RU2593011C1 - Биотрансплантат для восстановления дефектов хрящевой ткани суставов - Google Patents

Биотрансплантат для восстановления дефектов хрящевой ткани суставов Download PDF

Info

Publication number
RU2593011C1
RU2593011C1 RU2015129217/15A RU2015129217A RU2593011C1 RU 2593011 C1 RU2593011 C1 RU 2593011C1 RU 2015129217/15 A RU2015129217/15 A RU 2015129217/15A RU 2015129217 A RU2015129217 A RU 2015129217A RU 2593011 C1 RU2593011 C1 RU 2593011C1
Authority
RU
Russia
Prior art keywords
biograft
biotransplant
solution
polymer
cartilage
Prior art date
Application number
RU2015129217/15A
Other languages
English (en)
Inventor
Вера Сергеевна Черноносова
Татьяна Сергеевна Годовикова
Алена Олеговна Степанова
Ольга Борисовна Науменко
Валентин Викторович Власов
Павел Петрович Лактионов
Original Assignee
Павел Петрович Лактионов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Петрович Лактионов filed Critical Павел Петрович Лактионов
Priority to RU2015129217/15A priority Critical patent/RU2593011C1/ru
Application granted granted Critical
Publication of RU2593011C1 publication Critical patent/RU2593011C1/ru

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к медицине и биотехнологии. Описан биотрансплантат, выполненный из биосовместимого волокнистого материала в виде пластины, изготовленной с помощью электроспиннинга из растворов синтетических полимеров или их смеси с природными полимерами, с толщиной 50÷500 мкм, имеющей поры с диаметром 5÷40 мкм. Техническим результатом является улучшение механических характеристик биотрансплантата, улучшение прочности его установки в поврежденный участок хрящевой ткани, предотвращение формирования фиброзной ткани. 5 з.п. ф-лы, 3 ил., 8 пр.

