RU2584685C2 - Способ формования гранулы газового гидрата - Google Patents

Способ формования гранулы газового гидрата Download PDF

Info

Publication number
RU2584685C2
RU2584685C2 RU2013148118/04A RU2013148118A RU2584685C2 RU 2584685 C2 RU2584685 C2 RU 2584685C2 RU 2013148118/04 A RU2013148118/04 A RU 2013148118/04A RU 2013148118 A RU2013148118 A RU 2013148118A RU 2584685 C2 RU2584685 C2 RU 2584685C2
Authority
RU
Russia
Prior art keywords
gas hydrate
compression
suspension
water
granules
Prior art date
Application number
RU2013148118/04A
Other languages
English (en)
Other versions
RU2013148118A (ru
Inventor
Ватару ИВАБУТИ
Томоаки ЕГАМИ
Хидео НАРИТА
Дзиро НАГАО
Кийофуми СУДЗУКИ
Original Assignee
Мицуи Инджиниринг энд Шипбилдинг Ко., Лтд.
Нэшнл Инститьют Оф Эдванст Индастриал Сайенс Энд Текнолоджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицуи Инджиниринг энд Шипбилдинг Ко., Лтд., Нэшнл Инститьют Оф Эдванст Индастриал Сайенс Энд Текнолоджи filed Critical Мицуи Инджиниринг энд Шипбилдинг Ко., Лтд.
Publication of RU2013148118A publication Critical patent/RU2013148118A/ru
Application granted granted Critical
Publication of RU2584685C2 publication Critical patent/RU2584685C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/22Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by pressing in moulds or between rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams
    • B30B9/06Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams co-operating with permeable casings or strainers
    • B30B9/067Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams co-operating with permeable casings or strainers with a retractable abutment member closing one end of the press chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/08Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Glanulating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к вариантам способа формования гранулы газового гидрата в формующей газовый гидрат установке, включающей в себя генератор, в который подают исходный газообразный материал и воду, и выполненной с возможностью обеспечения реакции исходного газообразного материала с водой при высоком давлении в генераторе, чтобы производить суспензию газового гидрата, и для удаления воды из суспензии газового гидрата, который производят для того, чтобы формовать суспензию газового гидрата в гранулу газового гидрата требуемого размера, причем данный способ включает следующие стадии, на которых в одном из вариантов: подают суспензию газового гидрата в цилиндрическую компрессионную камеру, оборудованную компрессионным плунжером, способным перемещаться и возвращаться в цилиндрической компрессионной камере в направлении оси компрессионной камеры, и перемещают компрессионный плунжер для прикладывания компрессионного действия для выдавливания воды из суспензии газового гидрата и формования гранулы газового гидрата, и минимизируют скорость перемещения компрессионного плунжера в то время, когда вода выдавливается из суспензии газового гидрата так, что соединение между частицами газового гидрата усиливается и сформованная гранула газового гидрата имеет повышенное сопротивление сдвигу. Полученные гранулы газового гидрата имеют высокое сопротивление сдвигу, что является удобным для обращения в процессе траспортировки и хранения. 2 н.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
В формующей газовый гидрат установке образуется гидрат природного газа, такой как гидрат, существующий под морским дном, или аналогичный гидрат, из которого изготавливают гранулы газового гидрата, подходящие для транспортировки, хранения и других целей. Настоящее изобретение относится к способу формования гранул газового гидрата, имеющих высокую прочность, в формующей газовый гидрат установке.
УРОВЕНЬ ТЕХНИКИ
Гидрат природного газа (NGH), который состоит главным образом из метана, существует под морским дном на глубине, составляющей не более чем 500 м, вокруг материков и в областях вечной мерзлоты, таких как Сибирь, Канада и Аляска. NGH представляет собой содержащее воду твердое вещество или клатратный гидрат, у которого основные компоненты представляют собой молекулы газообразного метана и других газов, а также молекулы воды, причем у данного содержащего воду твердого вещества или клатратного гидрата сохраняется устойчивость при низкой температуре и высоком давлении. NGH привлекает внимание как чистый источник энергии с низкими выбросами диоксида углерода и загрязняющих воздух веществ.
Как правило, природный газ сжижают и затем хранят для использования в качестве источника энергии. Сжиженный природный газ производят и хранят при чрезвычайно низкой температуре, составляющей -162°C. С другой стороны, преимущество гидрата природного газа заключается в том, что он проявляет устойчивые свойства без разложения, и его можно использовать в твердом состоянии при температуре, составляющей -20°C, и т.д. Поскольку гидрат природного газа имеет такие свойства, предполагается, что способ гидрата природного газа (способ NGH), включающий получение, транспортировку, хранение и повторную газификацию природного газа, представляет собой способ эффективного использования газовых ресурсов на газовых месторождениях малого и среднего масштаба во всем мире, которые не разрабатываются по соображениям рентабельности, или в таком случае, где небольшое количество газа требуется транспортировать на короткое расстояние от газового месторождения большого масштаба.
