RU2596574C1 - Способ изготовления абразивных изделий - Google Patents

Способ изготовления абразивных изделий Download PDF

Info

Publication number
RU2596574C1
RU2596574C1 RU2015120518/02A RU2015120518A RU2596574C1 RU 2596574 C1 RU2596574 C1 RU 2596574C1 RU 2015120518/02 A RU2015120518/02 A RU 2015120518/02A RU 2015120518 A RU2015120518 A RU 2015120518A RU 2596574 C1 RU2596574 C1 RU 2596574C1
Authority
RU
Russia
Prior art keywords
abrasive
powder
silicon carbide
processing
carbide
Prior art date
Application number
RU2015120518/02A
Other languages
English (en)
Inventor
Анатолий Прокофьевич Бабичев
Мария Юрьевна Полянчикова
Юрий Николаевич Полянчиков
Николай Иванович Егоров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2015120518/02A priority Critical patent/RU2596574C1/ru
Application granted granted Critical
Publication of RU2596574C1 publication Critical patent/RU2596574C1/ru

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивного инструмента преимущественно для финишной обработки. Формообразуют абразивный порошок карбида кремния при статическом нагружении и динамическом нагружении ударной волной с последующей термообработкой. Перед формообразованием в абразивный порошок карбида кремния вводят порошок карбида бора в количестве 25-35% от массы абразивного порошка и проводят предварительную термическую обработку при температуре 2100-2200 K в течение 15-30 мин. В результате повышается качество абразивного инструмента за счет повышения его износостойкости при обработке твердых материалов. 1 табл., 2 пр.

