RU2577537C1 - Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов - Google Patents

Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов Download PDF

Info

Publication number
RU2577537C1
RU2577537C1 RU2015115105/04A RU2015115105A RU2577537C1 RU 2577537 C1 RU2577537 C1 RU 2577537C1 RU 2015115105/04 A RU2015115105/04 A RU 2015115105/04A RU 2015115105 A RU2015115105 A RU 2015115105A RU 2577537 C1 RU2577537 C1 RU 2577537C1
Authority
RU
Russia
Prior art keywords
ketone
tetracyanoethylene
oxoalkane
tetracarbonitriles
producing
Prior art date
Application number
RU2015115105/04A
Other languages
English (en)
Inventor
Михаил Юрьевич Иевлев
Олег Вячеславович Ершов
Михаил Юрьевич Беликов
Константин Владимирович Липин
Сергей Владимирович Федосеев
Олег Евгеньевич Насакин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова"
Priority to RU2015115105/04A priority Critical patent/RU2577537C1/ru
Application granted granted Critical
Publication of RU2577537C1 publication Critical patent/RU2577537C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области органической химии, конкретно к способу получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (А), которые могут найти применение в качестве исходных соединений для синтеза различных гетероциклических структур. В общей формуле (А) R1=R2=Me, R3=H (A1); R1=
Figure 00000024
, R2=R3=H (A2); R1+R2=
Figure 00000025
, R3=H (A3); R1+R2=(CH2)5, R3=H (A4); R1+R2=(CH2)6, R3=H (A5); R1=Ph, R2=Me, R3=H (A6); R1=4-Cl-C6H4, R2=Me, R3=H (A7); R1=4-MeOC6H4, R2=Me, R3=H (A8); R1=R2=Ph, R3=H (A9); R1=
Figure 00000026
, R2=R3=H (A10). Предлагаемый способ включает нагревание смеси тетрацианоэтилена и соответствующего кетона в эквимолярных количествах. Способ характеризуется тем, что в смесь дополнительно вводят п-толуолсульфокислоту, а нагревание при температуре 50-60°С осуществляют до полного растворения тетрацианоэтилена в образовавшемся расплаве п-толуолсульфокислоты и кетона с последующей выкристаллизацией целевого продукта. Способ позволяет осуществить взаимодействие без растворителя, а также сократить продолжительность процесса. 10 пр.