В способе NGH получают NGH в форме, подходящей для транспортировки и хранения на месте отгрузки NGH, таком как газовое месторождение малого и среднего масштаба, и NGH транспортируют на место приема NGH, используя предусмотренный резервуар, автомобиль или подобное транспортное средство. На месте приема NGH транспортируемый NGH хранят и используют посредством газификации на газификационной установке в качестве источника энергии, когда это необходимо. Фиг.5 представляет схематическое изображение, разъясняющее примерную конструкцию установки, которую используют на месте отгрузки NGH для получения газового гидрата. Добываемый исходный газообразный материал G превращают в гидрат путем его полного смешивания с водой W в генераторе 1, который представляет собой высокого давления реакционный резервуар, и в результате этого получается суспензия газового гидрата (GH) низкой плотности. Получаемая суспензия GH поступает в обезвоживающее устройство 3 посредством подающего насоса 2, затем обезвоженная и в результате этого суспензия GH высокой плотности получается. При этом суспензия GH поступает в нижнюю часть обезвоживающего устройства 3. Поступающая суспензия GH поднимается в обезвоживающее устройство 3. Суспензия GH обезвоживается, поступая вверх в сливную часть (часть, снабженную микропорами, щелями или подобными приспособлениями для отделения гидратных частиц от воды), которая занимает среднее положение на пути суспензии в обезвоживающее устройство 3, и выходит из верхней концевой части обезвоживающего устройства 3. Выходящий газовый гидрат находится в форме затвердевшего GH. Затвердевший GH поступает в формующее гранулы устройство 4 для гранулирования, и из него формуют гранулы, у которых размер является подходящим для транспортировки, хранения или аналогичных целей. После этого гранулы GH охлаждают, используя охлаждающее устройство 5, то такой температуры, при которой гранулы GH не разлагаются при давлении окружающей среды, и затем они поступают в снижающее давление устройство 6. Технологические стадии для получения газового гидрата из генератора 1 перед охлаждающим устройством 5 осуществляют в состоянии при комнатной температуре и высоком давлении, которое представляет собой состояние для получения газового гидрата. Затем газовый гидрат обрабатывают при такой температуре, что газовый гидрат не разлагается при давлении окружающей среды в охлаждающем устройстве 5 и в снижающем давлении устройстве 6. После этого формованные гранулы GH принимает и содержит резервуар для хранения.
В связи с этим заявитель настоящей заявки предложил способ и устройство для изготовления гранул газового гидрата, обеспечивая изготовление гранул газового гидрата, имеющих превосходную пригодность для хранения, при низкой себестоимости (см. патентный документ 1). При использовании данного способа изготовления гранул газового гидрата происходит обезвоживание газового гидрата посредством устройства для сжатия и формования в условиях образования газового гидрата таким образом, что образуется газовый гидрат, в котором исходный газообразный материал находится между частицами газового гидрата и воды, и в результате этого получаются гранулы газового гидрата. Далее, в качестве устройства для сжатия и формования используется брикетировочная машина, включающая пару барабанов, которые вращаются в противоположных направлениях, причем каждый из них имеет внешнюю периферическую поверхность, снабженную множеством форм для гранул.
Кроме того, заявитель настоящей заявки предложил устройство для формования гранул газового гидрата, чтобы повышать эффективность формования гранул GH путем осуществления процесса обезвоживания и процесса формования гранул GH за счет использования единого устройства в формующей газовый гидрат установке (см. патентный документ 2). В устройстве для формования гранул газового гидрата согласно патентному документу 2 компрессионный плунжер установлен во внутреннем цилиндре компрессионной камеры, вода отжимается от суспензии GH, которая поступает во внутренний цилиндр путем перемещения компрессионного плунжера, и вода стекает через сетчатую деталь, предусмотренную в части внутреннего цилиндра. После отжима воды запорный клапан открывают, и гранула GH P проталкивается и движется в охлаждающую камеру через запорный клапан за счет дополнительного перемещения плунжер. Затем закрывают запорный клапан, охлаждают охлаждающую камеру, и затем суспензия GH поступает после возвращения компрессионного плунжера.
ДОКУМЕНТЫ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
ПАТЕНТНЫЕ ДОКУМЕНТЫ
Патентный документ 1: японская патентная заявка JP-A 2007-270029
Патентный документ 2: японская патентная заявка JP-A 2010-235868