Description

Изобретение относится к медицине и биотехнологии, а именно к технологии регенеративной медицины и трансплантологии, и направлено на усовершенствование материалов, предназначенных для восстановления дефектов хрящевой ткани суставов.
Восстановление дефектов хрящевой ткани суставных поверхностей (суставов) является серьезной проблемой современной медицины. В силу гистологического строения хрящевая ткань практически не регенерирует, а в процессе регенерации часто образуется фиброзная ткань, которая не выполняет функций нормального гиалинового хряща, что приводит к усугублению патологического процесса в суставе.
Однако все известные на сегодняшний день биотрансплантаты зачастую приводят к формированию фиброзно-хрящевой ткани, либо используемые материалы не обладают требуемыми физическими свойствами или стимулируют иммунный ответ, а способы их использования для восстановления дефектов хрящевой ткани суставов отличаются трудоемкостью, требуют больших затрат времени и средств.
Известен комбинированный трансплантат для восполнения дефектов хрящевой ткани суставов, представляющий собой аллогенный деминерализованный пористый костный материал (брефоостеоматрикс или спонгиоза), заселенный аутологичными хондробластами и фибробластоподобными клетками, получаемыми из стромы суставного или реберного гиалинового хряща, или аллогенными хондробластами и фибробластоподобными клетками, получаемыми из стромы суставного или реберного гиалинового хряща органных доноров после установления смерти мозга. Первый трансплантат покрывают вторым трансплантатом, представляющим собой консервированную аллогенную донорскую твердую мозговую оболочку с прикрепленными к ней аллогенными хондробластами и фибробластоподобными клетками. Полученный комбинированный трансплантат помещают в предварительно сформированную костно-хрящевую полость (Патент RU 2383310 C1, оп. 10.03.2010).
Известен биотрансплантат для лечения травматических и дегенеративных заболеваний хрящевой ткани суставов, представляющий собой многокомпонентную, объемную, трехмерную структуру, содержащую матрицу-носитель и малодифференцированные клетки человека. В качестве матрицы-носителя используют хитозан, и/или альгинат, и/или коллаген и композиционные добавки - гиалуроновую кислоту, хондроитин сульфат при соотношении базового вещества и композиционной добавки 90-99%:1-10%. По завершении процесса изготовления носителя в него вносят суспензию клеточной культуры хондробластов, фибробластов, мезенхимальных стволовых клеток (МСК) костного мозга, жировой ткани или иного происхождения, как аутологичные так и аллогенные (патент RU 2301677 С1, оп. 27.06.2007).
Основным недостатком известных биотрансплантатов является сложная и дорогостоящая, многостадийная процедура их получения. Недостатком указанных материалов является то, что они содержат быстро разрушающиеся биополимеры - водорастворимый коллаген и полиэтиленгликоль, в результате чего входящие в состав этих композиций неколлагеновые белки, также быстро выходят в ткань и подвергаются деструкции, не оказывая предполагаемого индуцирующего эффекта.
Известен биотрансплантат для восстановления деффектов хрящевой ткани суставов, включающий матрицу-носитель для роста клеток, изготовленный из ходроитин сульфата, модифицированного метакрилатными и альдегидными группами, и фотополимеризуемый гидрогель для его применения (Wang D.A., et al., Nature Materials., 2007, V. 6, P. 385-392). Фотополимеризуемый гидрогель содержит полиэтиленгликоль диметакрилат и фотоинициатор Igracure 2959 в фосфатном буфере (рН 7.4) при соотношении компонентов 15:0.05 (в масс. %).
Для восстановления дефекта суставного хряща удаляют поврежденный участок гиалинового хряща с образованием углубления, затем осуществляют микрофракционирование и обработку углубления 25% раствором хондроитин сульфата с последующим введением гидрогеля и его фотополимеризацией в области удаленного участка поврежденного хряща (Sharma В., et al., Sci. Transl. Med., 2013, V. 5, 167ra6).
Недостатками известного биотрансплантата являются:
- недостаточные функциональные возможности биотрансплантата, поскольку он пригоден для восстановления дефектов хрящевой ткани суставов размером не более 2-4 см, вследствие того что использование данного комбинированного трансплантата не позволяет воспроизводить требуемую форму и прочно фиксировать большие объемы геля;
- в такую матрицу-носитель из субхондральной кости могут прорастать сосуды, что приводит к оссификации хрящевой ткани;
- использование такого биотрансплантата требует продолжительной терапии и ограничения физических нагрузок у пациента.
Наиболее ближайшим к заявляемому изобретению - прототипом, является биотрансплантат для замещения дефектов хрящевой ткани, включающий двухслойную матрицу-носитель из свиного коллагена I и III типа (Chondro-Gide®), предварительно заселенный хондробластами (Gooding C.R., Bartlett W., Bentley G., Skinner J.A., Carrington R., Flanagan A., Knee, 2006, V. 13, P. 203-210).
Двухслойная матрица-носитель выполнена в виде пластины с плотной и пористой сторонами. Плотный слой представляет собой гладкую поверхность, не проницаемую для клеток, препятствует проникновению клеток в полость сустава и защищает их от механической нагрузки. Другой слой матрицы-носителя состоит из коллагеновых волокон, который способствует проникновению клеток и их адсорбции.