Description

Изобретение относится к области органической химии, а именно к способам получения нитрилов, содержащих четыре цианогруппы, связанные с углеродным скелетом, включающим в себя карбонильную группу, а именно - 4-оксоалкан-1,1,2,2-тетракарбонитрилам общей формулы (A), которые могут быть использованы в качестве исходных соединений для синтеза различных гетероциклических структур пиридинового, пиранового, пиррольного и фуранового рядов, в том числе в составе бициклических и спиросочлененных систем.
Figure 00000001
где R1=R2=Me, R3=H (A1);
Figure 00000002
R2=R3=H (A2);
Figure 00000003
R3=H (A3); R1+R2=(CH2)5, R3=H (A4); R1+R2=(CH2)6, R3=H (A5); R1=Ph, R2=Me, R3=H (A6); R1=4-ClC6H4, R2=Me, R3=H (A7); R1=4-MeOC6H4, R2=Me, R3=H (A8); R1=R2=Ph, R3=H (A9);
Figure 00000004
R2=R3=H (A10).
Известен способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (A),
Figure 00000005
где R1=Me, R2=R3=H (A11); R1=R2=Me, R3=H (A1); R1=Et, R2=Me, R3=H (A12); R1=i-Pr, R2=Me, R3=Me (A13); R1+R2=(CH2)3, R3=H (A14); R1+R2=(CH2)4, R3=H (A15); R1=Ph, R2=R3=H (A16); R1=4-Cl-C6H4, R2=R3=H (A17);
Figure 00000006
R2=R3=H (A18);
Figure 00000007
R2=R3=H (A19); R1=R2=Ph, R3=H (A20); путем взаимодействия тетрацианоэтилена с кетоном в присутствии катализатора - «молекулярного» серебра, с использованием в качестве растворителя избытка кетона или тетрагидрофурана (в случае твердых кетонов). Выходы 50-94% (R.К. Heckertand, W.J. Middleton. U.S. Patent 2,781,359, 1957; С.L. Dickinson // Journal of the American Chemical Society, 1960, Vol. 82, p. 4367-4369).
Недостатками данного способа является дороговизна используемого катализатора, а также необходимость дополнительной технологической стадии - отделения катализатора и его дальнейшей регенерации, недостатком также является большой расход кетона в случае использовании его в качестве растворителя.
Известен способ получения соединения (A15), заключающийся в перемешивании в течение ночи смеси тетрацианоэтилена и циклогексанона в жидком диоксиде серы. Выход 95% (D. Masilamani, М.Е. Reuman, М.М. Rogic // Journal of Organic Chemistry, 1980, Vol. 45, p. 4602-4605).
Недостатком этого способа является необходимость использования специального оборудования (колбы Фишера-Портера), а также вещества третьего класса опасности - диоксида серы.
Вышеописанный способ сходен с другим, продемонстрированным на примере соединений (A21), где R1+R2=(CH2)4, R3=Me и (A22), где
Figure 00000008
R3=H, заключающийся во взаимодействии тетрацианоэтилена с кетоном в среде 1,4-диоксана в присутствии каталитического количества соляной кислоты. Выходы 90% и 69% соответственно (В.П. Шевердов, О.В. Ершов, О.Е. Насакин, А.Н. Чернушкин, В.А. Тафеенко // Журнал органической химии, 2002, т. 38, №7, с. 1043-1046).
Известно также, что по данному способу возможен синтез и других β,β,γ,γ-тетрацианоалканонов, а именно - (A14), (A17), а также (A23), где R1=t-Bu, R2=R3=H, (A24) где
Figure 00000009
R2=R3=H, (A25), где
Figure 00000010
R2=R3=H, (A26), где
Figure 00000011
R2=R3=H, (A27), где
Figure 00000012
R2=R3=H, с выходами 56-95%, в том числе содержащих стероидный (A28)
Figure 00000013
R3=H или макроциклический (A29)
Figure 00000014
R3=H фрагменты с выходами 72% и 86% соответственно (В.П. Шевердов, О.В. Ершов, А.В. Еремкин, О.Е. Насакин; И.Н. Бардасов, В.А. Тафеенко // Журнал органической химии, 2005, т. 41, №12, с. 1795-1801).
Данный способ является самым универсальным из всех вышепредставленных, с его помощью также возможен синтез 4-оксоалкан-1,1,2,2-тетракарбонитрилов (A), в которых R1 и R2 являются арильными заместителями - (A20), а также (A30), где
Figure 00000015
R3=H (М.Ю. Беликов, М.Ю. Иевлев, О.В. Ершов, К.В. Липин, С.А. Леготин, О.Е. Насакин // Журнал органической химии, 2014, т. 50, №9, с. 1387-1388.), однако к его недостаткам можно отнести использование токсичного растворителя 1,4-диоксана (III класс опасности), длительность осуществления взаимодействия (в случае некоторых кетонов - несколько суток), а также необходимость дополнительной технологической стадии - дробной кристаллизации продукта, так как, согласно данному способу, после разбавления реакционной массы водой происходит образование маслянистой субстанции, которую отделяют и подвергают дробной кристаллизации.
Еще один известный способ получения 4-оксоалкан-1,1,2,2-тетракабонитрилов заключается в нагревании смеси тетрацианоэтилена и кетона в присутствии каталитических количеств воды, пропанола или этанола (О.Е. Насакин, А.В. Кухтин, Г.Н. Петров, Е.Г. Николаев, В.В. Алексеев, С.Ю. Сильвестрова // АС 759507 СССР).
