RU2572820C1 - Новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты и способ их получения - Google Patents

Новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты и способ их получения Download PDF

Info

Publication number
RU2572820C1
RU2572820C1 RU2014131888/04A RU2014131888A RU2572820C1 RU 2572820 C1 RU2572820 C1 RU 2572820C1 RU 2014131888/04 A RU2014131888/04 A RU 2014131888/04A RU 2014131888 A RU2014131888 A RU 2014131888A RU 2572820 C1 RU2572820 C1 RU 2572820C1
Authority
RU
Russia
Prior art keywords
acid
ethoxy
tetrahydrobenzo
morpholinomethyl
tricyclic derivative
Prior art date
Application number
RU2014131888/04A
Other languages
English (en)
Inventor
Ин-Хае Е
Чун-Хо ПАРК
Дзонг-Хее ЧОЙ
Донг-ил КАНГ
Original Assignee
Дзеил Фармасьютикал Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзеил Фармасьютикал Ко., Лтд. filed Critical Дзеил Фармасьютикал Ко., Лтд.
Application granted granted Critical
Publication of RU2572820C1 publication Critical patent/RU2572820C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/24Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C307/00Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C307/02Monoamides of sulfuric acids or esters thereof, e.g. sulfamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/19Sulfonic acids having sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • C07C53/06Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/10Succinic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/14Adipic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/15Fumaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/20Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D239/22Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Настоящее изобретение относится к новой кристаллической кислотно-аддитивной соли трициклического производного в форме ее гидрата, представленной следующей химической формулой 2:
[Химическая формула 2]

