробнее поясняются на следующих чертежах.
При этом показано:
фигура 1: схематическое изображение процесса плавки железного лома и обработки его отходящих газов с введением сухого риформинга,
фигура 2: блок-схема для иллюстрации процесса обработки отходящего газа при плавке железного лома, согласно уровню техники, и
фигура 3: блок-схема процесса обработки отходящего газа, включающего сухой риформинг, в сравнении с фигурой 2.
Далее посредством фигуры 1 подробнее поясняется последовательность обработки отходящего газа, которая применяется при плавке железного лома. После выхода из электродуговой печи 6 образованный в ней отходящий газ, содержащий CO2, проводится в газоотводный канал. Датчик 14 отходящего газа отслеживает отдельные химические компоненты отходящего газа, в частности, содержание CO2 в отходящем газе. Здесь не показано, но отходящий газ 2 применяется еще для того, чтобы нагревать следующий лом, подаваемый в электродуговую печь 6. При этом подводимые в отходящий газ ядовитые вещества, такие как диоксин, химически преобразуются в процессе дожигания 8 и тем самым становятся безвредными. Далее идет процесс сухого риформинга 16, в котором в отходящий газ 2 подается газ риформинга 4, при этом диоксид углерода восстанавливается до моноксида углерода. На этом процессе остановимся еще более детально позднее. После процесса риформинга 16 (называемого также сухим риформингом) идет процесс теплообмена 10, на котором отходящий газ 2 охлаждается. Горючий газ 5, как правило, без предшествующего отделения от других компонентов отходящего газа вместе с ними временно хранится в газовом резервуаре 12 и может снова подаваться, например, на процесс дожигания 8 как горючий газ 5. Равным образом горючий газ 12 может использоваться как аккумулятор энергии для дополнительных тепловых процессов, в частности, процессов, которые протекают при производстве стали.
Если никакой горючий газ не создается и не хранится, то отходящий газ 2 вместе с запыленным цеховым воздухом 20 смешивают в смесительной камере 18, и затем из отходящего газа 2 в фильтре 22 удаляется пыль. В различных фильтрующих установках температура газа не должна превышать 180°C. Газодувка 26 направляет отходящий газ 2 в дымовую печь 24.
Отходящий газ 2 после выхода из электродуговой печи имеет, в зависимости от рабочих параметров, разное содержание диоксида углерода. Поэтому датчиком 14 измеряют содержание диоксида углерода в отходящем газе 2 и тем самым регулируют добавление газа риформинга 4 в отходящий газ 2. Газ риформинга 4, в качестве которого может применяться, например, природный газ с высоким содержанием метана, по меньшей мере частично реагирует с диоксидом углерода из отходящего газа 2 согласно следующему уравнению реакции (сухой риформинг 16).
CH4+CO2→2CO+2H2 ΔH=+250 кДж/моль
Эта реакция является эндотермической, на один моль отбирается 250 кДж тепловой энергии из окружающей среды, то есть из отходящего газа 2. Таким образом, тепловая энергия в результате реакции преобразуется и аккумулируется в образованном горючем газе 5 (CO+H2, называемый также синтез-газом) как химическая энергия. Таким образом, тепловая энергия превращается в химическую энергию, так как горючий газ 7, образующийся согласно уравнению 1, имеет более высокую теплотворную способность, чем использовавшийся первоначально газ риформинга (метан).
Отдельные значения теплоты сгорания для исходных веществ и продуктов следующие:
CH4: 55,5 МДж/кг=888 МДж/кмоль
CO: 10,1 МДж/кг=283 МДж/кмоль
H2: 143 МДж/кг=286 МДж/кмоль.
Теплотворная способность смеси, состоящей из 2 молей моноксида углерода и 2 молей H2, выше теплоты сгорания одного моля CH4 (метан), на вышеназванную энтальпию реакции 250 кДж/моль. Повышение теплотворной способности составляет тем самым 28% от вносимой теплотворной способности метана (250 кДж/моль: 888 кДж/моль).
В зависимости от применения горючего газа 5 может иметь смысл сдвинуть отношение CO:H2 в пользу водорода. В этом случае вводят воду (предпочтительно в форме пара), при необходимости также в линию 7 подачи газа риформинга. Тем самым возможна экзотермическая реакция сдвига CO