К недостаткам данного способа можно отнести отсутствие универсального характера, результаты продемонстрированы на единичных примерах алифатических кетонов.
Наиболее близким к заявленному решению является способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов, общей формулы (A), а именно (A1), (А31), где R1=Me, R2=Pr, R3=H и (A32), где R1=Me, R2=Am, R3=H, который заключается в кипячении при температуре кипения кетона смеси тетрацианоэтилена и избытка кетона в присутствии катализатора - уксусной или трихлоруксусной кислоты. Выходы 76-94% (Е.Г. Николаев, О.Е. Насакин, П.Б. Терентьев, Б.А. Хаскин, В.Г. Петров // Журнал органической химии, 1984, т. 20, №1, с. 205-206).
Недостатком данного способа является отсутствие универсального характера, результаты продемонстрированы лишь на примере кетонов, у которых R1=Me, остается неизвестным, возможно ли его применение для других кетонов алифатического, алициклического и ароматического рядов. Кроме того, в качестве растворителя авторами предлагается использование кетонов, непосредственно вовлекаемых во взаимодействие с тетрацианоэтиленом, поэтому применение данного способа ограничивается использованием лишь жидких кетонов, а также приводит к их большому расходу.
Задачей данного изобретения является разработка усовершенствованного способа получения нитрилов, содержащих четыре цианогруппы, связанные с углеродным скелетом, включающим в себя карбонильную группу, а именно - 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (A).
Техническим результатом является усовершенствование способа получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (A) за счет осуществления взаимодействия без растворителя, значительного сокращения времени получения, а также повышения экологичности процесса.
Технический результат достигается тем, что способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (A),
Figure 00000016
где R1=R2=Me, R3=H (A1);
Figure 00000017
R2=R3=H (A2);
Figure 00000018
R3=H (A3); R1+R2=(CH2)5,R3=H (A4); R1+R2=(CH2)6, R3=H (A5); R1=Ph, R2=Me, R3=H (A6); R1=4-ClC6H4, R2=Me, R3=H (A7); R1=4-MeOC6H4, R2=Me, R3=H (A8); R1=R2=Ph, R3=H (A9);
Figure 00000019
R2=R3=H (A10), включающий нагревание смеси тетрацианоэтилена и соответствующего кетона в эквимолярных количествах, согласно изобретению, к смеси дополнительно прибавляют n-толуолсульфокислоту, а нагревание осуществляют до полного растворения тетрацианоэтилена в образовавшемся расплаве n-толуолсульфокислоты и кетона, с последующей выкристаллизацией целевого продукта.
Способ осуществляется по следующей схеме реакции:
Figure 00000020
где R1=R2=Me, R3=H (A1);
Figure 00000021
R2=R3=H (A2);
Figure 00000022
R3=H (A3); R1+R2=(CH2)5; R3=H (A4); R1+R2=(CH2)6, R3=H (A5); R1=Ph, R2=Me, R3=H (A6); R1=4-ClC6H4, R2=Me, R3=H (A7); R1=4-MeOC6H4, R2=Me, R3=H (A8); R1=R2=Ph, R3=H (A9);
Figure 00000019
R2=R3=H (A10).
Сопоставительный анализ заявляемого решения с известными показывает, что предлагаемый способ является более простым, экологичным (соответствует 3-му и 5-му принципам «зеленой химии»), менее затратным, а также в ряде случаев сокращается время осуществления взаимодействия. Метод характеризуется простотой исполнения, отсутствием специального оборудования и токсичных растворителей. Выборка синтезированных соединений (A1-10) с разнообразной природой заместителей демонстрирует универсальность заявляемого решения.
Исходные вещества, а именно тетрацианоэтилен, кетоны и n-толуолсульфокислота являются коммерчески доступными соединениями.
Строение полученных соединений подтверждается данными ИК- и ЯМР 1H спектроскопии.
Сущность изобретения заключается в описанном способе получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (A), 0,005 моль тетрацианоэтилена смешивают и тщательно растирают с 0,005 моль соответствующего кетона и 0,005 моль n-толуосульфокислоты. Реакционную массу нагревают при 50-60°C при постоянном перемешивании и продолжают греть до тех пор, пока тетрацианоэтилен не растворится в образовавшемся расплаве n-толуолсульфокислоты и кетона, после чего происходит выкристаллизация целевого продукта. Полноту протекания реакции можно проверять по отсутствию синего окрашивания гидрохинона (π-комплекс с тетрацианоэтиленом) под действием раствора пробы реакционной массы в подходящем растворителе (1,4-диоксан, ТГФ, этилацетат, ацетонитрил). Затвердевшую массу после завершения взаимодействия и охлаждения заливают водой, осадок отфильтровывают и тщательно промывают водой от n-толуолсульфокислоты до нейтральной реакции.