Description

Область техники
Настоящее описание относится к новым кристаллическим кислотно-аддитивным солям трициклического производного или ее гидратам и способу их получения.
Известный уровень техники
Лекарства, вводимые перорально, показывают медицинские эффекты благодаря абсорбции, распределению, метаболизму или элиминации, а при разработке лекарств также существенными являются присущие свойства твердого состояния, состояния соли, специфического состояния кандидатов в лекарства.
В отличие от термодинамически стабильного кристаллического состояния, аморфное твердое вещество имеет термодинамически очень нестабильное состояние. Так, аморфное твёрдое вещество имеет быструю скорость элюирования и высокую растворимость по сравнению с кристаллическим твердым веществом. Соответственно, даже хотя они являются тем же самым химическим соединением, может получаться иная биодоступность.
В частности, поскольку на скорость попадания перорально вводимых активных ингредиентов в кровь пациента оказывает влияние скорость элюирования, а скорость элюирования активных ингредиентов из желудочно-кишечной жидкости пациента играет важную роль в достижении лечебных эффектов, важной является скорость элюирования в водном растворе. Среди лекарственных состояний аморфная форма растворяется быстро и работает быстро при коротком времени длительности действия, а кристаллическая форма растворяется медленно и работает медленно с длительным временем продолжительности действия.
Каждое из твердых состояний (кристаллического или аморфного) лекарственных кандидатов имеет разные физические и химические свойства, такие как растворимость, стабильность или способность воспроизводства. Данные свойства могут оказывать влияние на конечный тип введения лекарства, оптимизированный процесс производства и абсорбцию в теле человека, и обнаружение наиболее подходящего типа для разработки лекарства теперь может сокращать время и расходы, необходимые для разработки.
Существенно, получение чистого кристаллического состояния и аморфного состояния или даже иного некристаллического состояния является очень благоприятным при разработке лекарств. Данные состояния могут придавать кандидатам в лекарства даже лучшие химические и физические свойства. Таким образом, может стать возможным образование или идентификация состояний для сочетания желаемых лечебных эффектов, а получение лекарств может стать относительно легким. Кристаллическое состояние твердой фазы имеет более благоприятные фармакологические свойства, легко получается и имеет лучшую стабильность при хранении.
Что касается кристаллических соединений, имеющих любые состояния, такие как растворенное состояние, количество остаточных растворителей в конечном лекарстве может быть небольшим. В дополнение к сказанному, благодаря кристаллизации может получаться дополнительный эффект очистки. В дополнение, поскольку данное состояние является очень стабильным во время производства лекарства, обращение с ним во время производства является удобным.
Изобретатели настоящей заявки подали патентную заявку с названием ″дихлорид 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она и способ его получения″, представленный следующей химической формулой, которая зарегистрирована Корейской патентной регистрацией под №10-0968175.
Figure 00000001
Дихлорид 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она является трициклическим производным, имеющим активность ингибирования полимеразы поли(ADP-рибозы), которое может успешно использоваться в качестве эффективного ингредиента в фармацевтической композиции для профилактики или лечения невропатической боли, эпилепсии, удара, болезни Альцгеймера, болезни Паркинсона, амиотрофического бокового склероза (ALS), болезни Хантингтона, шизофрении, хронической и острой боли, ишемического повреждения головного мозга, нейронной потери после гипоксии, травм и нервных повреждений, которые являются медицинскими состояниями, вызываемыми повышенной активностью PARP.
Однако для получения соединения в случае массового производства с использованием колоночной хроматографии используется избыточное количество растворителей. Таким образом, массовое производство является трудным вследствие проблем окружающей среды и больших расходов и времени.
Кроме того, поскольку ангидрид дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она абсорбирует влагу в воздухе, и вес его может увеличиваться, требуется осторожное обращение с ним. Аморфный дихлорид 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она быстро или сильно абсорбирует влагу в воздухе и изменяется нестабильно в кристаллическое состояние.
Поэтому изобретатели настоящей заявки исследовали стабильное кристаллическое состояние дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она для решения описанных выше дефектов и получения стабильного кристаллического состояния соединения 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтидин-5(6Н)-она с высоким выходом и предложили способ разделения, для завершения настоящего изобретения.
Раскрытие изобретения
Техническая проблема
Одним объектом настоящего изобретения является предоставление новых кристаллических кислотно-аддитивных солей трициклического производного или их гидратов.
Еще одним объектом настоящего изобретения является предоставление способа получения кристаллических кислотно-аддитивных солей трициклических производных или их гидратов.
Еще одним объектом настоящего изобретения является предоставление фармацевтической композиции, включающей в себя кристаллическую кислотно-аддитивную соль трициклического производного или ее гидрат и фармацевтически приемлемый носитель, для профилактики или лечения заболеваний, вызываемых сверхактивностью PARP (полимеразы поли(ADP-рибозы)).
Техническое решение
Для того чтобы получить данные объекты, настоящее изобретение предоставляет новые кристаллические кислотно-аддитивные соли трициклических производных или их гидраты, представленные следующей химической формулой 1:
[Химическая формула 1]
Figure 00000002
,
где n, m и X имеют значения, определенные в настоящем описании.
Настоящее изобретение предоставляет также способ получения кристаллической кислотно-аддитивной соли трициклического производного или ее гидрата, включающий в себя добавление кислоты в трициклическом производном следующей химической формулы 1А в воде или органическом растворителе, проведение реакции, завершение реакции и сначала перекристаллизацию с использованием органического растворителя (стадия 1); и еще одну перекристаллизацию твердого вещества, полученного на стадии 1 с использованием воды и органического растворителя (стадия 2), как показано в следующей реакционной формуле 1:
[Реакционная формула 1]
Figure 00000003
,
где n, m и X имеют значения, определенные в настоящем описании.
Кроме того, настоящее изобретение предоставляет фармацевтическую композицию, включающую кристаллическую кислотно-аддитивную соль трициклического производного или ее гидрат и фармацевтически приемлемый носитель, для профилактики или лечения заболеваний, вызываемых сверхактивностью PARP.
Преимущественные эффекты
Кристаллическая кислотно-аддитивная соль или ее гидрат, согласно настоящему изобретению, является стабильной в отношении влажности и стабильной в отношении гигроскопичности, и контроль качества во время производства лекарств является благоприятным. В дополнение, кристаллическая кислотно-аддитивная соль или ее гидрат могут использоваться в фармацевтической композиции для профилактики или лечения невропатической боли, эпилепсии, удара, болезни Альцгеймера, болезни Паркинсона, амиотрофического бокового склероза (ALS), болезни Хантингтона, шизофрении, хронической и острой боли, ишемического повреждения головного мозга, нейронной потери после гипоксии, травм и нервных повреждений, которые являются медицинскими состояниями, вызываемыми сверхактивностью PARP.
Краткое описание рисунков
Фиг. 1 иллюстрирует содержание влаги дигидрата дихлорида согласно примеру 1 настоящего изобретения и ангидрида согласно сравнительному примеру 1;
Фиг. 2 иллюстрирует XRD данные дигидрата дихлорида согласно примеру 1 настоящего изобретения; и
Фиг. 3 иллюстрирует изменения XRD пика аморфного соединения согласно сравнительному примеру 2 в отношении времени.
Наилучший способ осуществления изобретения
Далее ниже настоящее изобретение будет описано подробно.
Настоящее изобретение предоставляет новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты, представленные следующей химической формулой 1.
[Химическая формула 1]
Figure 00000004
,
где n или m представляет собой целое число от 0 до 3; и
Х представляет фармацевтически приемлемую неорганическую кислоту или органическую кислоту.
Предпочтительно, в приведенной выше Химической Формуле 1
n или m представляет собой целое число от 0 до 3; и
Х имеет значение, выбранное из группы, состоящей из соляной кислоты, бензолсульфоновой кислоты, малеиновой кислоты, диметансульфоновой кислоты, бис[(7,7-диметил-2-оксобицикло[2,2,1]гептан-1-ил)метансульфоновой кислоты], винной кислоты, 2,6-диоксо-1,2,3,6-тетрагидропиримидин-4-карбоновой кислоты, адипиновой кислоты, диазотной кислоты, фумаровой кислоты, (S)-2-аминоянтарной кислоты, 2-гидроксипропан-1,2,3-трикарбоновой кислоты, циклогексилсульфаминовой кислоты, серной кислоты, янтарной кислоты, муравьиной кислоты, глютаминовой кислоты и дифосфорной кислоты.
