RU2587796C2 - Передача сигналов с низкой латентностью через цифровую сеть - Google Patents

Передача сигналов с низкой латентностью через цифровую сеть Download PDF

Info

Publication number
RU2587796C2
RU2587796C2 RU2013126109/14A RU2013126109A RU2587796C2 RU 2587796 C2 RU2587796 C2 RU 2587796C2 RU 2013126109/14 A RU2013126109/14 A RU 2013126109/14A RU 2013126109 A RU2013126109 A RU 2013126109A RU 2587796 C2 RU2587796 C2 RU 2587796C2
Authority
RU
Russia
Prior art keywords
emergency
signal
data
safety
protocol
Prior art date
Application number
RU2013126109/14A
Other languages
English (en)
Other versions
RU2013126109A (ru
Inventor
Филипс ВАН ЛЬЕР
Хенрикус Герардус РУВЕН
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013126109A publication Critical patent/RU2013126109A/ru
Application granted granted Critical
Publication of RU2587796C2 publication Critical patent/RU2587796C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0271Operational features for monitoring or limiting apparatus function using a remote monitoring unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0038System on Chip

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Facsimiles In General (AREA)

Abstract

Изобретения относятся к медицинской технике, а именно к области диагностической визуализации. Система диагностической визуализации, обеспечивающая осуществление способа передачи данных безопасности/экстренных данных, содержит первый контроллер, который обнаруживает какие-либо небезопасные или опасные состояния в диагностическом сканере и генерирует данные безопасности/экстренные данные, блок связи, который генерирует сигнал с использованием цифрового протокола и передает через локальную цифровую сеть, выполненный с возможностью получать приоритет перед доставкой пакетов через локальную цифровую сеть и внедрять сигнал в локальную цифровую сеть. При этом цифровой протокол определяет протокол для доставки пакетов между устройствами с последовательной передачей данных, блок связи выполнен с возможностью генерировать сигнал безопасности/экстренный сигнал с использованием цифрового протокола для того, чтобы вставлять пользовательский символ, указывающий данные безопасности/экстренные данные, используя иначе неиспользуемые символьные коды, и пользовательский символ получает приоритет перед какой-либо передачей пакетов, находящейся в прогрессе. Система магнитно-резонансной визуализации содержит основной магнит по типу кольца или канала, опору, градиентную катушку, катушку РЧ передатчика, катушку РЧ приемника и один или более контроллеров. Изобретение позволяет снизить латентность передачи информации о безопасности и экстренной информации. 3 н. и 6 з.п. ф-лы, 4 ил.

