RU2601260C2 - Вч генератор - Google Patents

Вч генератор Download PDF

Info

Publication number
RU2601260C2
RU2601260C2 RU2012102615/12A RU2012102615A RU2601260C2 RU 2601260 C2 RU2601260 C2 RU 2601260C2 RU 2012102615/12 A RU2012102615/12 A RU 2012102615/12A RU 2012102615 A RU2012102615 A RU 2012102615A RU 2601260 C2 RU2601260 C2 RU 2601260C2
Authority
RU
Russia
Prior art keywords
longitudinal end
generator
horn waveguide
state switch
moreover
Prior art date
Application number
RU2012102615/12A
Other languages
English (en)
Other versions
RU2012102615A (ru
Inventor
Оливер ХАЙД
Тимоти ХЬЮЗ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012102615A publication Critical patent/RU2012102615A/ru
Application granted granted Critical
Publication of RU2601260C2 publication Critical patent/RU2601260C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/026Transitions between lines of the same kind and shape, but with different dimensions between coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/024Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1817Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a cavity resonator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Waveguide Aerials (AREA)
  • Particle Accelerators (AREA)

Abstract

Изобретение относится к ВЧ генератору и содержит твердотельный переключатель, проходящий в z-направлении рупорный волновод с первым продольным концом и вторым продольным концом и проходящий в z-направлении цилиндрический полый проводник с третьим продольным концом. При этом размещенная в x-y-плоскости первая площадь поперечного сечения рупорного волновода у первого продольного конца меньше, чем размещенная в x-y-плоскости вторая площадь поперечного сечения рупорного волновода у второго продольного конца. Второй продольный конец рупорного волновода размещен у третьего продольного конца полого проводника. При этом твердотельный переключатель размещен у первого продольного конца рупорного волновода, чтобы возбуждать электромагнитное колебание в рупорном волноводе. Заявленное устройство позволяет избежать потерь мощности при передачи ВЧ мощности из первого места во второе, при этом значительно уменьшая площадь занимаемого устройством пространства. 2 н. и 16 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится к высокочастотному (ВЧ) генератору согласно родовому понятию пункта 1 формулы изобретения, а также к ускорителю частиц с ВЧ генератором согласно пункту 18 формулы изобретения.
Известно формирование ВЧ мощности с помощью тетродов, клистронов или других устройств. Кроме того, известно направление ВЧ мощности с помощью волноводов, например полых проводников. Известные решения предусматривают, что ВЧ мощность генерируется в первом месте и затем с помощью волновода транспортируется во второе место, где ВЧ мощность, например, с помощью демпфирующего звена или индуктивного элемента связи вводится в ВЧ резонатор. Однако в таком устройстве в местах ввода неизбежно возникают потери мощности. Кроме того, такие устройства характеризуются большой занимаемой площадью.
Кроме того, известно, что ВЧ резонаторы снабжаются встроенными приводными устройствами, чтобы возбуждать ВЧ электромагнитные колебания в резонаторе. Такой ВЧ резонатор описан, например, в ЕР 0606870 А1.
Задачей настоящего изобретения является создание устройство, при котором генерация ВЧ мощности и направление сгенерированной ВЧ мощности обеспечиваются одним и тем же устройством. Эта задача решается ВЧ генератором с признаками пункта 1 формулы изобретения. Кроме того, задачей настоящего изобретения является создать ускоритель частиц с подобным ВЧ генератором. Эта задача решается ускорителем частиц с признаками пункта 18 формулы изобретения. Предпочтительные варианты осуществления приведены в зависимых пунктах формулы изобретения.