Для фиксации биотрансплантата используют фибриновый гель, 1 мл которого содержит коагулирующие белки 75-115 мг (в т.ч. фибриноген 70-110 мг и фибронектин плазмы 2-9 мг), фактор XIII 10-50 ЕД и плазминоген 40-120 мкг.
Биотрансплантат получают следующим образом. На первой стадии в результате операционного вмешательства забирают донорские клетки, затем их наращивают в течение нескольких недель (не менее 3-х) в культуральном пластике, затем заселяют матрицу-носитель, что дополнительно занимает около 5-7 дней, и только после этого биотрансплантат используют в качестве материала для заместительной терапии хрящевой ткани.
Основными недостатками известного биотрансплантата являются низкие механические характеристики, возможность формирования фиброзной ткани, недостаточная прочность его установки в поврежденный участок хрящевой ткани, а также сложная и дорогостоящая, многостадийная процедура его получения. Кроме этого, матрица-носитель не выравнивается по высоте с поверхностью хряща. Повторное оперативное вмешательство в суставной хрящ усугубляет патологический процесс из-за повреждения синовиальной оболочки, рубцевания/воспаления, приводящего к нарушению питания хряща. Кроме того, культивирование клеток in vitro, и их повторное введение представляет определенные сложности в плане возможной контаминации клеток не идентифицированными инфекционными агентами и применение такой технологии законодательно ограничено.
Задачей изобретения является улучшение механических характеристик биотрансплантата, улучшение прочности его фиксации в поврежденный участок хрящевой ткани, предотвращение формирования фиброзной ткани.
Техническим результатом изобретения является улучшение механических характеристик биотрансплантата, улучшение прочности его фиксации в поврежденный участок хрящевой ткани, предотвращение формирования фиброзной ткани.
Поставленная задача достигается предлагаемым биотрансплантатом для восстановления дефектов хрящевой ткани суставов, представляющим собой матрицу-носитель, выполненную из волокнистого биосовместимого материала в виде пластины с толщиной 50-500 мкм, полученную методом электроспиннинга из раствора синтетического полимера или его смеси с природным полимером, формирующими в ней поры с диаметром 5-40 мкм.
Биотрансплантат может иметь прямоугольную, трапециевидную или овальную форму в зависимости от конкретной клинической ситуации.
В качестве синтетического полимера может быть использован полимер, выбранный из группы: поликапролактон (ПКЛ), полибутилентерефталат (ПБТФ), полилактид-ко-гликолид (ПЛГА), нейлон.
В качестве природного полимера может быть использован желатин, аггрекан или коллаген 2 типа, при этом конечная концентрация природного полимера в смеси с синтетическим полимером составляет 0,05-10% от массы синтетического полимера.
В качестве добавок к синтетическим полимерам и их смесям с природными полимерами при изготовлении биотрасплантата могут быть введены ростовые факторы, например костный морфогенный белок 2 (ВМР-2), инсулиноподобный фактор роста (ИФР) до конечной концентрации 1-20 нг/мл, а также лекарственные препараты, выбранные из группы антибиотиков, обезболивающих (анальгетиков) или нестероидных противовоспалительных средств, например диклофенак, теноксикам, кеторолак, что способствует созданию благоприятных условий для роста и пролиферации хондрабластов/хондроцитов.
Изготовление пластин биотрансплантата осуществляют методом электроспиннинга со следующими параметрами: напряжение - 10÷30 кВ, скорость подачи раствора полимеров - 1÷5 мл/ч, расстояние между иглой и коллектором - 10÷30 см, скорость вращения коллектора - 100÷300 об/мин.
Раствор синтетического полимера для получения пластин биотрансплантата путем электроспиннинга готовят в гексафторизопропаноле (ГФИП) до конечной концентрации полимера 5-10%.
Раствор природного полимера для получения пластин биотрансплантата путем электроспиннинга готовят в гексафторизопропаноле (ГФИП) до конечной концентрации полимера 0,5-10%.
Существенными отличительными признаками биотрансплантата, по сравнению с прототипом, являются:
1. Биотрансплантат выполнен из волокнистого биосовместимого материала в виде пластины с толщиной 50-500 мкм, полученной методом электроспиннинга из раствора синтетического полимера или его смеси с природным полимером, формирующими в ней поры с диаметром 5-40 мкм, что позволяет создавать биотрансплантат необходимой формы с улучшенными механическими характеристиками и обеспечить эффективную пролиферацию хондрабластов/хондроцитов на поверхности пластин.
2. Синтетический полимер для формирования волокон биотрансплантата выбирают из группы: поликапролактон, полибутилентерефталат, полилактид-ко-гликолид, нейлон, а природный полимер выбирают из группы: коллаген, желатин, аггрекан, что позволяет повысить прочность фиксирования биотрансплантата в области дефекта хрящевой ткани суставов и обеспечить формирование нормальной хрящевой ткани без фиброзных включений.