Пример 1. Способ получения 3-метил-4-оксопентан-1,1,2,2-тетракарбонитрила (A1). Получали аналогично описанному способу с использованием в качестве кетона бутан-2-она. Выход: 91%. Tпл.=135-137°C (разл). ИК спектр, ν, см-1: 1697 (C=O), 2253 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.84 д (3H, CH3, J=7.5), 2.08 с (3H, CH3), 4.68 м (1H, CHCO), 5.24 с (1H, CHCN).
Пример 2. Способ получения 4-оксо-4-циклопропилбутан-1,1,2,2-тетракарбонитрила (A2). Получали аналогично описанному способу с использованием в качестве кетона 1-циклопропилэтанона. Выход: 89%. Tпл.=117-118°C (разл). ИК спектр, ν, см-1: 1697 (C=O), 2252 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.09-1.13 м (4H, CH2CH2), 2.30 м (1H, CH), 4.13 с (2H, CH2CO), 5.25 с (1H, CHCN).
Пример 3. Способ получения 1-(4-трет-бутил-2-оксоциклогексил)этан-1,1,2,2-тетракарбонитрила (A3). Получали аналогично описанному способу с использованием в качестве кетона 4-третбутилциклогексанона. Реакция идет с саморазогревом, без дополнительного нагревания. Выход: 96%. Tпл.=127-128°C (разл). ИК спектр, ν, см-1: 1705 (C=O), 2253 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.01 с (9H, t-Bu), 1.58-2.65 м (7H, 3CH2+CH), 3.87 д.д (1H, CHCO, J=5.3, 13.0), 6.04 с (1H, CHCN).
Пример 4. Способ получения 1-(2-оксоциклогептил)этан-1,1,2,2-тетракарбонитрила (A4). Получали аналогично описанному способу с использованием в качестве кетона циклогептанона. Реакция идет с саморазогревом, без дополнительного нагревания. Выход: 95%. Tпл.=104-106°C (разл). ИК спектр, ν, см-1: 1701 (C=O), 2259 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.52 м (1H, CH2), 1.75-2.05 м [5H, (CH2)3], 2.37 м (1H, CH2), 2.52 м (1H, CH2), 2.85 м (1H, COCH2), 3.18 м (1H, CH2CO), 4.00 м (1H, CHCO), 5.93 с (1H, CHCN)
Пример 5. Способ получения 1-(2-оксоциклооктил)этан-1,1,2,2-тетракарбонитрила (A5). Получали аналогично описанному способу с использованием в качестве кетона циклооктанона. Реакция идет с саморазогревом, без дополнительного нагревания. Выход: 96%. Tпл.=134-136°C (разл). ИК спектр, ν, см-1: 1703 (C=O), 2258 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.16 м (1H, CH2), 1.57-2.21 м [8H, (CH2)4], 2.42 м (1H, CH2), 2.72 м (1H, CH2CO), 2.96 м (1H, CH2CO), 3.97 м (1H, CHCO), 5.88 с (1H, CHCN).
Пример 6. Способ получения 3-метил-4-оксо-4-фенилбутан-1,1,2,2-тетракарбонитрила (A6). Получали аналогично описанному способу с использованием в качестве кетона пропиофенона. Выход: 90%. Tпл.=130-131°C (разл). ИК спектр, ν, см-1: 1688 (C=O), 2256 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.81 д (3H, CH3, J=7.4), 4.84 м (1H, CHCO), 5.99 с (1H, CH), 7.65 м (2H, Ar), 7.78 м (1H, Ar), 8.19 м (2H, Ar).
Пример 7. Способ получения 3-метил-4-оксо-4-(4-хлорфенил)бутан-1,1,2,2-тетракарбонитрила (A7). Получали аналогично описанному способу с использованием с в качестве кетона 4-хлорпропиофенона. Выход: 89%. Tпл.=160-161°C (разл). ИК спектр, ν, см-1: 1693 (C=O), 2255 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.84 д (3H, CH3, J=7.3), 4.79 м (1H, CHCO), 5.98 с (1H, CHCN), 7.12 д (2H, Ar, J=8.7), 8.14 д (2H, Ar, J=8.7).
Пример 8. Способ получения 3-метил-4-(4-метоксифенил)-4-оксобутан-1,1,2,2-тетракарбонитрила (A8). Получали аналогично описанному способу с использованием в качестве кетона 4-метоксипропиофенона. Выход: 93%. Tпл.=143-144°C (разл). ИК спектр, ν, см-1: 1699 (C=O), 2250 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 1.80 д (3H, CH3, J=7.2), 3.95 с (3H, OCH3), 4.76 м (1H, CHCO), 5.96 с (1H, CHCN), 7.14 д (2H, Ar, J=8.8), 8.17 д (2H, Ar, J=8.8).
Пример 9. Способ получения 4-оксо-3,4-дифенилбутан-1,1,2,2-тетракарбонитрила (A9). Получали аналогично описанному способу с использованием в качестве кетона 1,2-дифенилэтанона. Выход: 86%. Tпл.=140-141°C (разл). ИК спектр, ν, см-1: 1696 (C=O), 2246 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 5.77 с (1H, CHPh), 6.01 с (1H, CHCN), 7.46-7.69 м (8H, Ar), 8.07 д (2H, Ar, J=7.9).
Пример 10. Способ получения 4-оксо-4-тиенилбутан-1,1,2,2-тетракарбонитрил (A10). Получали аналогично описанному способу с использованием в качестве кетона 2-ацетилтиофена. Выход: 81%. Tпл.=109-111°C (разл). ИК спектр, ν, см-1: 1699 (C=O), 2250 (C≡N). Спектр ЯМР 1H (ацетон-d6), δ, м.д.: 8.19 д (1H, CH, J=4.1); 8.11 д (1H, J=4.1, CH); 7.32 т (1H, J=4.1, CH); 6.13 с (1H, CH); 4.57 с (2H, CH2).
Таким образом, предлагаемый усовершенствованный способ позволяет получить 4-оксоалкан-1,1,2,2-тетракарбонитрилы общей формулы (A), которые могут быть использованы в качестве исходных соединений для синтеза различных гетероциклических структур пиридинового, пиранового, пиррольного и фуранового рядов, в том числе в составе бициклических и спиросочлененных систем.