Соответствующий изобретению ВЧ генератор содержит твердотельный переключатель, проходящий в z-направлении рупорный волновод с первым продольным концом и вторым продольным концом и проходящий в z-направлении цилиндрический полый проводник с третьим продольным концом. При этом размещенная в x-y-плоскости первая площадь поперечного сечения рупорного волновода у первого продольного конца меньше, чем размещенная в x-y-плоскости вторая площадь поперечного сечения рупорного волновода у второго продольного конца. При этом второй продольный конец рупорного волновода размещен у третьего продольного конца полого проводника. Кроме того, твердотельный переключатель размещен у первого продольного конца рупорного волновода, чтобы возбуждать электромагнитное колебание в рупорном волноводе. Кроме того, твердотельный переключатель окружен металлическим экранирующим корпусом.
Предпочтительным образом в этом ВЧ генераторе ВЧ мощность непосредственно возбуждается в рупорном волноводе и через него направляется в полый проводник, который транспортирует ее к потребителю. За счет этого снижаются сложность и затраты на изготовление ВЧ генератора. Другое преимущество заключается в применении твердотельного переключателя, который по сравнению с обычными устройствами для выработки ВЧ мощности предоставляет повышенную гибкость и при этом может быть выполнен более компактным и экономичным. Предпочтительным является также то, что рупорный волновод осуществляет преобразование импедансов между низким импедансом твердотельного переключателя и высоким импедансом полого проводника. Посредством экранирующего корпуса предпочтительным образом гарантируется, что поверхностные токи остаются ограниченными внутренностью рупорного волновода и полого проводника. Тем самым предпочтительным образом можно избежать чрезмерного излучения электромагнитной энергии ВЧ генератором, благодаря чему можно снизить помеховое воздействие на другие приборы в окрестности ВЧ генератора.
Является целесообразным, что твердотельный переключатель выполнен с возможностью возбуждения электромагнитного колебания с первой частотой, и что экранирующий корпус не имеет собственной частоты на первой частоте. Предпочтительным образом тогда получается высокий импеданс экранирующего корпуса на рабочей частоте твердотельного переключателя.
Предпочтительным образом, внутри экранирующего корпуса размещен диэлектрический материал. Предпочтительным образом можно тем самым внешние размеры экранирующего корпуса поддерживать малыми.
Особенно предпочтительно, что диэлектрический материал является ферромагнитным материалом.
Целесообразно, что экранирующий корпус электропроводно соединен с рупорным волноводом.
В особенно предпочтительной форме выполнения ВЧ генератора твердотельный переключатель соединен с электрической линией питания, которая выполнена как коаксиальная линия. При этом внешний проводник коаксиальной линии проводящим образом соединен с экранирующим корпусом. Предпочтительным образом за счет этого можно избежать выполнения шлейфа заземления и питающую линию связать с экранирующей конструкцией.
Предпочтительным образом твердотельный переключатель размещен в x-z-плоскости. Предпочтительным образом твердотельный переключатель может тогда прикладывать высокочастотное электромагнитное напряжение между двумя противолежащими стенками рупорного волновода.
Целесообразно, что твердотельный переключатель имеет первый выходной вывод, который размещен на верхней стороне твердотельного переключателя, и имеет второй выходной вывод, который размещен на нижней стороне твердотельного переключателя, и причем первый выходной вывод электропроводно соединен с первой стенкой рупорного волновода, а второй выходной вывод электропроводно соединен со второй стенкой рупорного волновода, противолежащей первой стенке этого рупорного волновода. Предпочтительным образом твердотельный переключатель может тогда выполняться как двусторонний модуль и обеспечивает возможность простой интеграции твердотельного переключателя и рупорного волновода.