Description

Настоящая заявка относится к области диагностической визуализации. Оно находит конкретное применение в передаче информации о безопасности и экстренной информации через цифровую сеть в системе магнитно-резонансной визуализации (MRI) и описано с конкретной ссылкой на нее. Однако следует понимать, что оно также находит применение в других визуализирующих устройствах и не обязательно ограничено указанным выше применением.
В настоящее время в системах магнитно-резонансной визуализации используют объединяющую шину для того, чтобы передавать информацию о безопасности и экстренную информацию. Объединяющая шина включает в себя массив специализированных сигнальных проводов для того, чтобы передавать информацию о безопасности и экстренную информацию в различные предохранительные и блокирующие механизмы системы MRI. Информация о безопасности и экстренная информация критична, например, при управлении состоянием переключателя РЧ передачи/приема, а также применима к состояниям различных других систем и управлению соответствующими устройствами в системе MRI, включая градиентные усилители, охлаждающую систему и т.п.
Например, до того как РЧ передатчик активируют для того, чтобы опробовать и передать РЧ импульс во время последовательности магнитно-резонансной (MR) визуализации, следует убедиться, что РЧ приемник находится в выключенном или отсоединенном состоянии. Передача РЧ импульса, который представляет собой импульс относительно высокой мощности, когда РЧ усилитель выполнен с возможностью принимать относительно слабые резонансные сигналы, может повредить РЧ приемник. В связи со скоростью, с которой подают импульсы и принимают эхо-сигналы в последовательности MR визуализации, эту информацию следует передавать с очень низкой латентностью и независимо от функций управления устройством обычным программным обеспечением, чтобы гарантировать, что РЧ усилитель и РЧ приемник не находятся во включенном или соединенном состоянии одновременно.
Специализированные сигнальные провода гарантируют безопасную работу системы MRI посредством предоставления независимой передачи информации о безопасности и экстренной информации с низкой латентностью в различные предохранительные и блокирующие механизмы. Несмотря на то, что специализированные сигнальные провода предоставляют решение для удовлетворения этих требований безопасности, возрастающая сложность систем MRI увеличивает стоимость и физическую сложность реализации объединяющей шины и/или сигнальных проводов для того, чтобы передавать информацию о безопасности и экстренную информацию.
Настоящая заявка предоставляет новую и улучшенную систему и способ для передачи информации о безопасности и экстренной информации, которые преодолевают указанные выше и другие проблемы.
В соответствии с одним аспектом предоставлена система диагностической визуализации. Первый контроллер обнаруживает какие-либо небезопасные или опасные состояния в диагностическом сканере и генерирует данные безопасности/экстренные данные, указывающие на небезопасные или опасные состояния. Блок связи генерирует сигнал безопасности/экстренный сигнал по данным безопасности/экстренным данным с использованием цифрового протокола и передает безопасную/экстренную ситуацию через локальную цифровую сеть.
Предоставлен способ передачи данных безопасности/экстренных данных в системе диагностической визуализации. Небезопасные или опасные состояния обнаруживают в системе диагностической визуализации. Генерируют данные безопасности/экстренные данные, указывающие на небезопасные или опасные состояния. Сигнал безопасности/экстренный сигнал генерируют по данным безопасности/экстренным данным с использованием цифрового протокола. Сигнал безопасности/экстренный сигнал передают через локальную цифровую сеть.
Одно преимущество основано на передаче информации о безопасности и экстренной информации с низкой латентностью.
Другое преимущество основано на независимой передаче информации о безопасности и экстренной информации.
Другое преимущество основано на сниженных стоимости и сложности передачи информации о безопасности и экстренной информации.
Другие дополнительные преимущества по настоящему изобретению примут во внимание специалисты в данной области после прочтения и осмысления следующего подробного описания.
Изобретение может принимать форму в различных компонентах и компоновках компонентов и в различных стадиях и компоновках стадий. Фигуры служат только цели иллюстрирования предпочтительных вариантов осуществления и их не следует толковать в качестве ограничивающих изобретение.
На фиг. 1 представлена схематичная иллюстрация системы визуализации в соответствии с настоящей заявкой.
На фиг. 2 представлена схематичная иллюстрация сигнала безопасности/экстренного сигнала в соответствии с настоящей заявкой.
На фиг. 3 представлена схематичная иллюстрация логики для передачи сигнала безопасности/экстренного сигнала без ошибок в соответствии с настоящей заявкой.
На фиг. 4 представлена схематичная иллюстрация способа передачи сигнала безопасности/экстренного сигнала в соответствии с настоящей заявкой.
Со ссылкой на фиг. 1 система 10 магнитно-резонансной визуализации (MRI) содержит основной магнит 12, который генерирует равномерное в пространстве и времени поле B0, проходящее через область 14 исследования. Основной магнит 12 может представлять собой магнит по типу кольца или канала, C-образный открытый магнит, другие конструкции открытых магнитов или тому подобное.
Катушки 16 градиентного магнитного поля, распложенные смежно с основным магнитом 12, служат для того чтобы генерировать градиенты магнитного поля вдоль выбранных осей относительно магнитного поля B0 для пространственного кодирования сигналов магнитного резонанса, для получения градиентов устраняющего намагниченность поля или тому подобного. Катушка 16 градиентного магнитного поля может включать в себя сегменты катушки, сконфигурированные для того, чтобы получать градиенты магнитного поля в трех ортогональных направлениях: типично продольном или z, поперечном или x и вертикальном или y направлениях. Блок 18 градиентного усилителя, управляемый градиентным контроллером 20, включает в себя множество усилителей для того, чтобы генерировать градиенты магнитного поля в трех ортогональных направлениях. Каждый градиентный усилитель возбуждает соответствующую катушку 16 градиентного магнитного поля для получения градиентов магнитного поля. Охлаждающий блок 22, управляемый контроллером 24 охлаждающего блока, охлаждает градиентные усилители и катушки 16 градиентного магнитного поля через серию каналов охлаждения, охладитель, конденсатор системы охлаждения с водяным охлаждением, контуры жидкостного охлаждения и т.п.
Система 10 включает в себя узел 26 радиочастотных (РЧ) катушек, расположенный в или смежно с областью 14 исследования. Несмотря на то, что они изображены окружающими пациента, также предусмотрены головные катушки, гибкие и жесткие поверхностные катушки и другие катушки, которые устанавливают на верхней и боковых поверхностях пациента, которые оборачивают вокруг тела или конечностей и т.п. Несмотря на то, что только узел 26 РЧ катушки для всего тела проиллюстрирован для простоты иллюстрации, предусмотрены катушка для всего тела для передачи и множество узлов РЧ принимающих катушек. Узел 26 катушки содержит множество катушечных элементов, которые во время работы по отдельности или совместно генерируют радиочастотные поля для возбуждения магнитного резонанса в одной или нескольких ядерных частицах, таких как 1H, 13C, 31P, 23Na, 19F или тому подобное. Узлы 26 радиочастотных катушек по отдельности или совместно или одна или несколько принимающих катушек (не показано) служат для того, чтобы обнаруживать сигналы магнитного резонанса, исходящие из области визуализации.
Чтобы получить данные магнитного резонанса субъекта 28, данный субъект располагают внутри области 14 исследования с помощью опоры пациента, при этом область, представляющая интерес, предпочтительно находится в или рядом с изоцентром основного магнитного поля. Контроллер 30 сканирования управляет градиентным контроллером 20 через цифровую сеть 33 для того, чтобы генерировать выбранные градиентные импульсы магнитного поля на градиентном усилителе 18 и чтобы накладывать выбранные градиентные импульсы магнитного поля на область визуализации через катушки 16 градиентного магнитного поля, что может подходить для выбранной последовательности магнитно-резонансной визуализации или спектроскопии. Контроллер 32 сканирования также управляет контроллером 24 охлаждающего блока через цифровую сеть 33, чтобы охлаждать градиентные усилители и катушки 16 градиентного магнитного поля. Контроллер 32 сканирования также управляет одним или несколькими РЧ передатчиками 32, через РЧ контроллер 34, через цифровую сеть 33 для того, чтобы генерировать уникальные радиочастотные сигналы для того, чтобы генерировать возбуждение магнитного резонанса и манипулирующие B1 импульсы.