Более предпочтительно, новая кристаллическая кислотно-аддитивная соль трициклического производного или ее гидрат, представленные приведенной выше химической формулой 1, является соединением, выбранным из группы, состоящей из:
(1) дигидрата дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она;
(2) бензолсульфоната 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(3) малеата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(4) диметансульфоната 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(5) бис[(7,7-диметил-2-оксобицикло[2,2,1]гептан-1-ил)метансульфоната] 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(6) тартрата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(7) 2,6-диоксо-1,2,3,6-тетрагидропиримидин-4-карбоксилата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(8) адипата 10-этокси-8-(морфолинометил)-1,2,3,4- тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(9) нитрита 10-этокси-8-(морфолинометил)-1,2,3,4- тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(10) фумарата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(11) (S)-2-аминосукцината 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(12) 2-гидроксипропан-1,2,3-трикарбоксилата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(13) циклогексилсульфамата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(14) сульфата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(15) сукцината 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(16) формиата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она;
(17) глютамата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она; и
(18) дифосфата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она.
Более предпочтительно, новой кристаллической кислотно- аддитивной солью трициклического производного или его гидрата выше указанной химической формулы 1 является дигидрат дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она, представленный следующей химической формулой 2.
[Химическая формула 2]
Figure 00000005
Кристаллический дигидрат дихлорида химической формулы 2 имеет 2θ значения пиков дифракции рентгеновских лучей 6,59°, 7,74°, 8,42°, 10,15°, 12,52°, 23,30° и 25,30° по характеру дифракции рентгеновских лучей Cu целевого облучения.
В дополнение, настоящее изобретение предоставляет способ получения кристаллической кислотно-аддитивной соли трициклического производного или ее гидрата, представленных приведенной выше химической формулой 1.
В частности, способ получения включает в себя:
добавление кислоты в трициклическом производном следующей химической формулы 1А в воде или органическом растворителе, проведение реакции, завершение реакции и сначала перекристаллизацию с использованием органического растворителя (стадия 1); и
еще одну перекристаллизацию твердого вещества, полученного на стадии 1 с использованием воды и органического растворителя (стадия 2), как показано на следующей Реакционной Формуле 1:
[Реакционная формула 1]
Figure 00000006
,
где n, m и X имеют значения, определенные в приведенной выше Химической Формуле 1.
Показанная выше Стадия 1 является стадией получения целевого соединения растворением трициклического производного приведенной выше химической формулы 1А в органическом растворителе и добавлением к нему кислоты.
В данном случае органическим растворителем может быть С1-С4 спирт, и может быть метанол или этанол.
Кроме того, кислотой может быть фармацевтически приемлемая неорганическая кислота или органическая кислота, и может быть кислотой, выбранной из группы, состоящей из соляной кислоты, бензолсульфоновой кислоты, малеиновой кислоты, диметансульфоновой кислоты, бис[(7,7-диметил-2-оксобицикло[2,2,1]гептан-1-ил)метаносульфоновой] кислоты, винной кислоты, 2,6-диоксо-1,2,3,6-тетрагидропиримидин-4-карбоновой кислоты, адипиновой кислоты, диазотной кислоты, фумаровой кислоты, (S)-2-аминоянтарной кислоты, 2-гидроксипропан-1,2,3-трикарбоновой кислоты, циклогексилсульфаминовой кислоты, серной кислоты, янтарной кислоты, муравьиной кислоты, глютаминовой кислоты и дифосфорной кислоты.
Далее, органический растворитель, используемый при первой перекристаллизации в приведенной выше стадии 1, обозначает растворитель, который не растворяет соединение настоящего изобретения, и может быть, по крайней мере, растворителем, выбранным из группы, состоящей из ацетона, гексана, гептана, толуола, этилацетата, дихлорметана, тетрагидрофурана и хлороформа. Предпочтительно может использоваться смесь этанола и этилацетата.
В данном случае соотношение добавления этанола и этилацетата может составлять 1:8-10. В случае, когда соотношение добавления отклоняется от указанного интервала, образование целевого соединения в твердом состоянии может быть затруднено.
В дополнение, приведенная выше стадия 2 является еще одной стадией перекристаллизации путем добавления воды и органического растворителя в твердое вещество, получаемое на приведенной выше стадии 1. После растворения твердого вещества, получаемого на показанной выше стадии 1, добавляется анти-растворитель с последующим перемешиванием или оставлением смеси для получения осадка.
В данном случае используемый органический растворитель обозначает растворитель, в котором соединение настоящего изобретения является нерастворимым, т.е. анти-растворитель, и может быть растворителем, выбранным из группы, состоящей из ацетона, гексана, гептана, толуола, этилацетата, дихлорметана, тетрагидрофурана и хлороформа. Предпочтительно может использоваться ацетон.
Соотношение добавления воды и ацетона может составлять 1:8-10. В случае, когда соотношение добавления отклоняется от указанного интервала, образование целевого соединения в твердом состоянии может быть затруднено.
Далее, настоящее изобретение предоставляет фармацевтическую композицию, включающую в свой состав кристаллическую кислотно-аддитивную соль трициклического производного или ее гидрат, представленные приведенной выше химической формулой 1, и фармацевтически приемлемый носитель, для профилактики или лечения заболеваний, вызываемых сверхактивностью PARP.
Кристаллическая кислотно-аддитивная соль или ее гидрат согласно настоящему изобретению является стабильной в отношении влажности и стабильной в отношении гигроскопичности, и контроль качества во время производства лекарств является благоприятным (См. экспериментальные примеры 1 и 2). В дополнение, поскольку трициклическое производное оказывает хорошие лечебные действия на невропатическую боль, эпилепсию, удар, болезнь Альцгеймера, болезнь Паркинсона, амиотрофический боковой склероз (ALS), болезнь Хантингтона, шизофрению, хроническую и острую боль, ишемическое повреждение головного мозга, нейронную потерю после гипоксии, травмы и нервные повреждения, которые являются медицинскими состояниями, вызываемыми сверхактивностью PARP (Корейская патентная публикация № 2010-0053468), трицилическое производное может использоваться в виде фармацевтической композиции для профилактики или лечения заболеваний, вызываемых сверхактивностью PARP.
В случае, когда композиция настоящего изобретения используется в качестве медицинских средств, фармацевтическая композиция, содержащая трициклическую кристаллическую кислотно-аддитивную соль или ее гидрат в качестве эффективного ингредиента, может формулироваться в виде разнообразных типов перорального или парентерального введения для клинического введения без ограничений.
Рецептурная форма для перорального введения может включать в себя таблетки, пилюли, твердые/мягкие капсулы, жидкие рецептурные формы, суспензии, эмульсии, сиропы, гранулы, эликсиры, троши и проч. Рецептурная форма включает в себя разбавитель (например, лактозу, декстрозу, сахарозу, манит, сорбит, целлюлозу и/или глицерин) и модификатор скольжения (например, двуокись кремния, тальк, стеариновую кислоту и ее магниевую или кальциевую соль, и/или полиэтиленгликоль), отличный от эффективных ингредиентов. Рецептурная форма может содержать связующий агент, такой как магниевый силикат алюминия, крахмальная паста, желатин, метилцеллюлоза, натриевая карбоксиметилцеллюлоза и/или поливинилпирролидин, и может содержать крахмал, агар-агар, дезинтегрирующий агент, такой как альгиновая кислота и ее натриевая соль, или кипящую смесь и/или абсорбент, окрашивающий агент, вкусовой агент и подслащивающий агент, в зависимости от потребностей.
Фармацевтическая композиция, включающая в свой состав трициклическую кристаллическую кислотно-аддитивную соль или ее гидрат в качестве эффективного ингредиента, могут вводиться парентерально, и парентеральное введение может включать в себя гиподермальную инъекцию, внутривенную инъекцию или внутриторакальную (внутригрудную) инъекцию.