H2O+CO→CO2+H2 ΔH=H-42 кДж/моль
вследствие чего изменяется отношение H2 к CO. Хотя из-за этого аккумулируется меньше отходящего тепла (так как здесь речь идет о экзотермической реакции), но достигается более высокое содержание H2 в горючем газе 5, что в некоторых процессах горения выгодно. Это соответствует, в частности, случаю, когда в этих процессах горения теплоперенос происходит посредством излучения, а не конвекцией. В результате сгорания H2 в отходящем газе 2 получается повышенное содержание воды, которая благодаря ее широкому диапазону излучения благоприятствует теплопереносу.
На фигурах 2 и 3 только что описанный способ обработки отходящего газа сравнивается на двух противопоставляемых блок-схемах. Фигура 2 показывает обработку отходящего газа согласно уровню техники, а фигура 3 показывает введение сухого риформинга и следующие из этого улучшения.
После выхода из электроплавильной печи 6 отходящий газ 2 проводят на дожигание 8, причем вместе с ним вводят воздух 3. В следующем процессе теплообмена 10 отдается энергия Q1 на теплообменную среду. В смесительной камере 18 проводится смешение с запыленным воздухом 20, причем весь отходящий газ фильтруется затем на фильтрующей установке 22 и выбрасывается через дымовую трубу в атмосферу со всем накопившимся содержанием диоксида.
Способ обработки отходящего газа с применением сухого риформинга, согласно фигуре 3, отличается от способа с фигуры 2 тем, что между процессом дожигания 8 и процессом теплообмена 10 введен процесс сухого риформинга 16, причем газ риформинга 4 добавляют в отходящий газ 2, и имеет место эндотермическая реакция с восстановлением диоксида углерода. Первое различие с фигурой 2 состоит в том, что количество теплоты Q2, отдаваемой в процессе теплообмена 10, меньше, чем количество теплоты Q1 согласно уровню техники. Это следует из того, что в результате эндотермического сухого риформинга 16 из отходящего газа 2 отбирается больше тепловой энергии, чем это имеет место согласно уровню техники.
Далее отходящий газ 2 временно хранится вместе с горючим газом 5 в газовом резервуаре 12. Горючий газ 5 можно использовать для процесса дожигания 8 и при этом по меньшей мере частично заменять применяющийся согласно уровню техники природный газ. Полное количество диоксида углерода, выделяемого через дымовую трубу 24, в настоящем способе заметно меньше, чем имеет место согласно уровню техники.
Отходящие газы электроплавильных печей 6 имеют при работе в длительном периоде (>50%) очень низкие концентрации моноксида углерода CO (~5%) и CO2 (<10%). В этот период работы использование вышеописанного сухого риформинга природного газа оправдано лишь условно, так как нельзя образовать достаточно высокую долю горючих компонентов в отходящем газе. Причина этого в том, что электроплавильная печь 6 обычно подсасывает воздух через неплотности (например, через дверцу для шлака или через отверстия в электродах), и отходящий газ поэтому имеет относительно высокую концентрацию кислорода и азота. На других фазах производства отходящий газ перед дожиганием может содержать от 20% до 50% моноксида углерода и от 10% до 15% диоксида углерода. Затем после дожигания имеется достаточно диоксида углерода, чтобы в описанном процессе сухого риформинга 16 создать отходящий газ с достаточно высокой долей синтез-газа, который, как описано, подходит для использования для тепловых нужд на сталеплавильном заводе. Применение способа по изобретению особенно целесообразно в последней производственной фазе.
Внутренняя энергия образованного горючего газа (синтез-газа) может использоваться на подходящем оборудовании сталеплавильного завода. Он может применяться, например, для производства электроэнергии на электростанции, для образования технологического пара (при необходимости в комбинации с производством электроэнергии) или в качестве горючего газа для предварительного нагрева слябов, болванок и слитков в элеваторной печи или методической печи (EAF, сушка и нагрев слябов, нагревательные участки, распределители, установки непрерывной разливки).