Description

Изобретение относится к производству абразивного инструмента преимущественно для финишной обработки и может быть использовано для изготовления абразивного инструмента.
Известен способ изготовления абразивного и алмазного инструмента [Патент РФ №2071908, В24D 17/00, опубл. 20.01.1997 г. Бюлл. №2], при котором абразив подвергают ударному прессованию и затем спекают, причем процесс спекания ведут в течение 4-6 часов при температуре, составляющей 80÷90% от температуры, при которой абразив перестает находиться в исходном состоянии. При этом в качестве абразива берут алмаз.
Однако ударное прессование приводит к частичному удалению атомов углерода из кристаллической решетки и, находясь в свободном состоянии в газовой среде при спекании, которое проводится в вакууме, постоянно поддерживаемом диффузионным насосом электровакуумной печи, удаляется из камеры печи вместе с атомами воздуха. После спекания абразивный инструмент имеет структуру, обедненную атомами углерода, что уменьшает прочность абразивного инструмента из-за ослабления когезионных связей и, следовательно, снижается его качество и износостойкость при обработке твердых материалов.
Известен способ изготовления абразивных изделий [Патент РФ №2086395, В24D 18/00, C22C 29/00, опубл. 10.08.1997 г. Бюлл. №22], при котором формообразуют абразивный порошок при статическом и динамическом нагружениях ударной волной мощностью 0,5-0,65 МВт/г массы формообразуемого порошка с последующей термообработкой, а перед формообразованием в абразивный порошок электрокорунда дополнительно вводят порошок окиси магния в количестве 3-8% от массы абразивного порошка, а после формообразования проводят термообработку при температуре 1500-1600°C в течение 2-4 часов.
Однако добавление порошка окиси магния в абразивный порошок, приводящее к значительному снижению температуры спекания, приводит к созданию абразивного инструмента с пониженной твердостью, недостаточной для высокоэффективной обработки твердых материалов (например, закаленных легированных чугунов), что приводит к снижению качества абразивных изделий и их износостойкости при обработке твердых материалов.
Известны абразивные изделия и способы их изготовления (заявка на изобретение №2007132461 В24D 3/28 опубл. 10.03.2009 г.), которые представляют собой композицию, которая содержит абразивные зерна и связующее, причем связующее содержит от 10 до 90 вес. % катионно полимеризуемого состава, не более 40 вес. % радикально полимеризуемого состава и от 5 до 80 вес. % порошкового наполнителя, в пересчете на вес связующего, при этом порошковый наполнитель содержит диспергированные субмикронные частицы, а абразивные зерна выбраны из группы, в которую входят диоксид кремния, оксид алюминия, диоксид циркония, карбид кремния, нитрид кремния, нитрид бора, гранат, алмаз, сплавленный оксид алюминия и диоксид циркония, диоксид церия, диборид титана, карбид бора, порошкообразный кварц, корунд, нитрид алюминия, а также их смеси.
Кроме того, абразивные зерна имеют средний размер зерна по меньшей мере около 0,1 мкм.
Способ изготовления абразивного изделия включает в себя следующие операции:
Нанесение коллоидного композиционного связующего материала и абразивных зерен на подложку, причем композиционный связующий материал содержит по меньшей мере около 5 вес. % субмикронного порошкового наполнителя; и отверждение коллоидного композиционного связующего материала.
В результате создается абразивное изделие, в котором коллоидный композиционный связующий материал образует размерное покрытие, образованное поверх абразивных зерен и имеющее предел прочности 20 МПа.
Однако абразивное изделие, имеющее вышеописанный состав, размеры абразивных зерен и механические характеристики, не может обладать высокими режущими свойствами при обработке твердых материалов, что приводит к снижению качества абразивных изделий и их износостойкости при обработке твердых материалов.
Наиболее близким является способ изготовления абразивных изделий [Патент РФ №2293013 МПК В24D 18/00, опубл. 10.02.2007, Бюлл. №4], включающий формообразование абразивного порошка электрокорунда при статическом и динамическом нагружении ударной волной с последующей термообработкой, а перед формообразованием в абразивный порошок электрокорунда дополнительно вводят порошок карбида бора в количестве 10-20% от массы абразивного порошка и зернистостью 30 - 50% от зернистости абразивного порошка.
Добавление порошка карбида бора приводит к дополнительному дроблению крупных зерен порошка электрокорунда и образованию значительного количества различных по размерам пор после возгонки зерен карбида бора при термической обработке, что не увеличивает равномерность распределения зерен и пор по всему объему изделия, ведет к неравномерности съема металла и износа абразивного изделия и, соответственно, снижает его качество.
Задачей изобретения является получение абразивных изделий повышенного качества с повышенной износостойкостью при обработке твердых материалов.