В дальнейшем развитии ВЧ генератора твердотельный переключатель имеет множество первых выходных выводов, которые размещены в z-направлении друг за другом на верхней стороне твердотельного переключателя. При этом твердотельный переключатель имеет множество вторых выходных выводов, которые размещены в z-направлении друг за другом на нижней стороне твердотельного переключателя. Предпочтительным образом твердотельный переключатель может инжектировать ток в нескольких позициях рупорного волновода.
В особенно предпочтительной форме выполнения ВЧ генератора посредством твердотельного переключателя в рупорном волноводе может возбуждаться колебательная мода, которая вызывает зависимое от времени и места прохождение тока в первой стенке полого проводника. При этом прохождение тока в позициях первых выходных выводов имеет соответствующее одинаковое фазовое положение. Предпочтительным образом первые выходные выводы твердотельного переключателя могут тогда все синхронно возбуждать прохождение тока в первой стенке рупорного волновода.
Предпочтительным образом полый проводник имеет прямоугольное поперечное сечение. Предпочтительным образом полый проводник с прямоугольным поперечным сечением обеспечивает возможность возбуждения подходящих мод колебаний, например, ТЕ10-моды колебаний.
Особенно предпочтительно, что рупорный волновод также имеет прямоугольное поперечное сечение. Предпочтительным образом могут тогда рупорный волновод и полый проводник выполняться переходящими друг в друга и обеспечивают возможность направления ВЧ мощности из рупорного волновода в полый проводник.
В одной форме выполнения ВЧ генератора рупорный волновод расширяется между первым продольным концом и вторым продольным концом в y-направлении.
В другом выполнении ВЧ генератора рупорный волновод расширяется между первым продольным концом и вторым продольным концом в x-направлении.
Особенно предпочтительным образом полый проводник и рупорный волновод выполнены как цельная конструкция. Предпочтительным образом за счет этого минимизируются потери на переходах между рупорным волноводом и полым проводником.
В другом выполнении ВЧ генератора рупорный волновод имеет размещенную между первым продольным концом и вторым продольным концом среднюю позицию, причем рупорный волновод между первым продольным концом и средней позицией имеет постоянную площадь поперечного сечения. Предпочтительным образом участок рупорного волновода между первым продольным концом и средней позицией тогда особенно хорошо подходит для соединения с твердотельным переключателем.
В другом выполнении ВЧ генератора полый проводник имеет четвертый продольный конец, который связан с ВЧ резонатором. Предпочтительным образом ВЧ мощность, генерируемая ВЧ генератором, может тогда вводиться в ВЧ резонатор и там соответственно применяться.
Соответствующий изобретению ускоритель частиц имеет ВЧ генератор вышеуказанного типа. Предпочтительным образом выработанная ВЧ генератором ВЧ мощность применяется тогда для ускорения заряженных частиц.
Изобретение поясняется более подробно с помощью приложенных чертежей, на которых показано следующее:
фиг.1 - сечение ВЧ генератора;
фиг.2 - пространственное представление ВЧ генератора;
фиг.3 - вид в плане ВЧ генератора;
фиг.4 - деталь ВЧ генератора согласно предпочтительному варианту выполнения; и
фиг.5 - другая деталь ВЧ генератора.
На фиг.1 показано сечение ВЧ генератора 100 согласно форме выполнения изобретения. ВЧ генератор 100 служит для выработки ВЧ электромагнитных волн с высокой мощностью. Выработанная ВЧ генератором 100 ВЧ мощность может использоваться, например, в ускорителе частиц для ускорения заряженных частиц.
На фиг.1 показано сечение ВЧ генератора в y-z-плоскости. z-Направление соответствует продольному направлению ВЧ генератора 100, а также направлению потока 110 энергии, в котором направляется выработанная ВЧ генератором 100 ВЧ мощность.