Для рецептурной формы для парентерального введения трициклическая кристаллическая кислотно-аддитивная соль или ее гидрат смешивается со стабилизатором или буферным агентом в воде с получением жидкости или суспензии, и может производиться для типа введения в виде ампул или пузырьков. Композиция может стерилизоваться и/или может содержать антисептик, стабилизатор, диспергируемый в воде порошок или эмульсионный промотор, вспомогательный агент, такой как соль для регулирования осмотического давления и/или буферный агент, и другие полезные материалы для лечения. Рецептурная форма может получаться обычным способом, предусматривающим смешение, гранулирование или нанесение покрытия.
Дозировка фармацевтической композиции, содержащей в качестве эффективного ингредиента трициклическую кристаллическую кислотно-аддитивную соль или ее гидрат, в организме человека зависит от возраста, веса, пола, типа введения, физических состояний и степени заболеваний пациента. Предпочтительно, композиция может вводиться перорально или парентерально несколько раз в день, предпочтительно 1-3 раза в день, с постоянным интервалом времени в количестве 0,01-200 мг/кг/день согласно решению врача или фармацевта.
Способ осуществления изобретения
Далее, данное изобретение будет объяснено более подробно со ссылкой на примеры и сравнительные примеры.
Однако примеры и сравнительные примеры являются иллюстративными, и данное изобретение не должно расцениваться как ограниченное примерами и сравнительными примерами.
<Пример 1> Получение дигидрата дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она
Стадия 1: Получение метил 3-гидрокси-5-нитробензоата
Figure 00000007
К 3-гидрокси-5-нитробензойной кислоте (5,9 кг, 32,2 моль) добавляли метанол (60 л), и к ним медленно добавляли серную кислоту (375 мл, каталитическое количество) с последующим нагреванием с обратным холодильником и перемешиванием при 80°С в течение 18 часов. После завершения реакции, реагирующее вещество охлаждали до комнатной температуры. К нему добавляли очищенную воду (50 л), и метанол отгоняли при пониженном давлении. Полученное таким образом твердое вещество перемешивали при 10°С в течение 1 часа и фильтровали. Фильтрат промывали очищенной водой и сушили при 60°С, получая указанное в заголовке целевое соединение (5,52 кг, выход:87%, желтое твердое вещество).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,91 (с, 1H), 8,04 (с, 1H), 7,74 (с, 1H), 7,66 (с, 1H), 3,88 (с, 3H).
Стадия 2: Получение метил 3-этокси-5-нитробензоата
Figure 00000008
К соединению, полученному в стадии 1 (5,52 кг, 28,0 ммоль), добавляли ацетонитрил (36 л) и к ним добавляли этилиодид (6,1 кг, 39,2 моль) и карбонат калия (5,8 кг, 42,0 моль) с последующим нагреванием с обратным холодильником и перемешиванием при 95°С в течение 18 часов. После завершения реакции, реагирующее вещество охлаждали до комнатной температуры. К нему добавляли очищенную воду (36 л), и ацетонитрил отгоняли при пониженном давлении. Полученное таким образом твердое вещество фильтровали, промывали очищенной водой и сушили при 60°С, получая целевое соединение (6,1 кг, выход: 96,9%, желтое твердое вещество).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 8,18 (с, 1H), 7,93 (с, 1H), 7,78 (с, 1H), 4,21 (кв, J=6,6 Гц, 2H), 3,91 (с, 3H), 1,37 (т, J=6,6 Гц, 3H).
Стадия 3: Получение метил 3-амино-5-этоксибензоата
Figure 00000009
К соединению, полученному в стадии 2 (6,1 кг, 27,1 моль), добавляли метанол (54 л) и очищенную воду (54 л), и к ним добавляли 10%-палладий на угле (6,1 кг, 10% вес/вес) с последующим перемешиванием в условиях газообразного водорода при 4 атм. в течение 2,5 часов при комнатной температуре. После подтверждения завершения реакции, добавляли ацетон (54 л) и проводили фильтрование для удаления 10%-палладия на угле. Метанол и ацетон отгоняли при пониженном давлении. Полученное таким образом твердое вещество фильтровали и промывали очищенной водой, получая целевое соединение (4,88 кг, выход: 92,2%, желтое твердое вещество).
1Н-ЯМР (400 МГц, CDCl3) δ 6,95 (с, 2H), 6,39 (с, 1H), 4,01 (кв, J=6,8 Гц, 2H), 3,87 (с, 3H), 3,76 (с, 2H), 1,38 (т, J=6,8 Гц, 3H).
Стадия 4: Получение метил 3-(2-хлорникотинамидо)-5-этоксибензоата
Figure 00000010
К соединению, полученному в стадии 3 (4,88 кг, 25,0 моль), добавляли дихлорметан (60 л), и к ним добавляли 2-хлорникотиновую кислоту (5,5 кг, 35,0 моль), EDC·HCl (6,7 кг, 35 моль) и гидроксибензотриазол (1,0 кг, 7,5 моль) с последующим перемешиванием при комнатной температуре в течение 2 часов. После подтверждения завершения реакции добавляли карбонат калия (1,0 кг) и очищенную воду (30 л), и органический слой отгоняли при пониженном давлении. К полученной таким образом суспензии добавляли этилацетат (5 л) и н-гексан (50 л) и перемешивали. Полученное твердое вещество фильтровали и сушили, получая целевое соединение (8,98 кг, выход: четвертичный выход, не совсем белое твердое вещество).
1H-ЯМР (400 МГц, CDC13) δ 8,53 (с, 1H), 8,49 (д, J=4,8 Гц, 1H), 8,14 (д, J=7,6 Гц, 1H), 7,78 (с, 1H), 7,66 (с, 1H), 7,40-7,37 (м, 2H), 4,33 (кв т, J=7,6 Гц, 2H), 3,88 (с, 3H), 1,38 (т, J=7,6 Гц, 3H).
Стадия 5: Получение метил 3-(2-хлор-N-(метоксиметил)никотинамидо)-5-этоксибензоата
Figure 00000011
К соединению, полученному в стадии 4 (8,98 кг, 25,0 моль), добавляли дихлорметан (90 л) и растворяли, и к ним добавляли метоксиметилхлорид (5,03 кг, 50,0 моль) и тетрабутиламмонийбромид (3,2 кг, 10,0 моль). Реакционную смесь охлаждали до 10°С, и по каплям добавляли гидроксид натрия (4,0 кг, 10,0 моль), растворенного в очищенной воде (9 л) с последующим энергичным перемешиванием при комнатной температуре в течение 4 часов. После подтверждения завершения реакции добавляли очищенную воду (30 л), и органический слой отгоняли при пониженном давлении. К полученной таким образом суспензии добавляли этилацетат (50 л) и растворяли, и полученное в результате вещество промывали очищенной водой (40 л) 6 раз, отгоняли при пониженном давлении и сушили в вакууме, получая целевое соединение (9,0 кг, выход: 95%, желтое твердое вещество).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 8,24 (д, 1H, J=2,4 Гц), 7,93 (д, 1H, J=4,4 Гц), 7,41 (с, 1H), 7,30-7,29 (м, 1H), 7,21 (с, 1H), 7,15 (с, 1H), 5,17 (с, 2H), 3,94 (кв, 2H, J=6,8 Гц), 3,77 (с, 3H), 3,41 (с, 3H), 1,23 (т, 3H, J=6,8 Гц).
Стадия 6: Получение метил 10-этокси-6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000012
К соединению, полученному в стадии 5 (11,4 кг, 30,0 моль), добавляли N,N-диметилформамид (54 л), и к ним добавляли ацетат палладия (1,84 кг, 7,52 моль), трибутилфосфин (6,1 кг, 30 моль) и карбонат натрия (8,3 кг, 60 моль) с последующим перемешиванием при 130°С в течение 2 часов. После подтверждения завершения реакции реагент охлаждали и добавляли очищенную воду (108 л). Полученное таким образом твердое вещество фильтровали, промывали очищенной водой и сушили при 60°С, получая целевое соединение (6,88 кг, выход: 67,0%, черное твердое вещество).
1H-ЯМР (400 МГц, CDCl3) δ 9,11-9,10 (м, 1H), 8,84 (тд, J=2,0 Гц, 8,0 Гц, 1H), 7,97 (с, 1H), 7,60 (с, 1H), 7,53-7,50 (м, 1H), 5,85 (с, 2H), 4,34 (кв, J=6,8 Гц, 2H), 3,98 (с, 3H), 3,49 (с, 3H), 1,60 (т, J=6,8 Гц, 3H).
Стадия 7: Получение метил 10-этокси-6-(метоксиметил)-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000013
К соединению, полученному в стадии 6 (6,88 кг, 27,1 моль), добавляли тетрагидрофуран (54 л) и очищенную воду (54 л), и к ним добавляли 10%-палладий на угле (13,8 кг, 20% вес/вес) с последующим перемешиванием в условиях газообразного водорода при 4 атм. в течение 4,5 часов при комнатной температуре. После подтверждения завершения реакции, добавляли дихлорметан (54 л). Проводили фильтрование для удаления 10%-палладия на угле, и органический слой отгоняли при пониженном давлении. К полученной таким образом суспензии добавляли н-гексан (50 л) и перемешивали в течение 1 часа. Полученное твердое вещество фильтровали и сушили, получая целевое соединение (5,01 кг, выход: 72,2%, не совсем белое твердое вещество).
1Н-ЯМР (400 МГц, CDCl3) δ 7,85 (с, 1H), 7,63 (с, 1H), 7,29 (с, 1H), 5,73 (с, 2H), 4,26 (кв, J=7,2 Гц, 2H), 3,94 (с, 3H), 3,42 (с, 3H), 3,42-3,37 (м, 2H), 2,69 (т, J=6,0 Гц, 2H), 1,93-1,90 (м, 2H), 1,53 (т, J=7,2 Гц, 3H).
Стадия 8: Получение 10-этокси-8-(гидроксиметил)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000014
К соединению, полученному в стадии 7 (500 г, 1,44 моль), добавляли тетрагидрофуран (4 л) и при 10°С медленно добавляли литийалюминий гидрид (50,0 г, 1,34 моль) с последующим перемешиванием при комнатной температуре в течение 1 часа. После подтверждения завершения реакции, одно за другим медленно добавляли очищенную воду (50 мл), 15% водный раствор гидроксида натрия (50 мл) и очищенную воду (150 мл) с последующим перемешиванием при комнатной температуре в течение 2 часов. Полученную таким образом суспензию фильтровали, и фильтрат концентрировали при пониженном давлении. К полученному твердому веществу добавляли этилацетат (2,0 л) и перемешивали в течение 1 часа. Проводили фильтрование и сушку, получая целевое соединение (361 г, выход: 78,7%, не совсем белое твердое вещество).
1H-ЯМР (400 МГц, CDCl3) δ 7,63 (с, 1H), 7,00 (с, 1H), 6,73 (с, 1H), 5,55 (с, 2H), 4,69 (с, 2H), 4,19 (кв, J=7,2 Гц, 2H), 3,36-3,35 (м, 2H), 3,36 (с, 3H), 2,65 (т, J=6,0 Гц, 2H), 1,91-1,88 (м, 2H), 1,51 (т, J=7,2 Гц, 3H).