Техническим результатом изобретения является повышение качества абразивных изделий.
Поставленный технический результат достигается тем, что формообразуют абразивный порошок карбида кремния при статическом и динамическом нагружении ударной волной с последующей термообработкой, перед формообразованием в абразивный порошок карбида кремния вводят порошок карбида бора в количестве 25-35% от массы абразивного порошка, а также проводят предварительную термическую обработку при температуре 2100-2200 K в течение 15-30 мин.
При этом добавление порошка карбида бора в абразивный порошок карбида кремния позволяет при ударном прессовании атомам углерода перемещаться из одних кристаллических решеток в другие, а особенно в решетки карбида кремния, поскольку связь кремния с углеродом значительно прочнее, нежели связь бора с углеродом. Поэтому под действием ударной волны в кристаллической решетке карбида кремния появляется значительное количество атомов «внедрения» именно углерода.
Значительное количество дополнительной энергии, привносимое ударной волной в кристаллические решетки порошков абразивной смеси карбида кремния и карбида бора, усиливает атомные связи в решетках карбида кремния по сравнению с атомными связями в кристаллических решетках карбида бора в значительно большей степени, чем и объясняется «перенасыщение» молекул карбида кремния атомами углерода, входящими в междуузельные связи.
Это также подтверждается анализом химического соединения кремния и бора с углеродом: каждый атом кремния соединен в статическом состоянии лишь с одним атомом углерода (SiC), в то время как четыре атома бора (B12C3 или B4C) соединены в кристаллической решетке карбида бора только с одним атомом углерода.
Кроме того, еще в статическом состоянии кристаллическая решетка карбида бора претерпевает сжатие, и для снятия сжимающих напряжений, чтобы вернуть решетку в нормальное статическое состояние, необходима дополнительная энергия, которая приходит с ударной волной при прессовании, ослабляя в то же время связи бора с углеродом. Однако даже в статическом состоянии значительные напряжения, возникающие при замещении вакантных мест в кристаллической решетке твердого раствора углерода в боре обусловливают склонность к распаду карбида бора, что также ускоряется под действием ударной волны при прессовании абразивной смеси из карбида кремния и карбида бора.
Имея пониженную термоустойчивость, карбид бора разлагается при температуре 2100-2200 K, что значительно меньше, чем температура спекания карбида кремния (2300 K) и его температура разложения (2570 K), в результате чего освободившиеся атомы углерода, получая дополнительную энергию от теплообразования при спекании, внедряются в кристаллическую решетку карбида кремния, заполняя отсутствующие атомы углерода, т.е. заполняя «вакансии», и создавая «атомы внедрения», повышая тем самым количество углерода в составе абразивного инструмента.
Это значительно повышает качество абразивного изделия, т.к. повышает его износостойкость при обработке твердых материалов из-за уменьшения коэффициента трения при срезании микростружки, т.к. углерод оказывает смазывающее действие при резании.
Использование количества карбида бора в количестве менее 25% от массы абразивного порошка карбида кремния не позволяет освободиться от связей с бором достаточному количеству атомов углерода, чтобы занять все «вакансии» углерода в кристаллических решетках карбида кремния, освободившиеся в результате воздействия ударной волны при прессовании, и образовать значительное количество «атомов внедрения» углерода в кристаллические решетки карбида кремния. В результате готовое абразивное изделие не обладает высоким качеством, т.к. не может быть использовано в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Использование количества карбида бора в количестве более 35% от массы абразивного порошка карбида кремния не приводит к полному заполнению «вакансий» и значительному заполнению кристаллической решетки карбида кремния «атомами внедрения» углеродом, освободившимся в результате воздействия ударной волны при прессовании и термического воздействия при спекании. Это не приводит к повышению качества готового абразивного изделия, т.к. не позволяет использовать его в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Использование предварительной термической обработки при температуре ниже 2100 K приводит к незначительному отделению атомов углерода от бора при возгонке карбида бора, что не приводит к полному заполнению «вакансий» атомов углерода в кристаллических решетках карбида кремния и значительному образованию «атомов внедрения». В результате готовое абразивное изделие не обладает высоким качеством, т.к. не может быть использовано в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Использование предварительной термической обработки при температуре выше 2200 K не приводит к значительному образованию «атомов внедрения» атомов углерода в кристаллических решетках карбида кремния, т.