ВЧ генератор 100 содержит твердотельный переключатель 200, рупорный волновод 300 и полый проводник 400, которые в z-направлении размещены друг за другом. ВЧ генератор содержит, таким образом, как средства для генерации ВЧ мощности, так и средства для направления выработанной ВЧ мощности. За счет этого ВЧ генератор 100, по сравнению с обычными ВЧ генераторами, имеет меньшую сложность и может быть изготовлен более экономичным способом.
Твердотельный переключатель 200 содержит печатную плату 230, которая размещена в x-z-плоскости. Печатная плата 230 имеет ориентированную в положительном y-направлении верхнюю сторону 231 и ориентированную в отрицательном y-направлении нижнюю сторону 232.
На печатной плате 230 размещены один или более транзисторов 240, которые выполнены с возможностью переключения ВЧ мощности. Один или более транзисторов 240 предпочтительно являются полупроводниковыми транзисторами, например SiC-JFET (полевой транзистор с p-n-переходом). Транзисторы 240 могут размещаться на верхней стороне 231, нижней стороне 232, или как на верхней стороне 231, так и на нижней стороне 232 печатной платы 230.
Твердотельный переключатель 200 также имеет первый выходной вывод 210, который размещен на верхней стороне 231 печатной платы 230. Кроме того, твердотельный переключатель 200 имеет второй выходной вывод 220, который размещен на нижней стороне 232 печатной платы 230. Между выходными выводами 210, 220 твердотельный переключатель 200 может прикладывать высокочастотное электрическое напряжение, которое переключается посредством одного или более транзисторов 240.
Рупорный волновод 300 выполнен как металлический полый проводник, площадь поперечного сечения которого в z-направлении увеличивается между первым продольным концом 310 рупорного волновода 300 и вторым продольным концом 320 рупорного волновода 300. Между первым продольным концом 310 и вторым продольным концом 320 рупорный волновод 300 имеет среднюю позицию 330. Между первым продольным концом 310 и средней позицией 330 проходит цилиндрический участок 350 рупорного волновода 300. Между средней позицией 330 и вторым продольным концом 320 рупорного волновода 300 проходит конический участок 360 рупорного волновода 300. На цилиндрическом участке 350 площадь поперечного сечения рупорного волновода 300 в z-направлении не изменяется. На коническом участке 360 площадь поперечного сечения рупорного волновода 300 в z-направлении увеличивается.
Цилиндрический участок 350 имеет ориентированную в положительном y-направлении верхнюю стенку 351 и ориентированную в отрицательном y-направлении нижнюю стенку 352. Верхняя стенка 351 и нижняя стенка 352 ориентированы параллельно друг другу. В средней позиции 330 верхняя стенка 351 переходит в первую стенку 370 конического участка 360. Кроме того, нижняя стенка 352 в средней позиции 330 переходит во вторую стенку 380 конического участка 360. Первая стенка 370 и вторая стенка 380 конического участка 360 ориентированы друг к другу не параллельно, а замыкают вертикальный угол раскрыва 340, который может составлять, например, 90°.
Фиг.2 показывает пространственное представление ВЧ генератора 100. Фиг.3 показывает вид в плане ВЧ генератора 100. Из фиг.2 и 3 видно, что конический участок 360 имеет расположенную в y-z-плоскости третью стенку 390 и также расположенную в y-z-плоскости четвертую стенку 395. Третья стенка 390 и четвертая стенка 395 соединяют, соответственно, первую стенку 370 cо второй стенкой 380 и ориентированы параллельно друг другу. Все стенки 351, 352, 370, 380, 390, 395 рупорного волновода 300 состоят из электропроводного материала, предпочтительно из металла.
В альтернативной форме выполнения третья стенка 390 и четвертая стенка 395 конического участка 360 ориентированы не параллельно друг другу, а имеют горизонтальный угол раскрыва, так что площадь поперечного сечения рупорного волновода 300 на коническом участке 360 возрастает не только в y-направлении, но и в x-направлении.