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ПРОБЛЕМА, РЕШАЕМАЯ ИЗОБРЕТЕНИЕМ
Авторы настоящего изобретения повторяли сдвиговые исследования гранул GH, сформованных из полученного GH, для цели получения данных, способствующих проектированию и конструированию устройства для формования гранул GH. Здесь, учитывая эффективность работы установки для изготовления GH, скорость формования гранул GH повышали путем увеличения скорости хода компрессионного плунжера, и, таким образом, была повышена производительность процесса. По этой причине образцы для сдвиговых исследований формовали при повышенной скорости хода компрессионного плунжера.
Однако когда образцы гранул GH, полученные описанным выше способом формования, помещали в устройство для исследования при трехосном сжатии в целях сдвигового исследования и проводили это сдвиговое исследование, образцы разрушались даже при слабом напряжении от осевой нагрузки, и не были получены точные результаты измерений. Затем путем проб и ошибок в ходе разнообразных исследований были успешно изготовлены гранулы GH, имеющие повышенную прочность, и в результате стало возможным почти точное измерение напряжения сдвига. Таким образом, можно увеличивать прочность гранул GH, изготовленных и сформованных в установке для формования GH.
Следующая задача настоящего изобретение заключается в том, чтобы предложить способ формования гранулы GH, имеющих повышенное сопротивление сдвигу, для улучшения технологичности гранул GH во время транспортировки и хранения.
СРЕДСТВА РЕШЕНИЯ ПРОБЛЕМЫ
Для осуществления вышеупомянутой цели здесь предложены технические средства, которые основаны на исследовании сопротивления сдвигу гранул газового гидрата согласно настоящему изобретению. Согласно настоящему изобретению предложен способ формования гранулы газового гидрата в формующей газовый гидрат установке, включающей в себя генератор, в который подают исходный газообразный материал и воду, предназначенный для обеспечения реакции исходного газообразного материала с водой при высоком давлении в генераторе, чтобы формовать суспензию газового гидрата, и удаление воды из суспензии газового гидрата, чтобы формовать из суспензии газового гидрата гранулу газового гидрата, имеющую требуемый размер. Данный способ включает следующие стадии: подачи суспензии газового гидрата в цилиндрическую компрессионную камеру, оборудованную компрессионным плунжером, способным перемещаться и возвращаться в цилиндрической компрессионной камере в направлении оси компрессионной камеры, и перемещение компрессионного плунжера, для прикладывания компрессионного действия для выдавливания воды из суспензии газового гидрата и формования гранулы газового гидрата. Скорость перемещения компрессионного плунжера устанавливают на минимальном уровне.
Согласно настоящему изобретению скорость сжатия компрессионного плунжера уменьшается до минимально возможного уровня. С другой стороны, скорость возвращения компрессионного плунжера можно устанавливать на высоком уровне.
Когда осуществляют формование гранул GH, прилагая сжатие при высокой скорости сжатия, сжимающее действие компрессионного плунжера завершается, прежде чем будет установлено прочное соединение между частицами GH. Это считается возможной причиной получения гранул GH с низким сопротивлением сдвигу в процессе формования.
С другой стороны, когда осуществляют формование гранул GH, прилагая сжатие при низкой скорости сжатия, сжимающее давление прилагают до тех пор, пока не будет создано прочное соединение между частицами GH. Это считается причиной получения гранул GH, имеющих высокое сопротивление сдвигу.
В способе формования гранул газового гидрата согласно п.2 формулы настоящего изобретения скорость перемещения компрессионного плунжера устанавливают на уровне ниже значения, выраженного следующим образом:
Длина гранулы перед сжатием × 10-2 (м/мин)
Когда компрессионный плунжер продвигается на заданную длину для сжатия суспензии газового гидрата, осуществляется формование гранул GH из суспензии GH, поступающей в компрессионную камеру. Размер получаемых при формовании гранул GH зависит от технических параметров компрессионной камеры. Однако предпочтительным является формование гранул GH, имеющих высокую плотность, независимо от размера компрессионной камеры. Кроме того, поскольку плотность поступающей суспензии GH является почти постоянной, процентная доля воды, выжимаемой из суспензии GH в процессе выдавливания воды, является постоянной, независимо от размера компрессионной камеры. По этой причине соединение между частицами GH усиливается, независимо от размера или других параметров компрессионной камеры, путем выдавливания воды в процессе перемещения компрессионного плунжера при низкой скорости. При этом скорость перемещения компрессионного плунжера устанавливают на уровне ниже значения, выраженного следующим образом:
Длина гранулы перед сжатием × 10-2 (м/мин)
ЭФФЕКТЫ ИЗОБРЕТЕНИЯ