Заявляемый биотрансплантат имеет следующие механические характеристики: прочность на разрыв в поперечном направлении для биотрансплантата из ПКЛ 3270±983 кПа, прочность на разрыв в направлении укладки волокон для биотрансплантата из ПКЛ 4990±220 кПа, прочность на сдвиг композиции из биотрансплантата (ПКЛ) с фотополимеризуемым гелем 2330±184 кПа, прочность на сжатие композиции из биотрансплантата (ПКЛ) с гелем 13167±1157 кПа. Для сравнения, прочность на сжатие геля составляет в среднем 124±30 кПа.
Биотрансплантат используют следующим образом.
При помощи специальной фрезы удаляют поврежденный участок гиалинового хряща и формируют углубление диаметром 2-3 мм, при этом стараются не повредить субхондральную кость. В полученном отверстии послойно формируют конструкцию, состоящую из матрицы-носителя в виде пластин, пропитанных раствором фотополимеризуемого геля, которые послойно фиксируют в месте повреждения облучением светом с длиной волны 365 нм, с мощностью светового пучка 100 мВт/см2 в течение 1-2 мин.
Предлагаемый биотрансплантат обладает более высокими механическими свойствами, например прочность на сжатие как минимум в 10÷100 раз больше, чем прочность на сжатие фотополимеризуемого геля.
Использование заявляемого биотрансплантата позволит немедленно нагружать суставные поверхности, что способствует пролиферации хондроцитов и восстановлению нормального гиалинового хряща в месте имплантации.
Изобретение иллюстрируется следующими примерами конкретного выполнения.
Пример 1.
Изготовление пластины биотрансплантата из синтетических и природных полимеров осуществляли следующим способом. 150 мг полилактид-ко-гликолида (ПЛГА) растворили в 2,7 мл гексафтоизопропанола (ГФИП) при перемешивании и комнатной температуре и получили 7% раствор ПЛГА. Затем к 2,7 мл приготовленного 7% раствора ПЛГА добавили 300 мкл 5% раствора желатина в гексафтоизопропаноле (массовое соотношение ПЛГА: желатин равно 9:1, концентрация ПЛГА в пересчете на сухой вес составила 5%) и тщательно перемешали полученный раствор. Стерильный шприц заполнили 2,5 мл готовой смесью, состоящей из ПЛГА и желатина в ГФИП, и запустили процесс электроспиннинга при следующем режиме: напряжение - 23 кВ, скорость подачи полимерной композиции - 1,25 мл/ч, скорость вращения электрода-коллектора - 300 об/мин, диаметр барабана коллектора -1,5 см, длина 5 см.
По завершении электроспиннинга разрезали материал в направлении вдоль оси барабана и сняли полученный лист, из которого получали пластины необходимой формы для изготовления биотрансплантата.
На фиг. 1 представлена фотография волокнистого биотрансплантата, полученная методом сканирующей электронной микроскопии, из которой видно, что материал состоит из волокон полимера, толщина которых составляет от 0,5-1,5 микрон, размер пор составляет 5÷40 мкм.
Пример 2.
300 мг полилактид-ко-гликолида (ПЛГА) растворили в 2,7 мл гексафтоизопропанола (ГФИП) при перемешивании и комнатной температуре и получили 14% раствор. Затем к 2,7 мл приготовленного 14% раствора ПЛГА добавили 300 мкл 10% раствора желатина в гексафтоизопропаноле (массовое соотношение ПЛГА : желатин равно 9:1, концентрация ПЛГА в пересчете на сухой вес составила 10%) и тщательно перемешали полученный раствор. Стерильный шприц заполнили 2,5 мл готовой смесью, состоящей из ПЛГА и желатина в ГФИП, и запустили процесс изготовления листа волокнистого материала при следующем режиме: напряжение - 23 кВ, скорость подачи полимерной композиции - 1,5 мл/ч, скорость вращения электрода-коллектора - 300 об/мин, диаметр барабана коллектора - 1,5 см, длина 4 см.
По завершении электроспиннинга разрезали материал в направлении вдоль оси барабана и сняли полученный лист, из которого получали пластины необходимой формы для изготовления биотрансплантата.
Пример 3.
Процедуру изготовления пластины биотрансплантата из смеси синтетических и природных полимеров осуществляли аналогично примеру 1, за исключением того, что в качестве синтетического полимера использовали 10% раствор поликапролактона (ПКЛ), а в качестве белка -5% раствора аггрекана в гексафтоизопропаноле. Для электроспиннинга приготавливали композицию, содержащую смесь ПКЛ и аггрекана, взятых в массовом соотношении, равном 8,5:1,5 (концентрация ПКЛ в растворе в пересчете на сухой вес составила 6%). В результате получили лист волокнистого материала размером 5×3,5 см2, из которого изготавливали необходимой формы биотрансплантата.
Пример 4.
Процедуру изготовления пластины биотрансплантата из синтетических полимеров без добавок осуществляли следующим способом. Для приготовления 7% раствора нейлона в гексафторизопропаноле навеску 0,21 мг нейлона растворяли в 3 мл гексафторизопропанола при тщательном перемешивании. Стерильный шприц заполнили 2,3 мл готового раствора нейлона и запустили процесс электроспиннинга при следующем режиме: напряжение - 21 кВ, скорость подачи полимерной композиции - 1,6 мл/ч, скорость вращения электрода-коллектора - 300 об/мин, диаметр барабана коллектора - 1,5 см, длина 5 см.
По завершении электроспиннинга получили лист волокнистого материала размером 5×3,5 см2, из которого изготавливали необходимой формы биотрансплантат.
Было показано, что биотрансплантат из данного полимера недеградуемый и предотвращает проникновение клеток в полость сустава.
Пример 5.