Первый выходной вывод 210 твердотельного переключателя 200 на первом продольном конце 310 рупорного волновода 300 электропроводно соединен с верхней стенкой 351 цилиндрического участка 350 рупорного волновода 300. Второй выходной вывод 220 твердотельного переключателя 200 на первом продольном конце 310 рупорного волновода 300 электропроводно соединен с нижней стенкой 352 цилиндрического участка 350 рупорного волновода 300. Тем самым твердотельный переключатель 200 имеет возможность прикладывать посредством выходных выводов 210, 220 ВЧ электрическое напряжение между верхней стенкой 351 и нижней стенкой 352 цилиндрического участка 350 рупорного волновода 300, благодаря чему в рупорном волноводе 300 возбуждается электромагнитное колебание. Рупорный волновод 300 направляет эту возбужденную посредством твердотельного переключателя 200 ВЧ мощность в полый проводник 400.
Рупорный волновод 300 служит, таким образом, как преобразователь импедансов, который выполняет преобразование импедансов между низким импедансом твердотельного переключателя 200 и высоким импедансом полого проводника 400.
Полый проводник 400 имеет третий продольный конец 410 и четвертый продольный конец 420. Полый проводник 400 выполнен цилиндрическим и имеет площадь прямоугольного поперечного сечения, которая соответствует площади поперечного сечения рупорного волновода 300 на его втором продольном конце 320. Полый проводник 400 на своем третьем продольном конце 410 соединен со вторым продольным концом 320 рупорного волновода 300. Также полый проводник 400 имеет стенки из электропроводного материала, предпочтительно из металла. Рупорный волновод 300 и полый проводник 400 могут быть выполнены как цельная конструкция.
Фиг.1-3 показывают, что твердотельный переключатель 200 окружен экранирующим корпусом 500, который полностью охватывает твердотельный переключатель 200. Экранирующий корпус 500 состоит из электропроводного материала, предпочтительно из металла. Экранирующий корпус 500 на первой продольной стороне 310 рупорного волновода 300 электропроводно соединен с рупорным волноводом 300. Посредством экранирующего корпуса 500 гарантируется, что поверхностные токи на стенках 351, 352, 370, 380, 390, 395 рупорного волновода 300 остаются ограниченными внутренностью рупорного волновода 300. Тем самым также снижается электромагнитное излучение ВЧ генератора 100 в окружающую среду. Это имеет преимущество, состоящее в том, что ВЧ генератор 100 не оказывает помехового воздействия на другие приборы, расположенные в окрестности ВЧ генератора 100.
Экранирующий корпус 500 выполнен таким образом, что он на рабочей частоте твердотельного переключателя 200, то есть на рабочей частоте всего ВЧ генератора 100, имеет высокий импеданс. Это может достигаться тем, что экранирующий корпус 500 выполнен таким образом, что он не имеет собственных мод на рабочей частоте ВЧ генератора 100. Резонансные собственные моды экранирующего корпуса 500 должны, таким образом, находиться на частотах, которые максимально удалены от рабочей частоты твердотельного переключателя 200 и ВЧ генератора 100.
Требование высокого импеданса на рабочей частоте ВЧ генератора 100 требует, как правило, экранирующего корпуса 500 со значительными внешними размерами. Размеры экранирующего корпуса 500 могут быть уменьшены за счет того, что внутри экранирующего корпуса 500 размещается диэлектрический материал 510. Особенно предпочтительно использовать в качестве такого диэлектрического материала 510 ферромагнитный материал.