Стадия 9: Получение 8-(хлорметил)-10-этокси-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000015
К соединению, полученному в стадии 8 (310,1 г, 0,97 моль), добавляли дихлорметан (1,5 л) и медленно, при 0°С добавляли тионилхлорид (106,5 мл, 1,46 моль) с последующим нагреванием с обратным холодильником и перемешиванием при 50°С в течение 2 часов. После подтверждения завершения реакции, добавляли очищенную воду (500 мл) и проводили нейтрализацию с применением водного раствора бикарбоната натрия. Органический слой концентрировали при пониженном давлении. Полученное таким образом твердое вещество перекристаллизовывали с использованием этилацетата (0,5 л) и н-гексана (1,0 л), получая целевое соединение (305,4 г, выход: 93,1%, не совсем белое твердое вещество).
1H-ЯМР (400 МГц, CDCl3) δ 7,59 (с, 1H), 7,14 (с, 1H), 6,69 (с, 1H), 5,67 (с, 2H), 4,59 (с, 2H), 4,20 (кв, 2H, J=6,8 Гц), 3,40 (с, 3H), 3,40-3,35 (м, 2H), 2,66 (т, 2H, J=6,0 Гц), 1,92- 1,86 (м, 2H), 1,53 (т, 3H, J=6,8 Гц).
Стадия 10: Получение 10-этокси-6-(метоксиметил)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000016
К соединению, полученному в стадии 9 (305,4 г, 0,907 моль), один за другим добавляли метанол (3,0 л) и морфолин (395 мл, 4,53 моль) с последующим нагреванием с обратным холодильником и перемешиванием при 80°С в течение 18 часов. После подтверждения завершения реакции, добавляли очищенную воду (3,0 л), и органический слой концентрировали при пониженном давлении. Полученное таким образом твердое вещество перекристаллизовывали с использованием этилацетата (1,0 л) и н-гексана (2,0 л), получая целевое соединение (326,9 г, выход: 96,5%, не совсем белое твердое вещество).
1Н-ЯМР (400 МГЦ, ДМСО) δ 7,61 (С, 1H), 7,08 (С, 1H), 6,72 (с, 1H), 5,68 (с, 2H), 4,19 (кв, 2H, J=6,8 Гц), 3,72-3,69 (м, 4H), 3,51 (с, 2H), 3,40 (с, 3H), 3,40-3,35 (м, 2H), 2,66 (т, 2H, J=6,0 Гц), 2,45 (м, 4H), 1,90-1,87 (м, 2H), 1,52 (т, 3H, J=6,8 Гц).
Стадия 11: Получение дигидрата дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000017
К соединению, полученному в стадии 10 (326,9 г, 0,875 моль) добавляли этанол (2,3 л) и с-соляную кислоту (230 мл) с последующим нагреванием с обратным холодильником и перемешиванием при 90°С в течение 3 часов. После подтверждения завершения реакции, реакционную смесь концентрировали при пониженном давлении и перекристаллизовывали в этаноле (100 мл) и этилацетате (900 мл). Полученное таким образом твердое вещество перекристаллизовывали с использованием воды (1,0 л) и ацетона (8,0 л), получая целевое соединение (351 г, выход: 88,7%, влагосодержание: 8,5%, белое твердое вещество).
1Н-ЯМР (400 МГЦ, ДМСО-d6) δ 12,21 (с, 1H), 12,13 (с, 1H), 7,55 (с, 1H), 7,11 (с, 1H), 4,39-4,34 (м, 4H), 3,91-3,90 (м, 4H), 3,44-3,41 (м, 2H), 3,19-3,13 (м, 4H), 2,50 (т, 2H, J=6,0 Гц), 1,80-1,77 (м, 2H), 1,44 (т, 3H, J=6,8 Гц).
<Пример 2> Получение бензолсульфоната 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000018
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали бензолсульфоновую кислоту вместо с-соляной кислоты, получая целевое соединение (716 мг, 98%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 11,34 (с, 1H), 9,87 (ушир., 1H), 7,61-7,59 (м, 2H), 7,35-7,30 (м, 3H), 6,92 (с, 1H), 6,87 (с, 1H), 4,34 (ушир., 2H), 4,23 (кв, J=3,4 Гц, 2H), 3,98-3,95 (м, 2H), 3,63 (т, J=12,0 Гц, 2H), 3,36 (ушир., 2H), 3,28 (д, J=6,2 Гц, 2H), 3,15-3,13 (м, 2H), 2,48-2,45 (м, 2H), 1,78-1,75 (м, 2H), 1,44 (т, J=6,8 Гц, 3H).
<Пример 3> Получение малеата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000019
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали малеиновую кислоту вместо с-соляной кислоты, получая целевое соединение (569 мг, 85%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 10,92 (ушир., 1H), 7,38 (с, 1H), 6,83 (с, 1H), 6,72 (с, 1H), 6,10 (с, 1H), 4,21 (кв, J=3,6 Гц, 2H), 3,70 (ушир., 4H), 3,32 (ушир., 6H), 2,94 (ушир., 2H), 2,43 (т, J=6,4 Гц, 2H), 1,75 (т, J=5,6 Гц, 2H), 1,05 (т, J=7,2 Гц, 3H).
<Пример 4> Получение диметансульфоната 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000020
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали диметансульфоновую кислоту вместо с-соляной кислоты, получая целевое соединение (760 мг, 97%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 11,69 (с, 1H), l0,01 (с, 1H), 7,88-7,85 (ушир., 2H), 6,98 (с, 1H), 6,97 (с, 1H), 4,36 (с, 2H), 4,29 (кв, J=6,8 Гц, 2H), 3,96 (м, 2H), 3,65 (м, 2H), 3,38 (м, 2H), 3,27 (м, 2H), 3,15 (м, 2H), 2,48 (м, 2H), 2,38 (с, 6H), 1,77 (м, 2H), 1,45 (т, J=6,8 Гц, 3H).
<Пример 5> Получение бис[(7,7-диметил-2-оксобицикло[2,2,1]гептан-1-ил)метансульфоната] 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000021
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали бис[(7,7-диметил-2-оксобицикло[2,2,1]гептан-1-ил)метансульфоновую кислоту вместо с-соляной кислоты, получая целевое соединение (900 мг, 77%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 11,60 (с, 1H), 9,98 (с, 1H), 7,82-7,23 (ушир.,2H), 6,95 (м, 2H), 4,33 (с, 2H), 4,27 (кв, J=6,8 Гц, 2H), 3,94 (м, 2H), 3,65 (м, 2H), 3,36 (м, 2H), 3,25 (м, 2H), 3,14 (м, 2H), 2,90 (с, 1H), 2,87 (с, 1H), 2,62 (м, 2H), 2,45 (м, 2H), 2,42 (с, 1H), 2,38 (с, 1H), 2,24 (м, 1H), 2,19 (м, 1H), 1,92 (т, J=4,4 Гц, 2H), 1,85-1,74 (м, 6H), 1,43 (т, J=7,2 Гц, 3H), 1,31-1,22 (м, 4H), 1,01 (с, 6H), 0,71 (с, 6H).
<Пример 6> Получение тартрата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000022
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали виннокаменную кислоту вместо с-соляной кислоты, получая целевое соединение (640 мг, 89%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,69 (с, 1H), 7,36 (с, 1H), 6,76 (с, 1H), 6,60 (с, 1H), 4,29 (с, 2H), 4,16 (кв, J=6,8 Гц, 2H), 3,58 (м, 4H), 3,44 (с, 2H), 3,31 (м, 2H), 2,41-2,38 (м, 6H), 1,74 (м, 2H), 1,40 (т, J=6,8 Гц, 3H).
<Пример 7> Получение 2,6-диоксо-1,2,3,6-тетрагидропиримидин-4-карбоксилата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000023
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали 2,6-диоксо-1,2,3,6-тетрагидропиримидин-4-карбоновую кислоту вместо с-соляной кислоты, получая целевое соединение (640 мг, 88%).
1Н-ЯМР (400 МГЦ, ДМСО-d6) δ 11,19 (с, 1H), 10,85 (с, 1H), 10,42 (с, 1H), 7,36 (с, 1H), 6,81 (с, 1H), 6,71 (с, 1H), 5,89 (с, 1H), 4,16 (кв, J=6,8 Гц, 2H), 3,81 (с, 2H), 3,68 (м, 4H), 3,31 (м, 2H), 2,72 (м, 4H), 2,42 (т, J=6,0 Гц, 2H), 1,74 (м, 2H), 1,40 (т, J=6,8 Гц, 3H).
<Пример 8> Получение адипата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000024
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали адипиновую кислоту вместо с-соляной кислоты, получая целевое соединение (400 мг, 56%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 12,04 (с, 1H), 10,69 (с, 1H), 7,36 (с, 1H), 6,76 (с, 1H), 6,59 (с, 1H), 4,17 (кв, J=3,4 Гц, 2H), 3,58 (ушир., 4H), 3,41 (ушир., 2H), 3,31 (ушир., 2H), 2,42 (т, J=6,0 Гц, 2H), 2,35 (ушир., 4H), 1,74 (ушир., 2H), 1,49 (ушир., 4H), 1,41 (т, J=7,2 Гц, 3H).
<Пример 9> Получение нитрита 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000025
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали динитро кислоту вместо с-соляной кислоты, получая целевое соединение (638 мг, 96%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 11,61 (с, 1H), 9,91 (ушир., 1H), 7,85 (ушир., 1H), 6,96 (с, 1H), 6,89 (с, 1H), 4,36-4,35 (м, 2H), 4,27 (кв, J=3,4 Гц, 2H), 3,97 (д, J=5,6 Гц, 2H), 3,61 (т, J=11,6 Гц, 2H), 3,41-3,37 (м,, 2H), 3,28 (д, J=6,0 Гц, 2H), 3,16-3,13 (м, 2H), 2,50-2,48 (м, 2H), 1,79-1,76 (м, 2H), 1,45 (т, J=7,2 Гц, 3H).
<Пример 10> Получение фумарата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000026
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали фумаровую кислоту вместо с-соляной кислоты, получая целевое соединение (426 мг, 64%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 13,15 (ушир., 1H), 10,68 (с, 1H), 7,34 (с, 1H), 6,74 (с, 1H), 6,60-6,58 (м, 3H), 4,14 (кв, J=3,8 Гц, 2H), 3,56 (ушир., 4H), 3,41 (с, 2H), 3,29 (ушир., 2H), 2,41-2,35 (м, 6H), 1,73-1,71 (м, 2H), 1,38 (т, J=6,8 Гц, 3H).
<Пример 11> Получение (S)-2-аминосукцината 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000027
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали (S)-2-амино янтарную кислоту вместо с-соляной кислоты, получая целевое соединение (620 мг, 89%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,68 (с, 1H), 7,35 (с, 1H), 6,75 (с, 1H), 6,58 (с, 1H), 4,16 (кв, J=6,8 Гц, 2H), 3,77 (м, 1H), 3,57 (м, 4H), 3,40 (с, 2H), 3,30 (м, 2H), 2,72 (м, 1H), 2,43-2,39 (м, 3H), 2,34 (м, 4H), 1,74 (м, 2H), 1,40 (т, J=6,8 Гц, 3H).
<Пример 12> Получение 2-гидроксипропан-1,2,3-трикарбоксилата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000028
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали 2-гидроксипропан-1,2,3-трикарбоновую кислоту вместо с-соляной кислоты, получая целевое соединение (665 мг, 85%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,75 (с, 1H), 7,37 (с, 1H), 6,78 (с, 1H), 6,62 (с, 1H), 4,17 (кв, J=3,8 Гц, 2H), 3,61 (ушир., 4H), 3,53 (с, 2H), 3,31 (ушир., 2H), 2,68 (дд, J=12,4 Гц, 7,6 Гц, 4H), 2,50-2,40 (м, 6H), 1,76-1,73 (м, 2H), 1,41 (т, J=6,0 Гц, 3H).