к. достаточно полное заполнение атомами углерода, как и заполнение «вакансий», уже произошло при температуре в интервале 2100-2200 K. В результате готовое абразивное изделие не обладает высоким качеством, т.к. не может быть использовано в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Проведение предварительной термической обработки в течение времени менее 15 минут не позволяет освободившимся от бора атомам углерода в результате действия ударной волны при прессовании абразивной смеси карбида бора и карбида кремния полностью заполнить «вакансии» в кристаллических решетках карбида кремния и образовать в них достаточное количество «атомов внедрения». В результате готовое абразивное изделие не обладает высоким качеством, т.к. не может быть использовано в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Проведение предварительной термической обработки в течение времени более 30 минут не приводит к значительному образованию «атомов внедрения» атомов углерода в кристаллических решетках карбида кремния, т.к. достаточно полное заполнение атомами углерода, как и заполнение «вакансий», уже произошло за время предварительной термической обработки в течение 30 минут. В результате готовое абразивное изделие не обладает высоким качеством, т.к. не может быть использовано в качестве абразивного инструмента на финишных операциях при обработке твердых материалов с высокой износостойкостью.
Предлагаемый способ изготовления абразивных изделий включает приготовление шихты из абразивного порошка карбида кремния и порошка карбида бора в количестве 25-35% от массы карбида кремния, формообразование при статическом и динамическом нагружении ударной волной, предварительную термическую обработку при температуре 2100-2200 K в течение 15-30 минут. Динамическое нагружение осуществляют ударной волной мощностью 0,65 МВт/г массы порошка карбида кремния с последующей термообработкой при температуре 2350 K в течение 4 часов.
Предварительная термическая обработка после формообразования и последующее спекание проводится в электровакуумной печи СШВЭ - 1.25/25 - 46, в которой создается вакуум до 10-5 Па и максимальной температурой нагрева до 2500°C (2723 K).
Испытание абразивного изделия, полученного описанным способом, проводили методом хонингования на вертикально-хонинговальном станке мод. ОФ-38А при обработке никель-хромо-титанистого чугуна ЧНХТ твердостью HRCэ 45…50 при σв более 400 МПа при следующих режимах: окружная скорость хонголовки - 50 м/мин, скорость возвратно-поступательного движения хонголовки - 16 м/мин, давление разжима брусков - 0,4 МПа.
Пример 1. Для изготовления абразивного изделия приготавливают абразивную шихту из порошков карбида кремния и карбида бора, причем количество порошка карбида бора в шихте составляет 25% от массы абразивного порошка карбида кремния, проводят статическое прессование и, не снимая статической нагрузки, проводят динамическое нагружение электрогидравлической ударной волной. После прессования заготовку извлекают из пресс-формы, помещают в электровакуумную печь и проводят предварительную термическую обработку при температуре 2100 К в течение 15 минут и затем спекают. Полученное абразивное изделие имеет предел прочности на сжатие 79 МПа, при хонинговании на указанных режимах производительность обработки по сравнению с известным инструментом составляет 128%, износ инструмента уменьшился в 1,38 раза, среднее арифметическое отклонение профиля обработанной поверхности Ra=0,42 мкм, что меньше после обработки известным инструментом в 1,36 раза.
Пример 2. Для изготовления абразивного изделия приготавливают абразивную шихту из порошков карбида кремния и карбида бора, причем количество порошка карбида бора в шихте составляет 35% от массы абразивного порошка карбида кремния, проводят статическое прессование и, не снимая статической нагрузки, проводят динамическое нагружение электрогидравлической ударной волной. После прессования заготовку извлекают из пресс-формы, помещают в электровакуумную печь и проводят предварительную термическую обработку при температуре 2200 К в течение 30 минут и затем спекают. Полученное абразивное изделие имеет предел прочности на сжатие 85 МПа, при хонинговании на указанных режимах производительность обработки по сравнению с известным инструментом составляет 140%, износ инструмента уменьшился в 1,47 раза, среднее арифметическое отклонение профиля обработанной поверхности Ra=0,34 мкм, что меньше после обработки известным инструментом в 1,68 раза.
Примеры получения абразивных изделий приведены в таблице 1.
Figure 00000001
Как следует из таблицы, оптимальными параметрами способа технологии изготовления абразивного изделия повышенного качества являются следующие:
- температура предварительной термообработки: 2100-2200 K;
- длительность предварительной термообработки: 15-30 мин.