Процедуру изготовления пластины биотрансплантата из синтетических и природных полимеров осуществляли аналогично примеру 1, за исключением того, что в качестве полимера использовали 15% раствор полибутилентерефталата (ПБТФ), а в качестве белка использовали 5% раствор водорастворимого коллагена. Для электроспиннинга приготавливали композицию, содержащую смесь ПБТФ и коллагена, взятых в массовом соотношении, равном 8:2 (концентрация ПБТФ в растворе в пересчете на сухой вес составила 6%). В результате получили лист волокнистого материала размером 5×<3,5 см2, из которого изготавливали необходимой формы биотрансплантат.
Пример 6.
Процедуру изготовления пластины биотрансплантата из смеси синтетических и природных полимеров осуществляли аналогично примеру 1, за исключением того, что в качестве добавки в смесь полимеров для электроспиннинга добавляли 0,5% водный раствор фактора роста ВМР-2 (костный морфогенный белок 2) до конечной концентрации 10 нг/мл в готовой композиции. Из полученной композиции изготавливали биотрансплантат электроспиннингом, как описано в примере 1.
Пример 7.
Процедуру изготовления пластины биотрансплантата из смеси синтетических и природных полимеров осуществляли аналогично примеру 1, за исключением того, что в качестве добавки в смесь полимеров для электроспиннинга добавляли 1% раствор диклофенака до конечной концентрации 1 мкг/мл в готовой композиции. Из полученной композиции изготавливали биотрансплантат электроспиннингом, как описано в примере 1.
Пример 8.
Для проверки эффективности предлагаемого биотрансплантата его имплантировали в поврежденный участок коленного сустава кролика.
Кроликов оперировали под общим наркозом. Сустав вскрывали спереди послойно С-образным доступом (разрез до 3 см, надколенник вывихнут внутрь). На наружной поверхности сустава в мыщелке бедренной кости фрезеровали отверстие диаметром 3 мм конической фрезой с плоской нижней поверхностью до субхондральной кости (не затрагивая губчатую кость), глубиной приблизительно 1 мм. Отверстие обрабатывали раствором фотополимеризуемого геля, приготовленного из желатина и хондроитин-4-сульфата по известной методике (Li Q., Williams C.G., Sun D.D., et al., J. Biomed. Mater. Res. A., 2004, V. 68, P. 28-33), освещали светом светодиодного фонаря MTE U 301 с конденсором с длиной волны 365 нм в течение 40 с, вкладывали в отверстие вырезанный высечкой биотрансплантат в виде круглой пластины, изготовленный по примерам 1-5 и пропитанный раствором геля, добавляли 15 мкл раствора геля и полимеризовали под действием светового потока фонаря МТЕ U 301 в течение 2-5 мин. Затем укладывали в отверстие дополнительные слои (1-3 в зависимости от глубины повреждения) биотрансплантата и добавляли 15 мкл геля и повторно полимеризовали светом фонаря МТЕ U 301 с длиной волны 365 нм в течение 2-5 мин. По окончании протезирования плотно послойно ушивали капсулу сустава, восстанавливая его поддерживающую функцию. Шов обрабатывали раствором йода.
На фиг. 2 представлены основные этапы операции, где: 1-2 - формирование отверстия в гиалиновом хряще коленного сустава кролика; 3 - внешний вид биотрансплантата сразу после установки.
В качестве контроля в месте повреждения использовали биотрансплантат Chondro-Gide® (Geistlich Pharma AG, Германия, прототип) или аналог острой травмы - незаполненное отверстие (контроль без вмешательства).
Спустя 1-3 месяца после операции кроликов забивали, забирали костный материал с областью повреждения и проводили его гистологическое исследование. Результаты гистологии приведены на фиг. 3, где: А - препарат костной ткани, где аналог острой травмы - незаполненное отверстие (контроль без вмешательства), Б - препарат костной ткани, где в месте повреждения использовали биотрансплантат Chondro-Gide® (прототип), В - препарат костной ткани, где искусственно созданное повреждение заполнено разработанным биотрансплантатом и зафиксировано фотополимеризуемым гелем.
На фиг. 3 А видно, что в области искусственно созданного повреждения наблюдается образование частично плотной соединительной ткани с большим числом макрофагов и частично присутствием хрящевой ткани. Консолидация новообразованных структур с окружающим хрящом и костной тканью непрочная, при процедурах de novo образованные структуры легко отслаиваются от подлежащих тканей по краю дефекта.
На фиг. 3 Б видно, что в области искусственно созданного повреждения, заполненного биотрансплантатом Chondro-Gide® (прототип), наблюдается образование хрящевой ткани с участками фиброзных включений. Образованные структуры неплотно контактируют с окружающим хрящом и костной тканью, что приводит к их частичному отслаиванию.
На фиг. 3 В видно, что в области искусственно созданного повреждения, заполненного предлагаемым биотрансплантатом в виде пластины из нейлона (пример 4) и 2-х пластин из ПЛГА (примеры 1-2, 6-7), наблюдается отсутствие воспалительных процессов, образование гомологичной хрящевой ткани и плотный контакт новообразованных структур с окружающими тканями.
Использование биотрансплантата позволит надежно зафиксировать последний в области повреждения, исключит прорастание сосудов из субхондральной кости в хрящевую ткань за счет использования в прилегающем к кости слое матрицы-носителя из недеградируемого полимера, обеспечит формирование нормальной хрящевой ткани без фиброзных включений.