Используя способ формования гранул GH согласно настоящему изобретению, можно формовать гранулы GH, имеющие высокое сопротивление сдвигу, путем усиления соединения между частицами GH. Таким образом, оказывается возможным изготовление GH, который является весьма удобным для обращения в процессе транспортировки и хранения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет изображение, схематически иллюстрирующее конструкцию компрессионной камеры и компрессионного плунжера для разъяснения способа формования гранул GH согласно настоящему изобретению.
Фиг.2 представляет изображение, иллюстрирующее результаты исследования прочности, проведенного по отношению к гранулам GH, изготовленным с использованием способа формования гранул GH согласно настоящему изобретению. Согласно данному способу скорость компрессионного плунжера равняется значению произведения исходной длины L0 гранулы GH × 10-4 (м/мин). В данном исследовании прилагается поперечное напряжение sh', составляющее 1,0, 1,5 и 3,0 МПа.
Фиг.3 представляет изображение, иллюстрирующее результаты исследования прочности, проведенного по отношению к гранулам GH, изготовленным с использованием способа формования гранул GH согласно настоящему изобретению. Согласно данному способу скорость компрессионного плунжера равняется значению произведения исходной длины L0 гранулы GH × 10-3 (м/мин). В данном исследовании прилагается поперечное напряжение sh', составляющее 1,0, 2,0 и 3,0 МПа.
Фиг.4 представляет пояснительное изображение, иллюстрирующее пример установки для изготовления GH, а также пример установки для изготовления GH, подходящей для практического осуществления способа формования гранул GH согласно настоящему изобретению.
Фиг.5 представляет блок-схему, разъясняющую примерную конструкцию традиционной установки для изготовления GH, которая применяется на месте отгрузки гидрата природного газа.
ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Далее будет подробно описан способ формования гранул газового гидрата согласно настоящему изобретению на основании предпочтительных вариантов осуществления, как проиллюстрировано на чертежах.
На Фиг.4 представлено устройство для формования гранулы GH, включающее компрессионную камеру и компрессионный плунжер и предназначенное для практического осуществления настоящего изобретения.
В установке для формования GH исходный газообразный материал G и вода W поступают в генератор 1 через подающую исходный материал трубе 11 и подающую хладагент трубу 12 соответственно. Суспензия GH образуется в результате реакции исходного газообразного материала G и воды W в генераторе 1, затем суспензия GH поступает в компрессионную камеру 21 формующего гранулы устройства 20 через подающую суспензию трубу 13. С другой стороны, непрореагировавший хладагент возвращается из генератора 1 посредством рециркулирующего хладагент насоса 1a через возвратная трубу 1b. Выпускной конец рециркулирующего хладагент насоса 1a присоединен к подающей хладагент трубе 12. Подающая хладагент труба 12 снабжена регулировочным клапаном 12a, и открывание регулировочного клапана 12a регулируется на основании измеренных значений датчика давления (манометра) 11с, который измеряет внутреннее давление генератора 1.
Компрессионная камера 21 включает внутренний цилиндр 21a, имеющий цилиндрическую форму, и внешний цилиндр 21b, вмещающий в себя внутренний цилиндр 21a. Внутри внутреннего цилиндра 21a находится компрессионный плунжер 21e, который может осуществлять скользящее перемещение и возвращение в направлении оси O внутреннего цилиндра 21a. Компрессионный плунжер 21e перемещается и возвращается за счет действия не представленного на чертеже источника энергии. В качестве источника энергии использовать гидравлический привод, моторный привод с реечно-шестереночным механизмом, который преобразует выходную мощность мотора в линейное движение, или аналогичное устройство. Часть внутреннего цилиндра 21a определяет сетчатую деталь 21c, которая снабжена отверстиями подходящего размера.
Компрессионная камера 21 соединяется с охлаждающей камерой 23 через запорный клапан 22, занимающий положение на выступающем конце компрессионного плунжера 21e. Открывание запорного клапана 22 обеспечивает соединение между компрессионной камерой 21 и охлаждающей камерой 23. Охлаждающая камера 23 имеет форму цилиндра, у которого внутренний диаметр является равным или составляющим более чем диаметр внутреннего цилиндра 21a компрессионной камеры 21.
Охлаждающая камера 23 снабжена передающим гранулы клапаном 24 на конце, противоположном компрессионной камере 21. Передающий гранулы клапан 24 включает клапанный корпус 24b, в котором находится сферический клапанный элемент 24a, подобный так называемому шаровому клапану. Клапанный элемент 24a включает фиксирующую камеру 24c. Фиксирующая камера 24c имеет внутренний диаметр, который равняется или составляет более чем диаметр охлаждающей камеры 23, и достаточную глубину для помещения гранулы (пеллеты) GH. Часть фиксирующей камеры 24c является открытой и определяет отверстие 24d. Это отверстие 24d предназначено, чтобы занимать приемное положение напротив охлаждающей камеры 23, и в положении выпуска оно обращено к подающему каналу 25 для введения гранул GH в процесс обезвоживания в ответ на поворот клапанного элемента 24a относительно клапанного корпуса 24b. Когда подающий канал 25 соединяется с последующим процессом снижения давления, его внутреннее давление представляет собой давление окружающей среды и, таким образом, охлаждающая камера 23 не может соединяться с подающим каналом 25 за счет вращательного действия клапанного элемента 24a. Например, клапанный элемент 24a предназначен, чтобы находиться в выпускной части за счет поворота из приемного положения, как представлено на Фиг.4, в направлении по часовой стрелке, а также занимать приемное положение за счет поворота из выпускного положения в направлении против часовой стрелки.