<Пример 13> Получение циклогексилсульфамата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000029
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали циклогексилсульфаминовую кислоту вместо с-соляной кислоты, получая целевое соединение (453 мг, 75%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 10,76 (ушир.с, 1H), 7,37 (с, 1H), 6,78 (с, 1H), 6,64 (с, 1H), 4,21-4,16 (м, 2H), 3,34-3,31 (м, 5H), 3,09 (ушир.с, 1H), 2,43-2,40 (м, 4H), 2,08-2,06 (м, 2H), 1,76-1,69 (м, 4H), 1,55-1,52 (м, 2H), 1,42 (т, J=6,8 Гц, 3H), 1,27-1,07 (м, 6H).
<Пример 14> Получение сульфата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000030
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали серную кислоту вместо с-соляной кислоты, получая целевое соединение (511 мг, 99%).
1Н-ЯМР (400 МГЦ, ДМСО-d6) δ 11,07 (с, 1H), 9,83 (ушир. с, 1H), 7,40 (ушир. с, 1H), 6,86 (с, H), 6,79 (с, 1H), 4,30-4,26 (м, 2H), 4,24-4,20 (м, 2H), 3,98-3,94 (м, 4H), 3,61 (т, J=11,9 Гц, 2H), 3,32-3,25 (м, 4H), 3,19-3,13 (м, 2H), 1,75-1,62 (м, 2H), 1,45 (т, J=6,9 Гц, 3H).
<Пример 15> Получение сукцината 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000031
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали янтарную кислоту вместо с-соляной кислоты, получая целевое соединение (453 мг, 86%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 10,68 (ушир. с, 1H), 7,36 (ушир. с, 1H), 6,76 (с, 1H), 6,59 (2, 1H), 4,17 (кв, J=6,9, 7,3 Гц, 2H), 3,59-3,56 (м, 4H), 3,42 (с, 2H), 3,34-3,31 (м, 4H), 2,41 (с, 8H), 2,35 (ушир. с, 4H), 1,75-1,72 (м, 2H), 1,40 (т, J=6,8 Гц, 3H).
<Пример 16> Получение формиата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000032
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали муравьиную кислоту вместо с-соляной кислоты, получая целевое соединение (427 мг, 94%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,69 (ушир. с, 1H), 8,13 (с, 1H), 7,36 (ушир. с, 1H), 6,76 (с, 1H), 6,59 (с, 1H), 4,17 (кв, J=6,8, 7,2 Гц, 2H), 3,59-3,56 (м, 4H), 3,42 (с, 2H), 3,32-3,30 (м, 2H), 2,49-2,35 (м, 6H), 1,75-1,73 (м, 2H), 1,40 (т, J=6,9 Гц, 3H).
<Пример 17> Получение глютамата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000033
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали глютаминовую кислоту вместо с-соляной кислоты, получая целевое соединение (545 мг, 96%).
1H-ЯМР (400 МГц, ДМСО-d6) δ 10,68 (ушир. с, 1H), 7,36 (ушир. с, 1H), 6,76 (с, 1H), 6,59 (с, 1H), 4,17 (кв, J=6,9, 7,2 Гц, 2H), 3,59-3,52 (м, 4H), 3,41-3,27 (м, 8H), 2,42-2,34 (м, 6H), 1,87-1,81 (м, 1H), 1,75-1,72 (м, 2H), 1,40 (т, J=6,9 Гц, 3H).
<Пример 18> Получение дифосфата 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000034
Осуществляли ту же самую процедуру, как описано в примере 1, за исключением того, что в стадии 10 использовали пирофосфорную кислоту вместо с-соляной кислоты, получая целевое соединение (785 мг, 99%).
1Н-ЯМР (400 МГц, ДМСО-d6) δ 10,80 (с, 1H), 7,38 (с, 1H), 6,77 (с, 1H), 6,62 (с, 1H), 4,17 (кв, J=6,8 Гц, 2H), 3,59 (м, 4H), 3,48 (с, 2H), 3,31 (м, 2H), 2,42 (м, 6H), 1,75 (м, 2H), 1,41 (т, J=6,8 Гц, 3H).
<Сравнительный пример 1> Получение ангидрида дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Figure 00000035
Дигидрат дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она, полученный в примере 1 (3,0 г, 6,63 ммоль), и 15,0 г пентоксида фосфора (Р2О5) помещали в вакуумную печь (Daihan Labtech, LVO-2060) и сушили при 100°С, при 10 ммHg в течение 5 часов, получая целевое соединение.
<Сравнительный пример 2> Получение аморфного дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Дигидрат дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она, полученный в примере 1 (3,0 г, 6,63 ммоль), растворяли в 30 мл дистиллированной воды и сушили вымораживанием. Затем, полученный таким образом продукт и 15,0 г пентоксида фосфора (Р2О5) помещали в вакуумную печь (Daihan Labtech, LVO-2060) и повторно сушили при 100°С, при 10 ммHg в течение 5 часов, получая целевое соединение.
<Экспериментальный пример 1> Сравнение стабильности дигидрата дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6Н)-она и ангидрида дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6Н)-она
Для сравнения стабильности дигидрата дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она, полученного в примере 1, и ангидрида дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она, полученного в сравнительном примере 1, был проведен следующий эксперимент.
3,0 г каждого из соединений помещали в чашку Петри, и чашку Петри оставляли в термо-гидростате, поддерживающем 25°С и 60% RH в открытом состоянии. Содержание влаги относительно времени измеряли с использованием аппарата Карла Фишера и регистрировали. С помощью измерения изменения содержания влаги относительно времени в описанных выше условиях сравнивали стабильность дигидрата и стабильность ангидрида. Результаты иллюстрируются в следующей таблице 1 и на Фиг. 1.
Таблица 1
Содержание влаги дигидрата примера 1 Содержание влаги ангидрида сравнительного примера 1
Начальное состояние 8,77 0,40
30 мин 8,75 9,70
1 час 8,80 10,18
2 часа 8,79 9,79
1 день 8,77 9,72
2 дня 8,81 9,86
Как показано в таблице 1, по результатам измерения стабильности дигидрата примера 1 согласно настоящему изобретению и ангидрида сравнительного примера 1, содержание влаги соединения сравнительного примера 1 увеличилось в пределах 30 минут по сравнению с начальным состоянием и на воздухе абсорбируется влага. Таким образом, соединение сравнительного примера 1 быстро изменяется в кристаллический тип и является нестабильным. Однако содержание влаги соединения согласно настоящему изобретению является постоянным, и соединение является стабильным в отношении влаги и в результате стабильным в отношении гигроскопичности и поэтому является очень полезным в поддержании качества при производстве лекарства. В дополнение, соединение согласно изобретению может быть использовано в фармацевтической композиции для лечения невропатической боли, эпилепсии, удара, болезни Альцгеймера, болезни Паркинсона, амиотрофического бокового склероза (ALS), болезни Хантингтона, шизофрении, хронической и острой боли, ишемического повреждения головного мозга, нейронной потери после гипоксии, травм и нервных повреждений, которые являются медицинскими состояниями, вызываемыми сверхактивностью PARP.
<Экспериментальный пример 2> сравнение стабильности аморфного дихлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она
Для сравнения стабильности кристаллического соединения примера 1 согласно настоящему изобретению и аморфного соединения сравнительного примера 2 проводили следующий эксперимент.
Стабильность каждого кристаллического соединения примера 1 согласно настоящему изобретению и аморфного соединения сравнительного примера 2 измеряли путем измерения изменения характера дифракции с помощью дифракционного анализа рентгеновских лучей (XRD).
В результате, как показано на Фиг. 2, для кристаллического соединения примера 1 согласно настоящему изобретению получены были постоянные данные без изменения характера XRD дифракции относительно времени. Для аморфного соединения сравнительного примера 2 точный и конкретный XRD характер аморфного типа не был показан, однако аморфный дихлорид 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]-нафтиридин-5(6H)-она, полученный после сушки вымораживанием, абсорбирует окружающую влагу во время проведения XRD, тем самым увеличивая кристалличность и показания XRD пиков. Таким образом, сочли, что соединение сравнительного примера 2 абсорбирует окружающую влагу, и кристалличность его увеличивается (см. Фиг. 3).
Для ссылки, 2θ величины, полученные путем измерения XRD дигидрата дихлорида соединения химической формулы 2 согласно примеру 1, суммированы и проиллюстрированы в следующей таблице 2.
Таблица 2
Пик № d I/I0
1 6,59 13,40 94,0
2 7,74 11,42 100,0
3 8,42 10,50 27,4
4 10,15 8,71 93,9
5 12,52 7,06 19,6
6 14,52 6,10 14,0
7 15,80 5,60 16,5
8 16,27 5,44 4,9
9 17,25 5,14 14,7
10 18,34 4,83 13,3
11 20,08 4,42 13,9
12 20,94 4,24 17,1
13 21,46 4,14 15,7
14 22,01 4,03 3,7
15 23,30 3,81 30,8
16 23,90 3,72 6,1
17 25,30 3,52 62,4
18 25,80 3,45 22,6
19 26,18 3,40 14,0
20 26,56 3,35 12,0
21 27,50 3,24 17,9
22 28,19 3,16 15,4
23 29,18 3,06 5,2
24 30,66 2,91 15,2
25 31,18 2,87 10,5
26 31,83 2,81 6,2
27 32,69 2,74 10,4
28 33,21 2,70 3,2
29 34,08 2,63 5,0
30 35,04 2,56 6,3
31 36,13 2,48 3,8
Между тем, содержание влаги соединения сравнительного примера 2 составляло 0,4% сразу после сушки и увеличивалось до 5,2% после измерения XRD.
Следовательно, соединение согласно настоящему изобретению является стабильным в отношении гигроскопичности и поэтому очень полезным в поддержании качества при получении лекарства. Кроме того, соединение согласно изобретению может быть использовано в фармацевтической композиции для лечения невропатической боли, эпилепсии, удара, болезни Альцгеймера, болезни Паркинсона, амиотрофического бокового склероза (ALS), болезни Хантингтона, шизофрении, хронической и острой боли, ишемического повреждения головного мозга, нейронной потери после гипоксии, травм и нервных повреждений, которые являются медицинскими состояниями, вызываемыми сверхактивностью PARP.