Если с помощью твердотельного переключателя 200 в рупорном волноводе 300 ВЧ генератора 100 возбуждается электромагнитное колебание, то возбужденное в рупорном волноводе 300 электромагнитное колебание вызывает зависимое от места и времени прохождение тока в стенках 351, 352, 370, 380, 390, 395 рупорного волновода 300. Зависимые от места амплитуда и фазовое положение периодического во времени прохождения тока зависят при этом от моды колебания, возбужденной в рупорном волноводе 300. При этом в различных позициях в стенках 351, 352, 370, 380, 390, 395 рупорного волновода 300 периодическое зависимое от времени прохождение тока имеет одинаковое фазовое положение. Эти позиции могут быть распределены в z-направлении рупорного волновода 300, например, согласно косинусу. Существование множества точек с одинаковым фазовым положением обеспечивает возможность инжекции прохождения тока одновременно синхронно во всех этих точках, чтобы возбудить желательную моду колебаний в рупорном волноводе 300.
Фиг.4 показывает в схематичном представлении участок альтернативной формы выполнения ВЧ генератора. Фиг.4 показывает твердотельный переключатель 200 с печатной платой 230. В показанной на фиг.4 форме выполнения на верхней стороне 231 расположен не только один первый выходной вывод 210, а множество первых выходных выводов 210. Соответственно, на нижней стороне 232 печатной платы 230 расположен не только один второй выходной вывод 220, а множество вторых выходных выводов 220. Множество первых выходных выводов 210 расположено в z-направлении друг за другом и на расстоянии согласно зависимой от z-положения косинусной функции. Также множество вторых выходных выводов 220 расположено в z-направлении друг за другом и на расстоянии согласно зависимой от z-положения косинусной функции. Первые выходные выводы 210 находятся при этом в y-направлении соответственно над вторыми выходными выводами 220. Твердотельный переключатель 200 выполнен в форме, показанной на фиг.4, чтобы между всеми первыми выходными выводами 210 и всеми вторыми выходными выводами 220 прикладывать одинаковое ВЧ электрическое напряжение и тем самым вводить ВЧ токи в верхнюю стенку 351 и в нижнюю стенку 352 рупорного волновода 300. Тем самым ВЧ генератор может в целом генерировать более высокую ВЧ мощность.
Распределение выходных выводов 210, 220 в z-направлении зависит от желательной возбуждаемой в рупорном волноводе 300 моды колебаний. Распределение выходных выводов 210, 220 в z-направлении может, как показано на фиг.4, соответствовать косинусной функции. Распределение в z-направлении может также соответствовать и другой функции. Локальное распределение прохождения тока в стенках 351, 352, 370, 380, 390, 395 рупорного волновода 300 при различных электромагнитных модах колебаний может быть вычислено и является известным для специалистов.
Фиг.5 показывает другое сечение не показанной на фиг.1-3 детали ВЧ генератора 100. Фиг.5 показывает участок твердотельного переключателя 200 с печатной платой 230 и участок экранирующего корпуса 500, который окружает твердотельный переключатель 200. Кроме того, показаны две подводящие линии 520, которые снабжают твердотельный переключатель 200 электрической энергией. Подводящие линии 520 выполнены как коаксиальные проводники с внешним проводником 521 и внутренним проводником 522. При этом внешний проводник 521 каждой подводящей линии 520 электрически соединен с экранирующим корпусом 500. Внутренний проводник 522 каждой подводящей линии 520 соединен с выводом питания твердотельного переключателя 200, например, с выводом одного или более транзисторов 240. Посредством соединения внешнего проводника 521 подводящих линий 520 с экранирующим корпусом 500 можно устранить формирование шлейфа заземления и обеспечиваемое экранирующим корпусом 500 экранирование расширить на подводящие линии 520. Вместо двух подводящих линий 520 может также быть предусмотрена только одна подводящая линия 520.
На четвертом продольном конце 420 полый проводник 400 ВЧ генератора может быть связан с не показанным на чертежах ВЧ резонатором. Подходящие структуры связи известны из уровня техники. ВЧ резонатор может, например, быть ВЧ резонатором ускорителя частиц. В этом случае выработанная ВЧ генератором 100 ВЧ мощность может использоваться в ускорителе частиц для ускорения электрически заряженных частиц.