Нижняя часть компрессионной камеры 21 присоединена к выпускающей суспензию трубе 21d. Циркулирующий суспензию насос 11a присоединен к впускному концу выпускающей суспензию трубы 21d и к выпускному концу подающей исходный материал трубы 11. Кроме того, циркулирующий суспензию насос 11a присоединен также своим впускным концом к выпускному концу подающего исходный материал насоса 11b. Таким образом, вода, выдавливаемая во время обработки суспензии GH в компрессионной камере 21, соединяется с исходным материалом, поступающим посредством подающего исходный материал насоса 11b, и возвращается в генератор 1 посредством циркулирующего суспензию насоса 11a. Подающая суспензию труба 13 присоединена в среднем положении своей длины к выпускающей суспензию трубе 21d посредством возвратной трубы 13a. Возвратная труба 13a снабжена возвратным клапаном 13b в среднем положении своей длины. Газоводяной буфер 21h присоединен через создающую противодавление трубу 21i к создающей противодавление камере 21g, которая расположена напротив компрессионной камеры 21 относительно компрессионного плунжера 21e. Газоводяной буфер 21h присоединен к выпускающей суспензию трубе 21d через регулировочный клапан.
В охлаждающую камеру 23 хладагент высокого давления поступает через подающую хладагент трубу 23a, и хладагент выходит через выпускающую хладагент трубу 23c посредством выпускающего насоса 23b. При этом выпускающая хладагент труба 23b снабжена хладагентным буфером 23d, который предназначен для стабилизации работы выпускающего насоса 23c за счет временного содержания выходящего хладагента. Выпускная труба 23e, которая присоединена к выпускающему насосу 23c на выпускном конце выпускающего насоса 23c, присоединена к не представленному на чертеже источнику хладагента, такому как охлаждающее устройство, к которому также присоединена подающая хладагент труба 23, и в результате этого возвращается циркулирующий хладагент, который поступает в охлаждающую камеру 23 из источник хладагента.
Для формования гранул GH, прежде всего, компрессионный плунжер 21e занимает наиболее заднее положение возврата, а именно положение, наиболее удаленное от охлаждающей камеры 23, запорный клапан 22 закрывается, и клапанный элемент 24a передающего гранулы клапана 24 занимает приемное положение. При этом во внутренний цилиндр 21a компрессионной камеры 21 поступает суспензия GH, и он заполняется заданным количеством суспензии GH.
Например, когда 10 мас.% суспензия GH поступает во внутренний цилиндр 21a, перемещается плунжер 21e, и в результате этого сжимается суспензия GH в компрессионной камере 21, и, таким образом, выдавливается вода, и получается 90 мас.% GH в форме гранул GH P. При этом отжатая вода протекает через сетчатую деталь 21c во внешний цилиндр 21b, выходит через выпускающую суспензию трубу 21d посредством циркулирующего суспензию насоса 11a и возвращается в генератор 1.
Фиг.1 (a) представляет компрессионный плунжер 21e, который занимает заднее положение, когда суспензия GH поступает в компрессионную камеру 21. После этого состояния компрессионный плунжер 21e перемещается и вода выдавливается из суспензии GH, поступившей в компрессионную камеру 21. При этом скорость перемещения, а именно скорость сжатия компрессионного плунжера 21e, является минимальной. Если D (м) представляет собой длину компрессионной камеры 21, как представлено на Фиг.1 (a), скорость сжатия Vp предпочтительно определяется следующим выражением:
Vp<D×10-2 (м/мин) (выражение 1)
Когда гранула (пеллета) GH сформована, запорный клапан 22 открывается для соединения компрессионной камеры 21 с охлаждающей камерой 23. Компрессионная камера 21 имеет такое же внутреннее давление, как охлаждающая камера 23 и фиксирующая камера 24c, поскольку передающий гранулы клапан 24 занимает приемное положение по отношению к подающему каналу 25. Компрессионный плунжер 21e продолжает перемещение к положению запорного клапана 22, и 90 мас.% GH в форме гранулы, из которой выдавлена вода, выталкивается из компрессионной камеры 21 и поступает в охлаждающую камеру 23. При этом, в том случае, где охлаждающую камеру 23 занимает гранула GH, которая была сформована в предшествующем цикле, гранула GH P в таком же количестве, как гранула GH, поступающая в охлаждающую камеру 23, выталкивается из охлаждающей камеры 23 в фиксирующую камеру 24c, когда компрессионный плунжер 21e занимает полностью выдвинутое конечное положение. Когда гранула GH выталкивается из компрессионной камеры 21 посредством перемещения компрессионного плунжера 21e, запорный клапан 22 закрывается.