Claims (6)

1. Биотрансплантат для восстановления дефектов хрящевой ткани суставов, включающий матрицу-носитель, выполненную из биосовместимого волокнистого материала в виде пластины, отличающийся тем, что матрица-носитель выполнена с помощью электроспиннинга из растворов синтетических полимеров, выбранных из группы: поликапролактон, полибутилентерефталат, полилактид-ко-гликолид, нейлон или их смеси с природными полимерами, выбранными из группы: коллаген, желатин, аггрекан, с толщиной 50÷500 мкм, имеющий поры с диаметром 5÷40 мкм.
2. Биотрансплантат по п. 1, отличающийся тем, что раствор синтетического полимера готовят в гексафторизопропаноле до конечной концентрации полимера 5,0-10,0%.
3. Биотрансплантат по п. 1, отличающийся тем, что природный полимер вводят в раствор синтетического полимера в количестве 0,05-10,0% от массы синтетического полимера.
4. Биотрансплантат по п. 1, отличающийся тем, что раствор синтетического полимера или его смесь с природным полимером содержит добавки в виде ростовых факторов или лекарственных препаратов.
5. Биотрансплантат по п. 4, отличающийся тем, что в качестве ростовых факторов выбирают костный морфогенный белок 2, инсулиноподобный фактор роста.
6. Биотрансплантат по п. 4, отличающийся тем, что в качестве лекарственных препаратов выбирают нестероидные противовоспалительные средства, в частном случае диклофенак, теноксикам, кеторолак.
RU2015129217/15A 2015-07-16 2015-07-16 Биотрансплантат для восстановления дефектов хрящевой ткани суставов RU2593011C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015129217/15A RU2593011C1 (ru) 2015-07-16 2015-07-16 Биотрансплантат для восстановления дефектов хрящевой ткани суставов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015129217/15A RU2593011C1 (ru) 2015-07-16 2015-07-16 Биотрансплантат для восстановления дефектов хрящевой ткани суставов