Контроллер 30 сканирования также управляет РЧ приемником 38 через цифровую сеть 33, через РЧ контроллер 34, чтобы принимать индуцированные сигналы магнитного резонанса от субъекта. В варианте осуществления, в котором одна и та же катушка осуществляет прием и передачу, переключатель 36 приема/передачи служит для переключения проводников между передачами сигнала от РЧ передатчика 32 и приемом сигнала РЧ приемником 38. В варианте осуществления с раздельными принимающими катушками контроллер 30 сканирования управляет переключателем 36 приема/передачи через цифровую сеть 33 для того, чтобы переключать принимающие катушки и/или приемник 38 для того, чтобы переключать между режимом приема и режимом нарушенной настройки. Принимаемые данные от РЧ приемника 38 передают через цифровую сеть 33 и временно хранят в памяти 40 изображений и обрабатывают посредством магнитно-резонансного изображения, спектроскопии или другого процессора 42 изображений. Процессор данных магнитного резонанса может осуществлять различные функции, как известно в данной области, включая реконструкцию изображений (MRI), магнитно-резонансную спектроскопию (MRS), определение местоположения катетера или хирургического инструмента и т.п. Реконструированные магнитно-резонансные изображения, показания спектроскопии, информация о местоположении хирургического инструмента и другие обрабатываемые MR данные хранят в памяти, такой как архив пациентов медицинского учреждения. Графический пользовательский интерфейс или устройство 44 отображения включает в себя пользовательское устройство ввода, которое клиницист может использовать для управления контроллером 30 сканирования через цифровую сеть 33, чтобы выбирать последовательности сканирования и протоколы, отображать MR данные или реконструированные MR изображения и т.п.
Контроллер 30 сканирования также включает в себя блок 46 безопасности/экстренных ситуаций, который генерирует данные безопасности/экстренные данные в ответ на обнаружение небезопасных или опасных состояний в системе MRI 10 или во время последовательности MR визуализации. Блок 46 безопасности/экстренных ситуаций осуществляет наблюдение и оценку работу системы MRI 10 для того, чтобы определять, если присутствуют какие-либо небезопасные или опасные состояния. В одном из вариантов осуществления контроллер 30 сканирования осуществляет наблюдение за работой системы MRI 10 через действия или данные безопасности/экстренные данные, получаемые через цифровую сеть 33, от РЧ контроллера 34, градиентного контроллера 20, контроллера 24 охлаждающего блока и других компонентов системы. Контроллер 30 сканирования включает блок 48 связи для того, чтобы принимать данные безопасности/экстренные данные через цифровую сеть 33. Небезопасные или опасные состояния могут включать РЧ передатчик 32 и РЧ приемник 38, находящиеся во включенном или соединенном состоянии одновременно, неисправность охлаждающего блока 22, перегрев катушек 16 градиентного магнитного поля и т.п. В ответ на обнаружение небезопасного или опасного состояния блок 46 безопасности/экстренных ситуаций контроллера 30 сканирования генерирует данные безопасности/экстренные данные, указывающие на небезопасное или опасное состояние, и передает данные безопасности/экстренные данные на блок 48 связи в контроллер 30 сканирования. Блок 48 связи генерирует сигналы безопасности/экстренные сигналы по данным безопасности/экстренным данным и передает сигналы безопасности/экстренные сигналы в блоки связи 52, 54, 56 в РЧ контроллере 34, градиентном контроллере 20, контроллере 24 охлаждающего блока и других компонентах системы через цифровую сеть 33, такую как одна или несколько оптоволоконных сетей, Ethernet, IEEE 802.11 и другие сети с доступом на основе протокола интернета (IP) (RapidIO, General Пакет Radio Service (GPRS), CDMA 2000, Wireless LAN, mobile WEVIAX), и т.п.
Блок 48 связи в контроллере 30 сканирования и блоки связи используют цифровой протокол промышленного стандарта, такой как последовательный протокол RapidIO, чтобы передавать сигнал безопасности/экстренный сигнал через локальные цифровые сети 33. Предпочтительно стандартный цифровой протокол представляет собой расширение протокола цифровой сети на пакетной основе, который имеет коды, доступные для внеполосной передачи символов. Типично такие протоколы цифровых сетей имеют три уровня передачи данных, включая уровень знаков, уровень символов и уровень пакетов. Блоки 48, 50, 52, 54, 65 связи генерируют сигналы безопасности/экстренные сигналы с использованием стандартного цифрового протокола, чтобы вставлять вновь определяемые или специальные символы в неиспользуемых частях уровня символов, которые отражают данные безопасности/экстренные данные. Сигналы безопасности/экстренные сигналы включают вновь определяемые символы, так что в ответ на прием сигнала безопасности/экстренного сигнала контроллер 30 сканирования, РЧ контроллер 34, переключатель 36 приема/передачи, градиентный контроллер 20, контроллер 24 охлаждающего блока и другие компоненты, управляющие соответствующими устройствами системы MRI 10, чтобы должным образом реагировать на небезопасные или опасные состояния. Например, если сигнал безопасности/экстренный сигнал указывает на то, что РЧ передатчик и РЧ приемник находятся во включенном или соединенном состоянии одновременно, РЧ контроллер или переключатель приема/передачи по своей собственной инициативе или под управлением контроллера 30 сканирования отсоединяет один из РЧ передатчика или РЧ приемника. В ответ на прием сигнала безопасности/экстренного сигнала, указывающего на неисправность охлаждающего блока или перегрев градиентных усилителей, градиентный контроллер выключает градиентные усилители.
В другом варианте осуществления контроллер 30 сканирования управляет блоком 58 безопасности/экстренных ситуаций для того, чтобы генерировать данные безопасности/экстренные данные в ответ на прием сигналов состояния компонентов от блоков 50-56 связи, указывающих на небезопасные или опасные состояния, обнаруживаемые в системе MRI 10 или во время последовательности MR визуализации. Блок 58 безопасности/экстренных ситуаций осуществляет наблюдение и оценку работы системы MRI 10 для того, чтобы определять, обнаруживают ли какие-либо небезопасные или опасные состояния. В ответ на определение небезопасного или опасного состояния блок 58 безопасности/экстренных ситуаций генерирует данные безопасности/экстренные данные, указывающие на небезопасное или опасное состояние. Блок 58 безопасности/экстренных ситуаций передает данные безопасности/экстренные данные на блок 60 связи в блоке 58 безопасности/экстренных ситуаций. Блок 60 связи генерирует сигнал безопасности/экстренный сигнал по принимаемым данным безопасности/экстренным данным и передает сигнал безопасности/экстренный сигнал через локальные цифровые сети 33.
Градиентный контроллер 20, контроллер 24 охлаждающего блока, контроллер 30 сканирования, РЧ контроллер 34, процессор 42 изображений и блок 58 безопасности/экстренных ситуаций также содержат процессор 62, 64, 66, напримермикропроцессор или другое программное обеспечение, управляемое устройством, сконфигурированным для того, чтобы исполнять программное обеспечение, управляющее MRI, для осуществления операций, описанных более подробно ниже. Типично, программное обеспечение, управляющее MRI, содержится в материальной памяти 40, 68, 70 или на машиночитаемом носителе для исполнения процессором. Типы машиночитаемых сред включают память, такую как привод жесткого диска, CD-ROM, DVD-ROM и т.п. Также предусмотрены другие реализации процессора. Контроллеры дисплея, специализированные интегральные схемы (ASIC), FPGA и микроконтроллеры представляют собой иллюстративные примеры других типов компонентов, которые можно реализовать для того, чтобы предоставлять функции процессора. Варианты осуществления можно реализовать с использованием программного обеспечения для исполнения процессором, аппаратным обеспечением или некоторым их сочетанием.
Как описано ранее, в системе используют цифровой протокол промышленного стандарта, предпочтительно RapidIO, чтобы передавать сигналы, содержащие специальные управляющие символы через локальную цифровую сеть 33. Предпочтительно для стандартного цифрового протокола используют последовательные оптические передающие носители и это включает полнодуплексный последовательный интерфейс физического уровня между устройствами с использованием однонаправленных дифференциальных сигналов в каждом направлении. Стандарт определяет протокол для пакетной доставки между последовательными устройствами, включая передачу пакетов и управляющих символов, управление потоками, подтверждения обработки ошибок и другие функции для взаимодействия устройств. Последовательные устройства включают в себя логику в физической реализации транспортного уровня для того, чтобы и генерировать и интерпретировать стандартный цифровой протокол. Стандартный цифровой протокол разработан так, чтобы удовлетворять требованиям безопасности к независимой работе с низкой латентностью при совместном исполнении с другими протоколами в локальной цифровой сети 33 и, таким образом, сделать возможным устранение решений со специализированными кабелями. Как указано выше, протокол представляет собой расширение пакетных протоколов цифровых сетей, которые имеют коды, доступные для внеполосной передачи символов. Стандартный цифровой протокол типично включает три уровня передачи данных: знак, символ и пакет. Один такой протокол представляет собой протокол промышленного стандарта RapidIO. Уровень знаков типично содержит 8-10-битное кодирование и включает «1» и «0», которые передаются через локальную цифровую сеть 33. Уровень символов типично включает 32 или 40 бит и его используют для передачи сервисной информации о протоколе, сервисной программы канала, подтверждений пакетов и определения границ пакетов. Пакетный уровень несет пакеты стандартной цифровой информации.