Запорный клапан 22 закрывается, компрессионный плунжер 21e начинает обратное движение, и 20 суспензия GH поступает во внутренний цилиндр 21a. Поскольку охлаждающая камера 23 становится воздухонепроницаемой, когда запорный клапан 22 закрывается, гранула GH в охлаждающей камере 23 охлаждается до такой температуры, что гранула GH сохраняет устойчивость даже при давлении окружающей среды за счет введения хладагента через подающую хладагент трубу 23a в охлаждающую камеру 23.
При возвращении компрессионного плунжера 21a в наиболее заднее конечное положение клапанный элемент 24a поворачивается из приемного положения в выпускное положение. При этом концевая часть охлаждающей камеры 23 остается закрытой клапанным элементом 24a посредством поворота клапанного элемента 24a в направлении по часовой стрелке. Когда клапанный элемент 24a занимает выпускное положение, гранула GH P оказывается при пониженном давлении и гранула GH P, находящаяся в фиксирующей камере 24c, падает в подающий канал 25. После этого клапанный элемент 24a возвращается в приемное положение путем поворота клапанного элемента 24a из выпускного положения в направлении против часовой стрелки, как показано на Фиг.4. На этом завершается технологический процесс устройства для формования гранул GH.
Посредством повтора вышеупомянутого процесса можно последовательно изготавливать гранулы GH, причем гранулы GH, изготовленные таким способом, могут иметь повышенную прочность.
Фиг.2 и 3 представляют соотношение между аксиальным напряжением sv' (МПа) и аксиальным растяжением Epa (%), полученное в результате исследований, осуществляемых в отношении прочности гранул GH, изготовленных способом формования согласно настоящему изобретению, путем использования устройства для исследования при трехосном сжатии. Данное исследование осуществляют, помещая гранулы (пеллеты) GH, полученные с использованием устройства для формования гранул GH, как представлено на Фиг.4, в устройство для исследования при трехосном сжатии. Исследование при трехосном сжатии предназначено только для GH в твердом состоянии. Результаты исследований являются эквивалентными результатам, полученным в условиях периодического сжатия в компрессионной камере 21, как представлено на Фиг.4. Для сдвиговых исследований аксиальное напряжение (напряжение в вертикальном направлении) относительно заданного поперечного напряжения (напряжение в горизонтальном направлении) sh' прилагают к образцам, помещенным в устройство для исследования при трехосном сжатии. В исследованиях, представленных на Фиг.2, поперечное напряжение sh' составляет 1,0, 1,5 и 3,0 МПа соответственно, и длина D шага компрессионного плунжера представляет собой начальную длину L0 гранулы GH. Аксиальное растяжение Epa, заданное выражением 2, получается при увеличении аксиального напряжения sv'. Скорость плунжера для приложения аксиального напряжения sv' определяется согласно приведенному выше выражению 1 и равняется произведению начальной длины L0 гранулы GH × 10-4 (м/мин):
Аксиальное растяжение Epa (%)=((L0-L)/L0)×100 (выражение 2)
L представляет собой длину гранулы GH в данное время.
Фиг.3 представляет результаты исследований, в которых поперечное напряжение sh' составляет 1,0, 2,0 и 3,0 МПа соответственно, и скорость перемещения компрессионного плунжера равняется произведению начальной длины L0 гранулы GH × 10-3 (м/мин).
Как представлено на Фиг.2 и 3, чем больше аксиальное растяжение Epa, тем больше степень увеличения аксиального напряжения sv'. Можно определить, что в любых условиях прочность гранулы увеличивается посредством сжатия. Таким образом, можно определить, что прочность гранулы GH увеличивается посредством формования гранулы GH при сжатии, прилагаемом к GH за счет перемещения компрессионного плунжера при низкой скорости. Для осуществления исследования прочности гранулы GH формовали таким образом, чтобы они были подходящими для помещения в устройство для исследования при трехосном сжатии, и их использовали в качестве образцов для исследования прочности. В установке для формования GH гранулы GH изготавливали посредством сжатия суспензии GH за счет перемещения компрессионного плунжера при минимальной скорости.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Используя способ формования гранул GH согласно настоящему изобретению, можно формовать гранулы GH, имеющие высокую прочность, и, таким образом, оптимизируется простота обращения с гранулами GH во время транспортировки и хранения, и способ формования гранул GH согласно настоящему изобретению может вносить вклад в повышение степени полезности GH в качестве источника энергии.
СПИСОК УСЛОВНЫХ ЧИСЛЕННЫХ ОБОЗНАЧЕНИЙ
1 - Генератор
20 - Формующее гранулы устройство
21 - Компрессионная камера
21a - Внутренний цилиндр
21b - Внешний цилиндр
21e - Компрессионный плунжер
22 - Запорный клапан
23 - Охлаждающая камера
25 - Подающий канал