Publications (1)

Publication Number Publication Date
RU2593011C1 true RU2593011C1 (ru) 2016-07-27

Family

ID=56557175

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015129217/15A RU2593011C1 (ru) 2015-07-16 2015-07-16 Биотрансплантат для восстановления дефектов хрящевой ткани суставов

Country Status (1)

Country Link
RU (1) RU2593011C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669344C1 (ru) * 2017-11-02 2018-10-10 Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) Способ получения микроволокнистого материала, высвобождающего лекарственные средства
RU2687737C1 (ru) * 2018-07-11 2019-05-16 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения биомедицинского материала
RU2722452C1 (ru) * 2019-08-28 2020-06-01 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова" Министерства здравоохранения Российской Федерации Регенеративный способ замещения дефекта суставного хряща
RU2749020C1 (ru) * 2020-09-01 2021-06-03 Общество с ограниченной ответственностью "Ортософт" Способ формирования наноструктурированных композитных материалов
RU2805590C1 (ru) * 2023-04-20 2023-10-19 Общество с ограниченной ответственностью "Тканевая инженерия и графты" (ТИиГрафты) Способ изготовления протезов кровеносных сосудов малого диаметра путем электроспиннинга и устройство для его осуществления

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301677C1 (ru) * 2005-12-09 2007-06-27 ЗАО "РеМеТэкс" Биотрансплантат для лечения дегенеративных и травматических заболеваний хрящевой ткани и способ его получения
RU2383310C1 (ru) * 2008-12-12 2010-03-10 Лариса Теодоровна Волова Способ восполнения дефектов суставного хряща

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301677C1 (ru) * 2005-12-09 2007-06-27 ЗАО "РеМеТэкс" Биотрансплантат для лечения дегенеративных и травматических заболеваний хрящевой ткани и способ его получения
RU2383310C1 (ru) * 2008-12-12 2010-03-10 Лариса Теодоровна Волова Способ восполнения дефектов суставного хряща

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gooding C.R. et al., Periosteum covered versus type 1/111 collagen covered, The Knee, v.13, Issue 3, 2006, p. 203-210. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669344C1 (ru) * 2017-11-02 2018-10-10 Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) Способ получения микроволокнистого материала, высвобождающего лекарственные средства
RU2687737C1 (ru) * 2018-07-11 2019-05-16 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения биомедицинского материала
RU2722452C1 (ru) * 2019-08-28 2020-06-01 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова" Министерства здравоохранения Российской Федерации Регенеративный способ замещения дефекта суставного хряща
RU2749020C1 (ru) * 2020-09-01 2021-06-03 Общество с ограниченной ответственностью "Ортософт" Способ формирования наноструктурированных композитных материалов
RU2805590C1 (ru) * 2023-04-20 2023-10-19 Общество с ограниченной ответственностью "Тканевая инженерия и графты" (ТИиГрафты) Способ изготовления протезов кровеносных сосудов малого диаметра путем электроспиннинга и устройство для его осуществления

Similar Documents

Publication Publication Date Title
JP4628756B2 (ja) 組織修復インプラント、その製造方法および組織修復方法
US8183041B2 (en) Method of tissue repair using a multi-layered matrix
US11013828B2 (en) Muscle tissue regeneration using muscle fiber fragments
RU2451527C2 (ru) Система in-situ для внутриартикулярной регенерации хрящевой и костной тканей
US6884621B2 (en) Method and carrier for culturing multi-layer tissue in vitro
US20220054703A1 (en) Implantable Materials and Uses Thereof
JP2008521502A (ja) 半月板損傷の生体内治療及び修復方法
JP2001510358A (ja) 組織修復および再構築に用いられる生重合体発泡体
KR20080065606A (ko) 세포 이식 방법
WO2011030185A1 (en) Cell-guiding fibroinductive and angiogenic scaffolds for periodontal tissue engineering
CN2824875Y (zh) 一种注射型组织工程骨移植物
RU2593011C1 (ru) Биотрансплантат для восстановления дефектов хрящевой ткани суставов
US20200268940A1 (en) Liquid platelet-rich fibrin as a carrier system for biomaterials and biomolecules
US8785389B2 (en) Polymeric collagen biomaterials
CN101417151A (zh) 生物源性含钙化层骨软骨组织工程支架
Abid et al. Repair of surgical bone defects grafted with hydroxylapatite+ β-TCP combined with hyaluronic acid and collagen membrane in rabbits: A histological study
JP5043669B2 (ja) 細胞バンデージ
Zhao et al. Irregular bone defect repair using tissue-engineered periosteum in a rabbit model
JP2002516154A (ja) 細胞成分またはその生成物のない3次元構造のヒアルロン酸誘導体を含有した、組織細胞のインビボ再生用生体材料
DE102009024133A1 (de) Bakterielle Nanocellulose zur Knorpelneubildung
US20230256138A1 (en) Composite product for the osteoarticular regeneration of cartilage lesion
US20220378844A1 (en) Rotator cuff therapy using muscle fiber fragments
Zhang et al. A novel wound dressing material for full-thickness skin defects composed of a crosslinked acellular swim bladder
US20240148942A1 (en) Scaffold for bone regeneration and manufacturing method thereof
SK288818B6 (sk) Biocementový systém na regeneráciu defektov chrupky

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170717