На фиг. 2 проиллюстрирован сигнал безопасности/экстренный сигнал, реализуемый через специальный символ стандартного цифрового протокола. Стандартный цифровой протокол имеет множество предварительно определяемых символьных кодов. В сигнале безопасности/экстренном сигнале 98 используют неиспользуемые символьные коды 100, которые отличаются от стандартных символьных кодов стандартного цифрового протокола для того, чтобы передавать ограниченное число (например, 16) бинарных значений сигналов 102. Латентность передачи таких символов ограничена размером символа (32 или 40 бит для RapidIO) и скоростью передачи данных по сети. Для минимальной латентности символ получает приоритет перед передачей какого-либо пакета, который находится в прогрессе. Это гарантирует, что латентность не зависит от другого использования сети. Неиспользуемый символьный код 100 определяют для индикации небезопасного или опасного состояния, обнаруживаемого в системе MRI или во время последовательности MR визуализации. Логику вставляют в физические реализации транспортного уровня различных блоков 48-56 связи и устройств в системе MRI для того, чтобы генерировать и интерпретировать коды 100 вновь определяемых или специальных символов.
Значения сигналов 102 в сигнале безопасности/экстренном сигнале представляют собой серию отдельных битов цифровой информации, которые передаются с чрезвычайно низкой латентностью (порядка микросекунд). Значения сигналов 102 содержат данные безопасности/экстренные данные, указывающие на небезопасное или опасное состояние. Значения сигналов 102 определяют так, что каждому небезопасному или опасному состоянию дают индивидуальное значение, которое можно интерпретировать посредством блоков связи. Логику вставляют в физическую реализацию транспортного уровня различных блоков 48-56 связи и устройств в системе MRI для того, чтобы генерировать и интерпретировать вновь определяемые или специальные значения сигнала. Например, когда блок связи принимает вновь определяемый символьный код, указывающий на небезопасное или опасное состояние в системе MRI или во время последовательности MR визуализации, блок связи интерпретирует значения сигналов для того, чтобы определять, какое небезопасное или опасное состояние имеет место, которое затем передают на соответствующий контроллер. Список типично выделяемых сигналов приведен ниже:
Сигнал (102) Описание
RESET Сброс устройств
START Запуск активации механизмов растяжения
ERROR Возникла неизвестная ошибка
ATTENTION Устройство в сети требует внимания
DETUNE_1H Нарушить настройку элементов 1H катушек
INTER_REQ_1H Запросить предохранительное состояние приемника 1H
INTER_ACK_1H Подтвердить предохранительное состояние приемника 1H
DETUNE_MN Нарушить настройку выбранных элементов многоядерных катушек
INTER_REQ_MN Запросить предохранительное состояние многоядерного приемника
INTER_ACK_ MN Подтвердить предохранительное состояние многоядерного приемника
Локальная цифровая сеть типично может передавать 16 сигналов в одном направлении от блоков связи 48, 60 и 16 сигналов в другом направлении от блоков связи 50-56 через каждый отдельный канал. Определяемые 16 значений сигналов 102 передают одновременно посредством одного символьного кода 100. Обыкновенный символьный код можно использовать для того, чтобы идентифицировать экстренную передачу, или множество символьных кодов можно использовать для того, чтобы идентифицировать различные типы экстренной передачи. Через каждый канал можно посылать 16 из этих значений сигналов одновременно. Передачу сигнала реализуют с использованием вновь определяемых символьных кодов 100. Поскольку символ может представлять собой 32- или 40-битное значение, которое можно передавать асинхронно, передача сигнала может распространяться через сеть с очень низкой латентностью. Передачу экстренного сигнала можно вставлять между или в середине другой передачи, чтобы добиться надежной передачи информации о безопасности/экстренной информации с низкой латентностью. Когда значение сигнала меняется, символ 106 запроса сигнала посылают через канал, передающий состояние всех 16 значений сигналов 102. Когда принимают символ запроса сигнала, возвращают символ 106 подтверждения сигнала. До тех пор пока сигналы не подтверждены, происходит (повторная) передача запросов сигналов. Компонент коррекции ошибок (CRC) 104 наряду с подтверждающими компонентами обеспечивает надежную передачу без ошибок.
Передача сигнала безопасности/экстренного сигнала также получает приоритет перед доставкой нормального пакета и она может быть внедрена в какой-либо конкретный момент времени при условии, что синхронизирована с кадрами доставки по физическому каналу. В любом 40-битном кадре можно посылать 40-битный кодированный символ, который получает приоритет перед передачей пакета. В такой ситуации только единственная присутствующая латентность будет составлять 40-битный кадр в фактическом канале. Если передача сигнала безопасности/экстренного сигнала получает приоритет перед передачей пакета во время 40-битного кадра, передача пакета продолжается после успешной передачи кодового символа. Протокол также может быть реализован во встроенном программном обеспечении (например, в VHDL на FPGA или в ASIC), которое можно исполнять и валидировать независимо от нормальных (типично на основе программного обеспечения) функций управления устройством. Такая реализация устраняет зависимость от (правильно) работающего программного обеспечения, что гарантирует, что необходимая передача сигналов работает в отсутствие программного обеспечения или в присутствии сбоя в программном обеспечении.
На фиг. 3 проиллюстрирована логика для надежной передачи сигнала безопасности/экстренного сигнала 98 без ошибок. Запрошенный регистр 200 в каждом блоке связи содержит символьный код и значения сигналов сигнала безопасности/экстренного сигнала. Принимаемый регистр 202 в принимающем блоке связи содержит сигнал безопасности/экстренный сигнал, принятый без ошибок. Подтвержденный регистр 204 при отсылке посылающем блоке связи содержит символьный код и значения сигналов сигнала безопасности/экстренного сигнала, которые подтверждены без ошибки посредством принимающего регистра 202. Таймер используют для того, чтобы избегать насыщения канала запросами сигналов. Новый запрос сигнала не передают при условии, что таймер не истек. Если запрашиваемый сигнал безопасности/экстренный сигнал не равен подтверждаемому сигналу безопасности/экстренному сигналу, тогда возникла ошибка при передаче сигнала безопасности/экстренного сигнала. Если таймер истек, то блок связи повторно передает сигнал безопасности/экстренный сигнал и вновь запускает таймер. Если сигнал безопасности/экстренный сигнал принят без ошибки, тогда сигнал безопасности/экстренный сигнал хранят в подтвержденном регистре 204 и таймер останавливают. Если сигнал безопасности/экстренный сигнал, который хранят в подтвержденном регистре 204, принимают с ошибкой CRC, ошибку игнорируют.
Если таймер истекает и запрошенный сигнал безопасности/экстренный сигнал все еще не подтвержден, тогда посылают запрос на повторную передачу. Если получен повторно переданный сигнал безопасности/экстренный сигнал в принимающем регистре 202 без ошибок, тогда сигнал хранят и подтвержденный сигнал безопасности/экстренный сигнал посылают в подтвержденный регистр 204. Если сигнал подтверждения, принятый в подтвержденный регистр 204, принимают с ошибкой CRC, ошибку игнорируют. Если запрошенные сигналы безопасности/экстренные сигналы меняются быстро, тогда эти изменения могут не быть отражены в принимающем регистре 202, поскольку имеет место предел, при котором можно передавать сигналы безопасности/экстренные сигналы. Это происходит, когда сигналы безопасности/экстренные сигналы меняются быстрее, чем они могут быть подтверждены.
На фиг. 4 проиллюстрирован способ передачи сигнала безопасности/экстренного сигнала. На стадии 300 небезопасные или опасные состояния обнаруживают в сканере MRI. Генерируют данные безопасности/экстренные данные, указывающие на небезопасные или опасные состояния на стадии 302. На стадии 304 сигнал безопасности/экстренный сигнал генерируют по данным безопасности/экстренным данным с использованием стандартного цифрового протокола, но с использованием символа безопасности/экстренного символа 100. Сигнал безопасности/экстренный сигнал передают по локальной цифровой сети 33 на другие блоки связи. Подходящий блок связи посылает подтверждение на стадии 308. На стадии 310 посылающий блок связи принимает подтверждение или на стадии 312 посылающий блок связи снова повторно посылает сигнал безопасности/экстренный сигнал 98 снова в ответ на отказ для того, чтобы принимать подтверждение принятия передачи без ошибок.
Изобретение описано со ссылкой на предпочтительные варианты осуществления. Модификации и изменения могут прийти на ум после прочтения и осмысления предшествующего подробного описания. Подразумевают, что изобретение следует толковать как включающее все такие модификации и изменения до тех пор, пока они входят в объем приложенной формулы изобретения или ее эквивалентов.