Claims (2)

1. Способ формования гранулы газового гидрата в формующей газовый гидрат установке, включающей в себя генератор, в который подают исходный газообразный материал и воду, и выполненной с возможностью обеспечения реакции исходного газообразного материала с водой при высоком давлении в генераторе, чтобы производить суспензию газового гидрата, и для удаления воды из суспензии газового гидрата, который производят для того, чтобы формовать суспензию газового гидрата в гранулу газового гидрата требуемого размера, причем данный способ включает следующие стадии, на которых:
подают суспензию газового гидрата в цилиндрическую компрессионную камеру, оборудованную компрессионным плунжером, способным перемещаться и возвращаться в цилиндрической компрессионной камере в направлении оси компрессионной камеры, и
перемещают компрессионный плунжер для прикладывания компрессионного действия для выдавливания воды из суспензии газового гидрата и формования гранулы газового гидрата, и
минимизируют скорость перемещения компрессионного плунжера в то время, когда вода выдавливается из суспензии газового гидрата так, что соединение между частицами газового гидрата усиливается и сформованная гранула газового гидрата имеет повышенное сопротивление сдвигу.
2. Способ формования гранулы газового гидрата в формующей газовый гидрат установке, включающей в себя генератор, в который подают исходный газообразный материал и воду, и выполненной с возможностью обеспечения реакции исходного газообразного материала с водой при высоком давлении в генераторе, чтобы производить суспензию газового гидрата, и для удаления воды из суспензии газового гидрата, который производят для того, чтобы формовать суспензию газового гидрата в гранулу газового гидрата требуемого размера, причем данный способ включает следующие стадии, на которых:
подают суспензию газового гидрата в цилиндрическую компрессионную камеру, оборудованную компрессионным плунжером, способным перемещаться и возвращаться в цилиндрической компрессионной камере в направлении оси компрессионной камеры, и
перемещают компрессионный плунжер для прикладывания компрессионного действия для выдавливания воды из суспензии газового гидрата и формования гранулы газового гидрата, причем скорость перемещения компрессионного плунжера является меньше, чем значение, выраженное длиной гранулы перед сжатием × 10-2 (м/мин).
RU2013148118/04A 2011-03-30 2012-03-19 Способ формования гранулы газового гидрата RU2584685C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-073903 2011-03-30
JP2011073903 2011-03-30
PCT/JP2012/056957 WO2012132980A1 (ja) 2011-03-30 2012-03-19 ガスハイドレートペレットの成形方法