Claims (18)

1. ВЧ генератор (100), содержащий твердотельный переключатель (200),
отличающийся тем, что
ВЧ генератор (100) содержит проходящий в z-направлении рупорный волновод (300) с первым продольным концом (310) и вторым продольным концом (320),
причем размещенная в х-у-плоскости первая площадь поперечного сечения рупорного волновода (300) у первого продольного конца (310) меньше, чем размещенная в х-у-плоскости вторая площадь поперечного сечения рупорного волновода (300) у второго продольного конца (320),
ВЧ генератор (100) дополнительно содержит проходящий в z-направлении цилиндрический полый проводник (400) с третьим продольным концом (410),
второй продольный конец (320) рупорного волновода (300) размещен у третьего продольного конца (410) полого проводника (400),
твердотельный переключатель (200) размещен у первого продольного конца (310) рупорного волновода (300), чтобы возбуждать электромагнитное колебание в рупорном волноводе (300), и
твердотельный переключатель (200) окружен металлическим экранирующим корпусом (500),
причем твердотельный переключатель (200) выполнен с возможностью возбуждения электромагнитного резонанса с первой частотой,
причем экранирующий корпус (500) не имеет собственной частоты на первой частоте.
2. ВЧ генератор (100) по п. 1,
причем внутри экранирующего корпуса (500) размещен диэлектрический материал (510).
3. ВЧ генератор (100) по п. 2, причем диэлектрический материал (510) является ферромагнитным материалом.
4. ВЧ генератор (100) по п. 1,
причем экранирующий корпус (500) электропроводно соединен с рупорным волноводом (300).
5. ВЧ генератор (100) по любому из предыдущих пунктов,
причем твердотельный переключатель (200) соединен с электрической линией питания (520),
причем электрическая линия питания (520) выполнена как коаксиальная линия,
причем внешний проводник (521) коаксиальной линии (520) проводящим образом соединен с экранирующим корпусом (500).
6. ВЧ генератор (100) по п. 1,
причем твердотельный переключатель (200) размещен в x-z-плоскости.
7. ВЧ генератор (100) по п. 6,
причем твердотельный переключатель (200) имеет первый выходной вывод (210), который размещен на верхней стороне (231) твердотельного переключателя (200),
твердотельный переключатель (200) имеет второй выходной вывод (220), который размещен на нижней стороне (232) твердотельного переключателя (200),
первый выходной вывод (210) электропроводно соединен с первой стенкой (351) рупорного волновода (300),
второй выходной вывод (220) электропроводно соединен со второй стенкой (352) рупорного волновода (300), противолежащей первой стенке (351) этого рупорного волновода.
8. ВЧ генератор (100) по п. 7,
причем твердотельный переключатель (200) имеет множество первых выходных выводов (210), которые размещены в z-направлении друг за другом на верхней стороне (231) твердотельного переключателя (200),
твердотельный переключатель (200) имеет множество вторых выходных выводов (220), которые размещены в z-направлении друг за другом на нижней стороне (232) твердотельного переключателя (200).
9. ВЧ генератор (100) по п. 8,
причем посредством твердотельного переключателя (200) в рупорном волноводе (300) может возбуждаться резонансная мода,
резонансная мода вызывает зависимое от времени и места протекание тока в первой стенке (351) полого проводника (400),
протекание тока в позициях первых выходных выводов (210) имеет соответствующее одинаковое фазовое положение.
10. ВЧ генератор (100) по любому из пп. 1-4 или 6-9,
причем полый проводник (400) имеет прямоугольное поперечное сечение.
11. ВЧ генератор (100) по любому из пп. 1-4 или 6-9, причем рупорный волновод (300) имеет прямоугольное поперечное сечение.
12. ВЧ генератор (100) по п. 11,
причем рупорный волновод (300) расширяется между первым продольным концом (310) и вторым продольным концом (320) в у-направлении.
13. ВЧ генератор (100) по п. 12,
причем рупорный волновод (300) расширяется между первым продольным концом (310) и вторым продольным концом (320) в х-направлении.
14. ВЧ генератор (100) по любому из пп. 1-4 или 6-9,
причем полый проводник (400) и рупорный волновод (300) выполнены как цельная конструкция.
15. ВЧ генератор (100) по любому из пп. 1-4 или 6-9, причем рупорный волновод (300) имеет размещенную между
первым продольным концом (310) и вторым продольным концом (320) среднюю позицию (330),
рупорный волновод (300) между первым продольным концом (310) и средней позицией (330) имеет постоянную площадь поперечного сечения.
16. ВЧ генератор (100) по п. 15,
причем рупорный волновод (300) расширяется между первым продольным концом (310) и вторым продольным концом (320) в х-направлении, и/или
причем рупорный волновод (300) расширяется между первым продольным концом (310) и вторым продольным концом (320) в у-направлении.
17. ВЧ генератор (100) по любому из пп. 1-4 или 6-9,
причем полый проводник (400) имеет четвертый продольный конец (420), который связан с ВЧ резонатором.
18. Ускоритель частиц, содержащий ВЧ генератор (100) по любому из предыдущих пунктов.
RU2012102615/12A 2011-04-07 2011-10-13 Вч генератор RU2601260C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011006983.6 2011-04-07
DE102011006983A DE102011006983A1 (de) 2011-04-07 2011-04-07 HF-Generator
PCT/EP2011/067926 WO2012136281A1 (de) 2011-04-07 2011-10-13 Hf-generator