Claims (9)

1. Система диагностической визуализации, содержащая:
первый контроллер (20, 24, 30, 34), который обнаруживает какие-либо небезопасные или опасные состояния в диагностическом сканере (10) и генерирует данные безопасности/экстренные данные (102), указывающие на небезопасные или опасные состояния;
блок связи (48, 50-56, 60), который генерирует сигнал безопасности/экстренный сигнал (98) по данным безопасности/экстренным данным с использованием цифрового протокола и передает безопасную/экстренную ситуацию через локальную цифровую сеть (33);
причем блок связи дополнительно выполнен с возможностью получать приоритет перед доставкой пакетов через локальную цифровую сеть (33) и внедрять сигнал безопасности/экстренный сигнал в локальную цифровую сеть (33), причем цифровой протокол определяет протокол для доставки пакетов между устройствами с последовательной передачей данных, включая три уровня передачи данных: уровень знаков, уровень символов и пакетный уровень, и блок связи (48, 50-56, 60) выполнен с возможностью генерировать сигнал безопасности/экстренный сигнал (98) с использованием цифрового протокола для того, чтобы вставлять пользовательский символ (100), указывающий данные безопасности/экстренные данные, используя иначе неиспользуемые символьные коды, и пользовательский символ (100) получает приоритет перед какой-либо передачей пакетов, находящейся в прогрессе.
2. Система по п. 1, в которой блок связи (48, 50-56, 60) включает в себя встроенное программное обеспечение и работает независимо от функций системы диагностической визуализации, чтобы генерировать сигнал безопасности/экстренный сигнал (98).
3. Система по п. 1, причем система диагностической визуализации включает в себя систему магнитного резонанса, которая имеет РЧ передатчик (32) и РЧ приемник (38), и причем небезопасные или опасные состояния включают в себя одновременное нахождение РЧ передатчика (32) и РЧ приемника (38) в соединенном состоянии.
4. Система по п. 1, в которой локальная цифровая сеть (33) включает в себя оптоволоконную сеть, через которую осуществляется оптическая передача сигналов безопасности/экстренных сигналов.
5. Система по п. 1, в которой передача сигнала безопасности/экстренного сигнала (98) включает в себя компонент обнаружения ошибок CRC (104).
6. Способ передачи данных безопасности/экстренных данных в системе диагностической визуализации (10), содержащий:
обнаружение небезопасных или опасных состояний в системе диагностической визуализации (10);
генерацию данных безопасности/экстренных данных, указывающих на небезопасные или опасные состояния;
генерацию сигнала безопасности/экстренного сигнала (98) по данным безопасности/экстренным данным (102) с использованием цифрового протокола; и
передачу сигнала безопасности/экстренного сигнала через локальную цифровую сеть (33), причем передача сигнала безопасности/экстренного сигнала получает приоритет перед доставкой пакетов через локальную цифровую сеть (33), причем цифровой протокол определяет протокол для доставки пакетов между устройствами с последовательной передачей данных, включая три уровня передачи данных: уровень знаков, уровень символов и пакетный уровень, и сигнал безопасности/экстренный сигнал (98) включает в себя компонент (100) пользовательского символа, компонент (106) подтверждения/запроса, данные безопасности/экстренные данные (102) и компонент (104) проверки ошибок, и пользовательский символ (100) получает приоритет перед какой-либо передачей пакетов, находящейся в прогрессе.
7. Способ по п. 6, в котором цифровой протокол представляет собой стандартный сетевой протокол с пользовательскими символами, отличающимися от символов стандартного сетевого протокола для того, чтобы идентифицировать сигнал безопасности/экстренный сигнал 98.
8. Способ по п. 6, в котором система диагностической визуализации включает в себя систему магнитного резонанса, которая имеет РЧ передатчик (32) и РЧ приемник (38), причем небезопасные или опасные состояния включают в себя одновременное нахождение РЧ передатчика (32) и РЧ приемника (38) в соединенном состоянии.
9. Система магнитно-резонансной визуализации (MRI) (10), содержащая:
основной магнит (12) по типу кольца или канала, сконфигурированный с возможностью определять визуализирующий канал;
опору, сконфигурированную с возможностью поддерживать субъект внутри и вдоль канала;
градиентную катушку (16), сконфигурированную с возможностью создавать градиенты магнитного поля в визуализирующем канале;
катушку РЧ передатчика (32), сконфигурированную с возможностью передавать РЧ импульсы внутрь визуализирующего канала;
катушку РЧ приемника (38), сконфигурированную, с возможностью принимать индуцированные РЧ импульсы; и
один или более контроллеров для осуществления способа по любому из пп. 6-8.
RU2013126109/14A 2010-11-08 2011-11-07 Передача сигналов с низкой латентностью через цифровую сеть RU2587796C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41099510P 2010-11-08 2010-11-08
US61/410,995 2010-11-08
PCT/IB2011/054947 WO2012063183A2 (en) 2010-11-08 2011-11-07 Low latency signaling over digital network