Claims (1)

  1. Способ изготовления абразивных изделий, включающий формообразование абразивного порошка при статическом нагружении и динамическом нагружении ударной волной с последующей термообработкой, отличающийся тем, что в качестве исходного абразивного порошка берут карбид кремния, а перед формообразованием в абразивный порошок дополнительно вводят порошок карбида бора в количестве 25-35% от массы абразивного порошка и проводят предварительную термическую обработку при температуре 2100-2200 К в течение 15-30 мин.
RU2015120518/02A 2015-05-29 2015-05-29 Способ изготовления абразивных изделий RU2596574C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015120518/02A RU2596574C1 (ru) 2015-05-29 2015-05-29 Способ изготовления абразивных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015120518/02A RU2596574C1 (ru) 2015-05-29 2015-05-29 Способ изготовления абразивных изделий

Publications (1)

Publication Number Publication Date
RU2596574C1 true RU2596574C1 (ru) 2016-09-10

Family

ID=56892880

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120518/02A RU2596574C1 (ru) 2015-05-29 2015-05-29 Способ изготовления абразивных изделий

Country Status (1)

Country Link
RU (1) RU2596574C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695321A (en) * 1985-06-21 1987-09-22 New Mexico Tech Research Foundation Dynamic compaction of composite materials containing diamond
RU2117569C1 (ru) * 1997-05-30 1998-08-20 Волгоградский государственный технический университет Способ изготовления абразивного и алмазного инструмента
RU2180614C2 (ru) * 2000-04-17 2002-03-20 Волгоградский государственный технический университет Способ изготовления абразивных изделий
RU2293013C2 (ru) * 2005-04-19 2007-02-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ изготовления абразивных изделий

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695321A (en) * 1985-06-21 1987-09-22 New Mexico Tech Research Foundation Dynamic compaction of composite materials containing diamond
RU2117569C1 (ru) * 1997-05-30 1998-08-20 Волгоградский государственный технический университет Способ изготовления абразивного и алмазного инструмента
RU2180614C2 (ru) * 2000-04-17 2002-03-20 Волгоградский государственный технический университет Способ изготовления абразивных изделий
RU2293013C2 (ru) * 2005-04-19 2007-02-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ изготовления абразивных изделий

Similar Documents

Publication Publication Date Title
RU2515663C2 (ru) Композиционный материал на основе карбида бора
JP6281875B2 (ja) ニアネット切削工具インサート
JP2704044B2 (ja) 結合研磨物品用収縮減少性組成物
JP6871173B2 (ja) 砕けやすいセラミック結合ダイヤモンドコンポジット粒子及びその製造方法
JP4261130B2 (ja) シリコン/炭化ケイ素複合材料
EP1019338B1 (en) A method for producing abrasive grains and the abrasive grains produced by this method
AU2015276668B2 (en) Tungsten carbide-cubic boron nitride composite material and preparation method thereof
TW201223699A (en) Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
JP2018145020A (ja) cBN焼結体および切削工具
JP5057193B2 (ja) 均質性、緻密性が高くかつ高硬度の立方晶窒化ホウ素焼結体の製造法
CN105798307B (zh) 基于ic封装器件切割用层压金属基金刚石锯刀及制造方法
JP2007538148A (ja) 金属−セラミック−複合材料の製造法
RU2573146C1 (ru) КОМПОЗИЦИЯ УГЛЕРОДНОЙ ЗАГОТОВКИ ДЛЯ ПОЛУЧЕНИЯ SiC/C/Si КЕРАМИКИ И СПОСОБ ПОЛУЧЕНИЯ SiC/C/Si ИЗДЕЛИЙ
RU2596574C1 (ru) Способ изготовления абразивных изделий
RU2650459C1 (ru) Структурированный алмазный инструмент и способ его изготовления
RU2293013C2 (ru) Способ изготовления абразивных изделий
WO2012091535A1 (en) Zirconia-toughened-alumina ceramic inserts with the addition of nano particle metal oxides as additives
JP6039477B2 (ja) 切削工具
JP6367122B2 (ja) アルミナ焼結体、砥粒、砥石、研磨布、及びアルミナ焼結体の製造方法
JP2007245251A (ja) 研削工具及びその製造方法
JP2012144389A (ja) SiC/Si複合材料
JP7473149B2 (ja) 高硬度ダイヤモンド基塊状工具素材およびその製法
JP2011136845A (ja) プリフォーム及び金属−セラミックス複合材料
JPS5873735A (ja) ダイヤモンド焼結体の製造法
Кlymenko et al. The creation of new types of competitive cutting plates and manufacture of pilot instrument for mechanical processing of hard-to-machine materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170530