Claims (1)

  1. Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов общей формулы (А)
    Figure 00000023
    ,
    где R1=R2=Me, R3=H (A1); R1=
    Figure 00000024
    , R2=R3=H (A2); R1+R2=
    Figure 00000025
    , R3=H (A3); R1+R2=(CH2)5, R3=H (A4); R1+R2=(CH2)6, R3=H (A5); R1=Ph, R2=Me, R3=H (A6); R1=4-Cl-C6H4, R2=Me, R3=H (A7); R1=4-MeOC6H4, R2=Me, R3=H (A8); R1=R2=Ph, R3=H (A9); R1=
    Figure 00000026
    , R2=R3=H (A10), включающий нагревание смеси тетрацианоэтилена и соответствующего кетона в эквимолярных количествах, отличающийся тем, что в смесь дополнительно вводят п-толуолсульфокислоту, а нагревание при температуре 50-60°С осуществляют до полного растворения тетрацианоэтилена в образовавшемся расплаве п-толуолсульфокислоты и кетона с последующей выкристаллизацией целевого продукта.
RU2015115105/04A 2015-04-21 2015-04-21 Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов RU2577537C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015115105/04A RU2577537C1 (ru) 2015-04-21 2015-04-21 Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015115105/04A RU2577537C1 (ru) 2015-04-21 2015-04-21 Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов

Publications (1)

Publication Number Publication Date
RU2577537C1 true RU2577537C1 (ru) 2016-03-20

Family

ID=55647871

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015115105/04A RU2577537C1 (ru) 2015-04-21 2015-04-21 Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов

Country Status (1)

Country Link
RU (1) RU2577537C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU759507A1 (ru) * 1978-11-30 1980-08-30 Univ Chuvashskij СПОСОБ ПОЛУЧЕНИЯ (Ь^д^-ТЕТРАЦИАНКЕТОНОВ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU759507A1 (ru) * 1978-11-30 1980-08-30 Univ Chuvashskij СПОСОБ ПОЛУЧЕНИЯ (Ь^д^-ТЕТРАЦИАНКЕТОНОВ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Е.Г. НИКОЛАЕВ и др., Взаимодействие тетрацианоэтилена с метил(алкил)кетонами, ЖУРН. ОРГАН. ХИМИИ, 1984, Том 20, вып. 1, стр.205-206. *

Similar Documents

Publication Publication Date Title
BR112015011740B1 (pt) síntese de derivados de isoxazolina espirocíclicos
Zhu et al. Catalytic asymmetric homo-1, 3-dipolar cycloadditions of azomethine ylides: diastereo-and enantioselective synthesis of imidazolidines
PT1567482E (pt) Processo para a preparação de dinitrilos do ácido fenilmalónico
Allendörfer et al. Nucleophilic ring-opening reaction of benzoxazinones—access to o-amino-2, 2, 2-trifluoroacetophenones
Beebe et al. Diastereoselective synthesis of substituted diaziridines from simple ketones and aldehydes
JP2022130510A (ja) シス-アルコキシ置換スピロ環式1-h-ピロリジン-2,4-ジオン誘導体の製造方法
EP3653607B1 (en) Process for the preparation of enantiomerically enriched 3-aminopiperidine
Gupton et al. The application of vinylogous iminium salt derivatives to an efficient relay synthesis of the pyrrole containing alkaloids polycitone A and B
RU2577537C1 (ru) Способ получения 4-оксоалкан-1,1,2,2-тетракарбонитрилов
CN110105285B (zh) 三取代吡唑类衍生物及其制备方法
JP5782331B2 (ja) イミドイルクロリド化合物の製造方法及びそれを用いた各種化合物の製造方法
Jin et al. A one-pot asymmetric organocatalytic tandem reaction for the synthesis of oxazine derivatives
DE19820722C1 (de) Verfahren zur Herstellung von Benzoylpyrazolen
Piovesana et al. Unsaturated β-ketoesters as versatile electrophiles in organocatalysis
CN108147996B (zh) 一种芳亚甲基双吡唑酯单钾盐的合成方法
CN100408554C (zh) 高纯度肼基碳酸甲酯的合成新工艺
JP4161367B2 (ja) 5−置換オキサゾール化合物および5−置換イミダゾール化合物の製造方法
Tajaddini et al. Synthesis of new substituted cylopentenone derivatives via a one-pot three-component reaction between arylglyoxals, acetylacetone, and amines in aqueous media
RU2637927C2 (ru) Способ получения замещенных 3-арил-5-хлоризоксазолов
Miftyakhova et al. Synthesis and spectroscopic properties of rotamers in the series of 2-(fluoroaryl)-4-substituted pyrroles
CN109096139A (zh) 一种α-羰基酰胺衍生物的制备方法
RU2801861C2 (ru) 3,5-диарилизоксазолы и способ их получения
CN109988114B (zh) 一种多取代的4,5-二氢吡唑化合物的制备方法
CN110272389B (zh) 一种合成4-多氟烷基-3,5-二羰基吡唑化合物的方法
CN111393437B (zh) 三取代吲嗪类化合物及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180422

NF4A Reinstatement of patent

Effective date: 20190507