Claims (4)

1. Новая кристаллическая кислотно-аддитивная соль трициклического производного в форме ее гидрата, представленного следующей химической формулой 2:
Figure 00000036
2. Новая кристаллическая кислотно-аддитивная соль трициклического производного в форме ее гидрата по п. 1, в которой кристаллический дигидрат дихлорида химической формулы 2 показывает конкретные пики, представленные 2θ значениями пиков в характере дифракции рентгеновских лучей Cu целевого облучения при 6,59°, 7,74°, 8,42°, 10,15°, 12,52°, 23,30° и 25,30°.
3. Способ получения кристаллической кислотно-аддитивной соли трициклического производного в форме ее гидрата по п. 1, включающий в себя:
добавление соляной кислоты к трициклическому производному следующей химической формулы 1А в воде или органическом растворителе, проведение реакции, завершение реакции и сначала перекристаллизацию с использованием органического растворителя (стадия 1); и
еще одну перекристаллизацию твердого вещества, полученного на стадии 1, с использованием воды и органического растворителя (стадия 2), как показано на следующей реакционной формуле 1:
Figure 00000037

где n представляет собой целое число, равное 2;
m представляет собой целое число, равное 2; и
X представляет собой HCl.
4. Фармацевтическая композиция, включающая терапевтически эффективное количество кристаллической кислотно-аддитивной соли трициклического производного в форме ее гидрата по п. 1, и фармацевтически приемлемый носитель, для профилактики или лечения заболеваний, вызываемых сверхактивностью PARP (полимеразы поли(ADP-рибозы)).
RU2014131888/04A 2012-02-01 2013-01-28 Новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты и способ их получения RU2572820C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0010465 2012-02-01
KR1020120010465A KR101827444B1 (ko) 2012-02-01 2012-02-01 트리사이클로 유도체 화합물의 신규한 결정형 산부가염 또는 이의 수화물 및 이의 제조방법
PCT/KR2013/000676 WO2013115535A1 (ko) 2012-02-01 2013-01-28 트리사이클로 유도체 화합물의 신규한 결정형 산부가염 또는 이의 수화물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
RU2572820C1 true RU2572820C1 (ru) 2016-01-20