Publications (2)

Publication Number Publication Date
RU2013148118A RU2013148118A (ru) 2015-05-10
RU2584685C2 true RU2584685C2 (ru) 2016-05-20

Family

ID=46930712

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013148118/04A RU2584685C2 (ru) 2011-03-30 2012-03-19 Способ формования гранулы газового гидрата

Country Status (9)

Country Link
US (1) US9039949B2 (ru)
EP (1) EP2692837B1 (ru)
JP (1) JPWO2012132980A1 (ru)
AU (1) AU2012234629B2 (ru)
BR (1) BR112013034023A2 (ru)
CA (1) CA2834763C (ru)
ES (1) ES2716011T3 (ru)
RU (1) RU2584685C2 (ru)
WO (1) WO2012132980A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643370C1 (ru) * 2017-06-16 2018-02-01 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Установка для производства гидрата метана

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766402B1 (ko) * 2013-06-27 2017-08-09 동국대학교 산학협력단 가스 하이드레이트 펠릿 재기화 장치
EP3237275B9 (en) * 2014-12-28 2021-10-20 Yehoshua Fishler Gas hydrate transportation and storage system and method
CN108410528B (zh) * 2018-05-30 2020-11-24 河南理工大学 一种用于提高瓦斯水合速率的天然生物质溶液及其制备方法
CN113900143B (zh) * 2021-09-29 2023-03-14 中国石油化工股份有限公司 天然气水合物的属性特征的确定方法、装置和服务器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008143005A (ru) * 2006-03-30 2010-05-10 Мицуи Инджиниринг Энд Шипбилдинг Ко., Лтд. (Jp) Способ получения гранул газового гидрата
JP2010235868A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット成形装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070003A (en) * 1960-05-16 1962-12-25 French Oil Mill Machinery Automatic cage type press
JPH0787999B2 (ja) * 1990-06-22 1995-09-27 ティーディーケイ株式会社 湿式粉末成形装置及び湿式粉末成形方法
US6874411B2 (en) * 2000-04-28 2005-04-05 Ntn Corporation Recycle of grinding sludge
KR20030004434A (ko) * 2001-03-29 2003-01-14 미츠비시 쥬고교 가부시키가이샤 가스 하이드레이트 제조 장치 및 가스 하이드레이트 탈수장치
CN101415801A (zh) * 2006-03-30 2009-04-22 三井造船株式会社 气体水合物颗粒的制造方法
JP4897333B2 (ja) 2006-03-31 2012-03-14 三井造船株式会社 ガスハイドレートペレットの製造方法及び製造装置
BRPI0808140B1 (pt) * 2007-03-30 2017-07-04 Mitsui Engineering & Shipbuilding Co., Ltd. Molding machine for compression of hydrate gas
MY161888A (en) * 2007-10-03 2017-05-15 Mitsui Shipbuilding Eng Process and apparatus for producing gas hydrate pellet
JP2009221458A (ja) * 2008-02-22 2009-10-01 Mitsui Zosen Akishima Kenkyusho:Kk ガスハイドレートの精製方法
JP5153414B2 (ja) * 2008-03-31 2013-02-27 三井造船株式会社 Nghペレットの圧搾及び脱水
JP5052386B2 (ja) * 2008-03-31 2012-10-17 三井造船株式会社 ガスハイドレートの製造装置
JP4698698B2 (ja) * 2008-03-31 2011-06-08 三井造船株式会社 ガスハイドレート造粒装置
US8486340B2 (en) * 2009-09-15 2013-07-16 Korea Institute Of Industrial Technology Apparatus and method for continuously producing and pelletizing gas hydrates using dual cylinder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008143005A (ru) * 2006-03-30 2010-05-10 Мицуи Инджиниринг Энд Шипбилдинг Ко., Лтд. (Jp) Способ получения гранул газового гидрата
JP2010235868A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット成形装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643370C1 (ru) * 2017-06-16 2018-02-01 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Установка для производства гидрата метана

Also Published As

Publication number Publication date
US20140203471A1 (en) 2014-07-24
WO2012132980A1 (ja) 2012-10-04
JPWO2012132980A1 (ja) 2014-07-28
CA2834763A1 (en) 2012-10-04
EP2692837B1 (en) 2018-12-26
AU2012234629A1 (en) 2013-11-14
RU2013148118A (ru) 2015-05-10
ES2716011T3 (es) 2019-06-07
AU2012234629B2 (en) 2017-03-23
BR112013034023A2 (pt) 2018-07-10
EP2692837A4 (en) 2014-10-01
CA2834763C (en) 2019-09-24
EP2692837A1 (en) 2014-02-05
US9039949B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
RU2584685C2 (ru) Способ формования гранулы газового гидрата
US8486340B2 (en) Apparatus and method for continuously producing and pelletizing gas hydrates using dual cylinder
CN103173256B (zh) 天然气多塔外循环无氧再生脱水方法
Burla et al. Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water–gas ratio
CN112705132A (zh) 一种气体水合物快速连续生成及制饼装置和方法
CN113164890A (zh) 用于形成气体水合物的设备和方法
Kummamuru et al. Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials
Kim et al. Optimization of water-saturated superabsorbent polymers for hydrate-based gas storage
CN112546962A (zh) 一种气体水合物柱体快速制备装置及方法
CN103933831A (zh) 一种生产4-氨基三氟甲苯工艺中氨气的回收方法
KR101766402B1 (ko) 가스 하이드레이트 펠릿 재기화 장치
JP2010155394A (ja) 植物系材料の成形体の作製方法及び該方法により得られる成形体
CN104003597B (zh) 污泥汽爆分解方法和用于实施该方法的污泥汽爆分解机
JP2010235868A (ja) ガスハイドレートペレット成形装置
Li et al. Exploitation of methane in the hydrate by use of carbon dioxide in the presence of sodium chloride
CN104628062A (zh) 超临界水气化偏二甲肼废液的方法
CN103736382B (zh) 一种基于1-丁基-3-甲基咪唑醋酸盐[Bmim][Oac]二氧化碳吸收剂的粘度控制方法
CN105823667B (zh) 一种软煤岩制样系统及方法
JP2007269952A (ja) ガスハイドレートの製造方法
JP2012046696A (ja) 混合ガスハイドレート生成装置、混合ガスハイドレート生成方法、および混合ガスハイドレートペレット製造装置
CN205820970U (zh) 一种超临界水处理设备
Ardali et al. Experimental investigation of carbon dioxide adsorption using functionalized MWCNTs with 1, 6-diaminohexane
CN206315612U (zh) 一种工业固态有机物造粒机排气系统用气液两级分离器
Moghaddam et al. Preparation of high stable nanofluid based N-doped quantum dot in diethanolamine solution for carbon dioxide absorption
WO2024094969A1 (en) Oil extraction

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200212