Publications (2)

Publication Number Publication Date
RU2013126109A RU2013126109A (ru) 2014-12-20
RU2587796C2 true RU2587796C2 (ru) 2016-06-20

Family

ID=45562366

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013126109/14A RU2587796C2 (ru) 2010-11-08 2011-11-07 Передача сигналов с низкой латентностью через цифровую сеть

Country Status (7)

Country Link
US (1) US9737234B2 (ru)
EP (1) EP2637558B1 (ru)
JP (1) JP5809283B2 (ru)
CN (1) CN103220971B (ru)
BR (1) BR112013011029A2 (ru)
RU (1) RU2587796C2 (ru)
WO (1) WO2012063183A2 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214925B4 (de) * 2014-09-11 2019-06-06 Siemens Healthcare Gmbh Verfahren zum Betrieb einer Magnetresonanzeinrichtung und Magnetresonanzeinrichtung
CN108450021B (zh) * 2015-11-13 2022-05-24 皇家飞利浦有限公司 具有用户界面的磁共振检查系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275559B1 (en) * 1999-10-08 2001-08-14 General Electric Company Method and system for diagnosing faults in imaging scanners
US7349889B1 (en) * 2000-11-20 2008-03-25 Rohm And Haas Electronic Materials Llc System and method for remotely diagnosing faults
WO2008155703A1 (en) * 2007-06-19 2008-12-24 Koninklijke Philips Electronics N.V. Mri radio frequency receiver comprising digital down converter
RU2400135C1 (ru) * 2009-06-04 2010-09-27 Общество с ограниченной ответственностью "С.П.ГЕЛПИК" Магнитно-резонансный томограф для обследования конечностей