Claims (10)

1. Способ обработки содержащего диоксид углерода отходящего газа (2) из процесса электроплавки, включающий следующие стадии:
- дожигания (8) отходящего газа (2) с использованием горючего газа,
- добавления углеводородсодержащего газа (4) в отходящий газ (2) и конверсию диоксид углерода отходящего газа по меньшей мере частично в моноксид углерода и водород,
- охлаждения отходящего газа в процессе теплообмена (10), и
- использования смеси моноксида углерода с водородом для тепловых нужд.
2. Способ по п. 1, отличающийся тем, что диоксид углерода в отходящем газе (2) вступает в эндотермическую реакцию с углеводородсодержащим газом (4), и отходящий газ (2) в результате этой реакции охлаждается.
3. Способ по п. 1 или 2, отличающийся тем, что углеводородсодержащий газ (4) содержит метан.
4. Способ по п. 1 или 2, отличающийся тем, что отходящий газ (2) образуется в электродуговой печи (6).
5. Способ по п. 1 или 2, отличающийся тем, что отходящий газ вместе со смесью (5) моноксида углерода с водородом временно хранится в газовом резервуаре (12).
6. Способ по п. 5, отличающийся тем, что смесь (5) моноксида углерода с водородом применяется в качестве горючего газа в процессе дожигания.
7. Способ по п. 5, отличающийся тем, что смесь (5) моноксида углерода с водородом применяется в качестве горючего газа в других процессах горения сталеплавильного завода.
8. Способ по любому из пп. 1, 2, 6 или 7, отличающийся тем, что в отходящий газ помимо углеводородсодержащего газа (4) подводят воду.
9. Способ по п. 8, отличающийся тем, что вода служит для превращения СО в CO2 и Н2.
10. Способ по любому из пп. 1, 2, 6, 7 или 9, отличающийся тем, что содержание диоксида углерода в отходящем газе (2) отслеживается газовым датчиком (14) для регулирования подачи углеводородсодержащего газа (4).
RU2013137766/02A 2011-01-13 2012-01-02 Способ обработки содержащего диоксид углерода отходящего газа с процесса электроплавки RU2601981C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011002615.0 2011-01-13
DE102011002615A DE102011002615A1 (de) 2011-01-13 2011-01-13 Verfahren zur Behandlung eines kohlendioxidhaltigen Abgases aus einem Elektroschmelzprozess
PCT/EP2012/050017 WO2012095329A2 (de) 2011-01-13 2012-01-02 Verfahren zur behandlung eines kohlendioxidhaltigen abgases aus einem elektroschmelzprozess

Publications (2)

Publication Number Publication Date
RU2013137766A RU2013137766A (ru) 2015-02-20
RU2601981C2 true RU2601981C2 (ru) 2016-11-10

Family

ID=45478313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013137766/02A RU2601981C2 (ru) 2011-01-13 2012-01-02 Способ обработки содержащего диоксид углерода отходящего газа с процесса электроплавки

Country Status (7)

Country Link
US (1) US9005570B2 (ru)
EP (1) EP2663661B1 (ru)
DE (1) DE102011002615A1 (ru)
ES (1) ES2554546T3 (ru)
MX (1) MX343545B (ru)
RU (1) RU2601981C2 (ru)
WO (1) WO2012095329A2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002615A1 (de) 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Verfahren zur Behandlung eines kohlendioxidhaltigen Abgases aus einem Elektroschmelzprozess
WO2018100254A1 (fr) * 2016-11-29 2018-06-07 Eco'ring Procédé de fusion de piles et accumulateurs portables usagés et installation pour la mise en oeuvre du procédé
ES2918173T3 (es) * 2019-12-20 2022-07-14 Holcim Technology Ltd Procedimiento de tratamiento de gas de escape
EP3904764B1 (de) * 2020-04-29 2023-11-15 Christof Global Impact Limited Kesselsystem zur behandlung von abgasen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976472A (en) * 1973-05-17 1976-08-24 Rolf Linder Method and an electrically heated device for producing molten metal from powders or lumps of metal oxides
RU2002812C1 (ru) * 1991-05-27 1993-11-15 Сергей Владимирович Картавцев Способ утилизации конвертерных газов
JP2000212615A (ja) * 1999-01-26 2000-08-02 Kawasaki Steel Corp 製鉄設備排ガスからのエネルギ―回収方法
JP2010223573A (ja) * 2009-02-27 2010-10-07 Jfe Steel Corp 冶金炉発生排ガスの冷却方法およびその装置
JP2010255087A (ja) * 2008-05-16 2010-11-11 Jfe Steel Corp 冶金炉発生排ガスの改質方法、改質装置および改質ガスの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133860A1 (en) 1970-07-07 1972-01-13 Barker, Arnold Verdun, Palm Beach, New South Wales (Australien) Direct reduction of iron ore - using cyclone furnace and electric arc or induction furnace
DD100017A5 (ru) 1971-11-01 1973-09-05
US4244732A (en) * 1979-03-27 1981-01-13 Kaiser Engineers, Inc. Manufacture of steel from ores containing high phosphorous and other undesirable constituents
SE441775B (sv) 1983-09-30 1985-11-04 Hb Consult Raodgivande Ing Ab Brennare
US5294244A (en) * 1993-07-27 1994-03-15 Trw Vehicle Safety Systems Inc. Thermal reclamation method for the recovery of metals from air bag inflators
US5498487A (en) * 1994-08-11 1996-03-12 Westinghouse Electric Corporation Oxygen sensor for monitoring gas mixtures containing hydrocarbons
AT404942B (de) 1997-06-27 1999-03-25 Voest Alpine Ind Anlagen Anlage und verfahren zum herstellen von metallschmelzen
DE10140805A1 (de) * 2001-08-20 2003-03-06 Vai Fuchs Gmbh Metallurgischer Ofen und Materialkorb für einen metallurgischen Ofen
JP2003166013A (ja) 2001-11-30 2003-06-13 Kawasaki Steel Corp 転炉ガス回収方法
WO2009014512A1 (en) * 2007-07-20 2009-01-29 Utc Power Corporation Volatile organic compound abatement with fuel cell power plant
SE532975C2 (sv) 2008-10-06 2010-06-01 Luossavaara Kiirunavaara Ab Förfarande för produktion av direktreducerat järn
AT507525B1 (de) 2008-10-23 2010-09-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum betrieb eines schmelzreduktionsverfahrens
JP5439859B2 (ja) 2009-02-27 2014-03-12 Jfeスチール株式会社 冶金炉発生排ガスの改質方法およびその改質装置
DE102011002615A1 (de) 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Verfahren zur Behandlung eines kohlendioxidhaltigen Abgases aus einem Elektroschmelzprozess