Publications (2)

Publication Number Publication Date
RU2012102615A RU2012102615A (ru) 2015-05-20
RU2601260C2 true RU2601260C2 (ru) 2016-10-27

Family

ID=45491849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012102615/12A RU2601260C2 (ru) 2011-04-07 2011-10-13 Вч генератор

Country Status (3)

Country Link
DE (1) DE102011006983A1 (ru)
RU (1) RU2601260C2 (ru)
WO (1) WO2012136281A1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588704A (en) * 1969-05-22 1971-06-28 Univ Washington Swept frequency microwave generator
RU2331980C1 (ru) * 2007-01-16 2008-08-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Передатчик сшп-сигнала для радарных и сенсорных устройств

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233450A (en) * 1975-09-10 1977-03-14 Hitachi Ltd Microwave integrated circuit unit
FR2625843B1 (fr) * 1988-01-13 1990-04-20 Thomson Csf Transformateur de mode pour circuit de transmission d'energie hyperfrequence
DE3933875A1 (de) * 1989-10-11 1991-04-18 Technics Plasma Gmbh Vorrichtung zum einkoppeln von mikrowellen in einen behandlungsraum zur plasmaerzeugung
DE4126216B4 (de) * 1991-08-08 2004-03-11 Unaxis Deutschland Holding Gmbh Vorrichtung für Dünnschichtverfahren zur Behandlung großflächiger Substrate
US5497050A (en) 1993-01-11 1996-03-05 Polytechnic University Active RF cavity including a plurality of solid state transistors
TW492040B (en) * 2000-02-14 2002-06-21 Tokyo Electron Ltd Device and method for coupling two circuit components which have different impedances
JP2007214655A (ja) * 2006-02-07 2007-08-23 Sharp Corp 衛星放送受信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588704A (en) * 1969-05-22 1971-06-28 Univ Washington Swept frequency microwave generator
RU2331980C1 (ru) * 2007-01-16 2008-08-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Передатчик сшп-сигнала для радарных и сенсорных устройств

Also Published As

Publication number Publication date
RU2012102615A (ru) 2015-05-20
WO2012136281A1 (de) 2012-10-11
DE102011006983A1 (de) 2012-10-11

Similar Documents

Publication Publication Date Title
JP6124085B2 (ja) 無線電力伝送装置、無線電力送電装置および受電装置
US7243610B2 (en) Plasma device and plasma generating method
RU2559031C2 (ru) Вч резонатор и ускоритель с таким вч резонатором
JP3831339B2 (ja) 準光学グリッドアレイ用モード変換導波路アダプタ
JP2010141691A (ja) 導波管・伝送線路変換器、およびアンテナ装置
JP6312033B2 (ja) 共鳴結合器
KR20130118826A (ko) 마이크로웨이브 어댑터 및 관련된 발진기 시스템
WO2016194050A1 (ja) 電力変換装置
RU2601181C2 (ru) Вч генератор
JP4862375B2 (ja) 進行波形マイクロ波プラズマ発生装置
RU162399U1 (ru) Корабельная передающая антенная система
RU2601260C2 (ru) Вч генератор
RU2597004C2 (ru) Вч генератор
RU2597684C2 (ru) Вч генератор
RU2625808C2 (ru) Вч устройство и ускоритель с таким вч устройством
CN109640507B (zh) 含布置在外导体上的放大器模块的高频放大器单元
US3571750A (en) Negative resistance avalanche diode oscillator circuits
KR101894516B1 (ko) 휴대용 마이크로파 플라즈마 발생기
RU162882U1 (ru) Антенна с функцией динамического изменения приемопередающих характеристик
RU2598029C2 (ru) Вч устройство
JP2001148283A (ja) 高周波加熱装置
JP2005267289A (ja) クロック信号分配装置
RU125778U1 (ru) Сверхширокополосная антенна
US20210376472A1 (en) Electromagnetic wave transmission/reception device
Chittora et al. Design and simulation of transition waveguide to connect vircator to mode converter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191014