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726571A (en) * 1996-04-24 1998-03-10 The Regents Of The University Of California Apparatus and method for real-time k-space mapping of the scanning operation of a magnetic resonance imaging system
US6157194A (en) * 1996-11-27 2000-12-05 Fonar Corporation Control of MRI system
US6501849B1 (en) * 1997-09-02 2002-12-31 General Electric Company System and method for performing image-based diagnosis over a network
US6609217B1 (en) * 1998-03-30 2003-08-19 General Electric Company System and method for diagnosing and validating a machine over a network using waveform data
US6731798B1 (en) * 1998-04-30 2004-05-04 General Electric Company Method for converting digital image pixel values including remote services provided over a network
US6298112B1 (en) * 1998-07-01 2001-10-02 Ge Medical Systems Global Technology Co. Llc Methods and apparatus for helical multi-frame image reconstruction in a computed tomography fluoro system including data communications over a network
US6198283B1 (en) * 1998-09-18 2001-03-06 Ge Medical Systems Global Technology Llc System and method of phase sensitive MRI reconstruction using partial k-space data and including a network
US6603494B1 (en) * 1998-11-25 2003-08-05 Ge Medical Systems Global Technology Company, Llc Multiple modality interface for imaging systems including remote services over a network
US7127499B1 (en) * 1998-11-25 2006-10-24 General Electric Company Medical diagnostic system service method and apparatus
US6578002B1 (en) * 1998-11-25 2003-06-10 Gregory John Derzay Medical diagnostic system service platform
US6353445B1 (en) * 1998-11-25 2002-03-05 Ge Medical Systems Global Technology Company, Llc Medical imaging system with integrated service interface
US6381557B1 (en) * 1998-11-25 2002-04-30 Ge Medical Systems Global Technology Company, Llc Medical imaging system service evaluation method and apparatus
US6377162B1 (en) * 1998-11-25 2002-04-23 Ge Medical Systems Global Technology Company, Llc Medical diagnostic field service method and apparatus
US6396266B1 (en) * 1998-11-25 2002-05-28 General Electric Company MR imaging system with interactive MR geometry prescription control
US6434572B2 (en) * 1998-11-25 2002-08-13 Ge Medical Technology Services, Inc. Medical diagnostic system management method and apparatus
US6598011B1 (en) * 1998-11-25 2003-07-22 Ianne Mae Howards Koritzinsky Medical diagnostic system services interface
US6272469B1 (en) * 1998-11-25 2001-08-07 Ge Medical Systems Global Technology Company, Llc Imaging system protocol handling method and apparatus
US6351122B1 (en) * 1998-12-22 2002-02-26 General Electric Company MRI reconstruction using scan-specific partial echo and partial NEX data acquisitions and a network
US7080095B2 (en) * 1998-12-31 2006-07-18 General Electric Company Medical diagnostic system remote service method and apparatus
US6434617B1 (en) 1999-02-22 2002-08-13 Hewlett-Packard Co. Extensible, object-oriented network interface
US6256372B1 (en) * 1999-03-16 2001-07-03 General Electric Company Apparatus and methods for stereo radiography
US6494831B1 (en) * 1999-09-03 2002-12-17 Ge Medical Technology Services, Inc. Medical diagnostic system service connectivity method and apparatus
US6418334B1 (en) * 1999-10-19 2002-07-09 General Electric Company Method and apparatus for logging and dynamically configuring performance analysis of a medical diagnostic imaging system
US6509914B1 (en) * 1999-11-24 2003-01-21 Ge Medical Technology Services, Inc. Problem-solution resource system for medical diagnostic equipment
US6691134B1 (en) * 1999-11-24 2004-02-10 Ge Medical Technology Services, Inc. Image-based artifact troubleshooting for medical systems
US6574518B1 (en) * 1999-11-29 2003-06-03 General Electric Company Method and apparatus for communicating operational data for a system unit in a medical diagnostic system
US6325540B1 (en) * 1999-11-29 2001-12-04 General Electric Company Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system
US7050984B1 (en) * 1999-12-22 2006-05-23 Ge Medical Systems, Inc. Integrated interactive service to a plurality of medical diagnostic systems
US6412980B1 (en) * 1999-12-30 2002-07-02 Ge Medical Systems Global Technology Company, Llc Method and apparatus for configuring and monitoring a system unit in a medical diagnostic system
US7263710B1 (en) * 1999-12-31 2007-08-28 General Electric Company Medical diagnostic system with on-line real-time video training
US6546230B1 (en) * 1999-12-31 2003-04-08 General Electric Company Method and apparatus for skills assessment and online training
US7890887B1 (en) 2001-03-07 2011-02-15 Fonar Corporation System and method for the operation of diagnostic medical equipment
US7219222B1 (en) * 2002-01-18 2007-05-15 Ge Medical Technology Services, Inc. Method and system to grant access to software options resident on a medical imaging device
US7269243B2 (en) * 2002-02-25 2007-09-11 Ge Medical Systems Global Technology Company, Llc Method and apparatus for controlling electron beam motion based on calibration information
US7489687B2 (en) * 2002-04-11 2009-02-10 Avaya. Inc. Emergency bandwidth allocation with an RSVP-like protocol
US7254623B1 (en) * 2002-04-16 2007-08-07 General Electric Company Method and apparatus for reducing x-ray dosage in CT imaging prescription
US20030214953A1 (en) * 2002-05-14 2003-11-20 Ge Medical Systems Global Technology Company, Llc Networked magnetic resonance imaging system and method incorporating same
US7055062B2 (en) * 2002-10-31 2006-05-30 General Electric Company Method, system and program product for establishing a self-diagnosing and self-repairing automated system
US6975966B2 (en) * 2003-01-28 2005-12-13 Fisher-Rosemount Systems, Inc. Integrated diagnostics in a process plant having a process control system and a safety system
US6912481B2 (en) * 2003-03-14 2005-06-28 Ge Medical Systems, Inc. Medical equipment predictive maintenance method and apparatus
DE10354494B4 (de) 2003-11-21 2019-04-11 Siemens Healthcare Gmbh Verfahren zur Daten- und Signalübertragung zwischen unterschiedlichen Teileinheiten einer medizintechnischen Anlage
US8027344B2 (en) * 2003-12-05 2011-09-27 Broadcom Corporation Transmission of data packets of different priority levels using pre-emption
EP1629773B8 (en) * 2004-08-30 2012-06-20 Kabushiki Kaisha Toshiba Magnetic resonance diagnostic apparatus
DE102004045743A1 (de) * 2004-09-21 2006-03-30 Siemens Ag Vorrichtung und Verfahren für die Fernwartung
CN1855920A (zh) 2005-04-28 2006-11-01 西门子(中国)有限公司 磁共振系统多点总线上的通信方法
CN101321686A (zh) 2005-10-07 2008-12-10 佛罗里达大学研究基金会有限公司 用于多路信号传递和光编码的多组分纳米颗粒
US7451002B2 (en) * 2006-01-06 2008-11-11 Ge Medical Systems Global Technology Company, Llc Automated generation of transfer functions based upon machine data
US7703020B2 (en) * 2006-03-31 2010-04-20 General Electric Company Medical diagnostic system interface
JP5063610B2 (ja) * 2006-10-27 2012-10-31 株式会社日立メディコ 医用画像診断装置及びリモートメンテナンスシステム
KR100843136B1 (ko) 2006-11-14 2008-07-02 삼성전자주식회사 비휘발성 메모리에서 연산 처리를 제어하는 장치 및 그방법
US8416076B2 (en) * 2008-04-02 2013-04-09 The Trustees Of Dartmouth College Magnetic proximity sensor system and associated methods of sensing a magnetic field
AU2009278007B2 (en) 2008-07-31 2015-08-27 Alma Mater Studiorum - Universita' Di Bologna Active particles for bio-analytical applications and methods for their preparation
IT1391530B1 (it) 2008-07-31 2012-01-11 Cyanagen S R L Particelle attive per applicazioni bio-analitiche e metodi per la loro preparazione
EP2226002B1 (en) * 2009-03-04 2012-01-18 Fujitsu Limited Improvements to body area networks
US9313140B2 (en) 2009-10-23 2016-04-12 Broadcom Corporation Packet preemption for low latency
US8422634B2 (en) 2010-01-14 2013-04-16 Siemens Medical Solutions Usa, Inc. Automated medical imaging system fault detection
KR101501514B1 (ko) * 2011-01-31 2015-03-12 삼성메디슨 주식회사 초음파 진단 장치 및 초음파 진단 장치의 출력 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275559B1 (en) * 1999-10-08 2001-08-14 General Electric Company Method and system for diagnosing faults in imaging scanners
US7349889B1 (en) * 2000-11-20 2008-03-25 Rohm And Haas Electronic Materials Llc System and method for remotely diagnosing faults
WO2008155703A1 (en) * 2007-06-19 2008-12-24 Koninklijke Philips Electronics N.V. Mri radio frequency receiver comprising digital down converter
RU2400135C1 (ru) * 2009-06-04 2010-09-27 Общество с ограниченной ответственностью "С.П.ГЕЛПИК" Магнитно-резонансный томограф для обследования конечностей