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976472A (en) * 1973-05-17 1976-08-24 Rolf Linder Method and an electrically heated device for producing molten metal from powders or lumps of metal oxides
RU2002812C1 (ru) * 1991-05-27 1993-11-15 Сергей Владимирович Картавцев Способ утилизации конвертерных газов
JP2000212615A (ja) * 1999-01-26 2000-08-02 Kawasaki Steel Corp 製鉄設備排ガスからのエネルギ―回収方法
JP2010255087A (ja) * 2008-05-16 2010-11-11 Jfe Steel Corp 冶金炉発生排ガスの改質方法、改質装置および改質ガスの製造方法
JP2010223573A (ja) * 2009-02-27 2010-10-07 Jfe Steel Corp 冶金炉発生排ガスの冷却方法およびその装置

Also Published As

Publication number Publication date
EP2663661B1 (de) 2015-09-09
ES2554546T3 (es) 2015-12-21
WO2012095329A3 (de) 2012-09-07
WO2012095329A2 (de) 2012-07-19
RU2013137766A (ru) 2015-02-20
MX343545B (es) 2016-11-08
DE102011002615A1 (de) 2012-07-19
US20140023577A1 (en) 2014-01-23
EP2663661A2 (de) 2013-11-20
MX2013008145A (es) 2013-09-13
US9005570B2 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
JP2012506990A5 (ru)
JP6366679B2 (ja) セメント製造プラントの運転方法
RU2601981C2 (ru) Способ обработки содержащего диоксид углерода отходящего газа с процесса электроплавки
CA2729114C (en) Combustion of co and combustibles in steel furnace offgases
US8628741B2 (en) Off gas treatment using a metal reactant alloy composition
KR20160023829A (ko) 직접 연소식 가열 방법 및 그의 실행을 위한 설비
EP3986596B1 (en) Method and a direct reduction plant for producing direct reduced iron
RU2569105C2 (ru) Способ обработки отходящего газа, содержащего диоксид углерода
RU2697274C1 (ru) Способ переработки твердых коммунальных и промышленных отходов
KR20070085066A (ko) 스크랩을 기초로 하는 이차적인 강의 생산 방법 및 장치
JP2006315926A (ja) 転炉副生ガスの処理方法
US11845040B2 (en) Flue gas treatment method and installation
RU2166697C1 (ru) Установка для термической переработки твердых отходов
KR100508856B1 (ko) 폐기물 고온 소각 및 열분해 방법과 그 장치
CN117663812A (zh) 一种烧结烟气高效增焓发电方法及系统
KR20240041974A (ko) 철 용융물을 제조하는 방법
WO2021198819A1 (en) Incineration process for waste and device therefore
KR20030018811A (ko) 폐기물 고온 소각 및 열분해 방법 및 그 장치
JP2005255842A (ja) 熱分解処理システム
JP2006110515A (ja) 廃棄物のガス化改質処理方法
JP2005298264A (ja) 熱分解ガス化改質装置

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180103