Family

ID=48905516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014131888/04A RU2572820C1 (ru) 2012-02-01 2013-01-28 Новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты и способ их получения

Country Status (6)

Country Link
US (1) US9522911B2 (ru)
KR (1) KR101827444B1 (ru)
BR (1) BR112014018763B1 (ru)
MX (1) MX346794B (ru)
RU (1) RU2572820C1 (ru)
WO (1) WO2013115535A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ738187A (en) * 2015-06-09 2019-03-29 Je Il Pharmaceutical Co Ltd Tricyclic derivative compound, method for preparing same, and pharmaceutical composition comprising same
KR20180062804A (ko) * 2016-12-01 2018-06-11 사회복지법인 삼성생명공익재단 트리시클릭 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하는 허혈성 급성 신손상 예방 또는 치료용 약학적 조성물
EP3558971B1 (en) 2016-12-22 2022-02-23 Global Blood Therapeutics, Inc. Histone methyltransferase inhibitors
JP2022551373A (ja) * 2019-07-29 2022-12-09 ジェイル ファーマシューティカル カンパニー リミテッド 三環式誘導体を用いた脳卒中の治療方法
CA3219303A1 (en) * 2021-05-18 2022-11-24 Onconic Therapeutics Inc. Crystalline form of tricyclic derivative compound, method for preparing same, and pharmaceutical composition comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU99128081A (ru) * 1997-06-30 2001-10-20 Ниппон Каяку Кабусики Кайся Новые производные нафтиридина или их соли
US6696437B1 (en) * 1999-05-07 2004-02-24 Abbott Gmbh & Co. Kg Heterocyclically substituted benzimidazoles, the production and application thereof
KR20100053468A (ko) * 2008-11-11 2010-05-20 제일약품주식회사 신규한 트리시클릭 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291425B1 (en) 1999-09-01 2001-09-18 Guilford Pharmaceuticals Inc. Compounds, methods and pharmaceutical compositions for treating cellular damage, such as neural or cardiovascular tissue damage
DE10022925A1 (de) 2000-05-11 2001-11-15 Basf Ag Substituierte Indole als PARP-Inhibitoren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU99128081A (ru) * 1997-06-30 2001-10-20 Ниппон Каяку Кабусики Кайся Новые производные нафтиридина или их соли
US6696437B1 (en) * 1999-05-07 2004-02-24 Abbott Gmbh & Co. Kg Heterocyclically substituted benzimidazoles, the production and application thereof
KR20100053468A (ko) * 2008-11-11 2010-05-20 제일약품주식회사 신규한 트리시클릭 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물

Also Published As

Publication number Publication date
US9522911B2 (en) 2016-12-20
BR112014018763A8 (pt) 2017-07-11
US20140350007A1 (en) 2014-11-27
MX2014009168A (es) 2014-08-27
BR112014018763B1 (pt) 2022-08-02
MX346794B (es) 2017-03-31
WO2013115535A1 (ko) 2013-08-08
BR112014018763A2 (ru) 2017-06-20
KR101827444B1 (ko) 2018-02-08
KR20130089089A (ko) 2013-08-09

Similar Documents

Publication Publication Date Title
US11472773B2 (en) Salt of omecamtiv mecarbil and process for preparing salt
RU2572820C1 (ru) Новые кристаллические кислотно-аддитивные соли трициклического производного или их гидраты и способ их получения
JP5701246B2 (ja) 有機化合物
WO2003074525A1 (fr) Compose heterocyclique azote
JP2011515370A (ja) 4−アミノ−5−フルオロ−3−[5−(4−メチルピペラジン−1−イル)−1h−ベンズイミダゾール−2−イル]キノリン−2(1h)−オン乳酸塩の結晶形態及び2つの溶媒和物形態
WO2012063933A1 (ja) 6,7-不飽和-7-カルバモイルモルヒナン誘導体の結晶およびその製造方法
AU2019218186A1 (en) Urea-substituted aromatic ring-linked dioxinoquinoline compounds, preparation method and uses thereof
JP2022526295A (ja) キノリンおよびキナゾリン化合物およびその使用方法
CN112384282A (zh) 吡咯并[2,3-d]嘧啶化合物的制造方法与中间体及其用途
EP2455368B1 (en) 2-[[[2-[(hydroxyacetyl)amino]-4-pyridinyl]methyl]thio]-n-[4-(trifluoromethoxy)phenyl]-3-pyridinecarboxamide benzene- sulfonate, crystals of same, polymorphs thereof, and processes for production thereof
CN113272272B (zh) Rip1抑制剂
EP3430004B1 (en) Solid state forms of nilotinib salts
CN115066423B (zh) Pd-l1拮抗剂化合物
JP6275644B2 (ja) N−[2−({2−[(2S)−2−シアノピロリジン−1−イル]−2−オキソエチル}アミノ)−2−メチルプロピル]−2−メチルピラゾロ[1,5−a]ピリミジン−6−カルボキサミドの結晶
WO2009075504A2 (en) Crystalline form of bepotastine p-toluenesulfonate, method for preparing same and pharmaceutical composition containing same
US11827640B2 (en) Substituted pyrazolo[1,5-a]pyrimidines as CFTR modulators
US20220162185A1 (en) Crystalline and amorphous forms of n-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2h-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof
EP3750894B1 (en) Urea-substituted aromatic ring-linked dioxazoline compound, preparation method therefor, and uses thereof
CN115724846A (zh) 异喹啉磺酰衍生物新晶型及其制备方法和用途
JP2024511376A (ja) N-(トランス-4-ヒドロキシシクロヘキシル)-6-フェニルヘキサンアミドのシクロプロパン類似体および関連化合物
TW201815790A (zh) 新方法
WO2023160672A1 (en) Compounds and compositions for treating conditions associated with lpa receptor activity
CN117843633A (zh) 亚砜亚胺类化合物、其药物组合物和用途
TWI394757B (zh) 嘌呤衍生物及使用它之抗腫瘤劑