Also Published As

Publication number Publication date
JP2013544586A (ja) 2013-12-19
BR112013011029A2 (pt) 2016-09-13
WO2012063183A2 (en) 2012-05-18
EP2637558A2 (en) 2013-09-18
US9737234B2 (en) 2017-08-22
RU2013126109A (ru) 2014-12-20
CN103220971A (zh) 2013-07-24
EP2637558B1 (en) 2016-03-23
US20130238286A1 (en) 2013-09-12
JP5809283B2 (ja) 2015-11-10
CN103220971B (zh) 2017-08-25
WO2012063183A3 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US9949639B2 (en) Method and system for providing data communication in continuous glucose monitoring and management system
WO2006099011A1 (en) Wireless in-bore patient monitor for mri
US9861334B2 (en) Radiographic imaging system, radiographic imaging device, handheld terminal device and radiographic imaging method
KR101820301B1 (ko) 자기 공명 영상 장치 및 그 제어 방법
JP2008173356A (ja) Mri装置
JP2008012296A (ja) 傾斜コイルの表面に強制気流を提供する装置及び方法
US20030214953A1 (en) Networked magnetic resonance imaging system and method incorporating same
JP2007275596A (ja) 医療総合システム
CN104000588A (zh) 在医疗设备中定位患者的方法和系统
RU2587796C2 (ru) Передача сигналов с низкой латентностью через цифровую сеть
JP2006271763A (ja) 医療システムおよび医療データ通信方法
CN102188245B (zh) 用于在mr图像获取中进行脂肪抑制的系统
EP2626717A1 (en) Magnetic resonance imaging apparatus
US10473744B2 (en) Magnetic resonance imaging apparatus and method of obtaining magnetic resonance image thereof
US20140167760A1 (en) System for communication usable by magnetic resonance and other imaging devices
CN108896940B (zh) 用于补偿mri的梯度脉冲的系统和方法
CN204500697U (zh) 远端扫描触发设备和磁共振成像系统
EP1629630A1 (en) De-activation at least in part, of receiver in response, at least in part to determination that an idle condition exists
WO2014175056A1 (ja) 磁気共鳴イメージング装置、医用情報処理装置及び患者情報表示方法
US11700592B2 (en) Adjusting a transmission frequency of a physiological monitoring unit
US10939886B2 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method, and computer-readable medium
EP3409192A1 (en) Magnetic resonance imaging apparatus and magnetic resonance image acquisition method thereof
WO2024094450A1 (en) Clinical idle-mode detector for medical device maintenance functions
JP2023049842A (ja) 放射線撮影装置、放射線撮影システム、および制御方法
JP2001212102A (ja) 信号獲得装置および画像撮影装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201108