RU2571876C1 - Способ получения керамики - Google Patents

Способ получения керамики

Info

Publication number
RU2571876C1
RU2571876C1 RU2014151238A RU2014151238A RU2571876C1 RU 2571876 C1 RU2571876 C1 RU 2571876C1 RU 2014151238 A RU2014151238 A RU 2014151238A RU 2014151238 A RU2014151238 A RU 2014151238A RU 2571876 C1 RU2571876 C1 RU 2571876C1
Authority
RU
Grant status
Grant
Patent type
Prior art keywords
oxide
spinel
aluminium
alumina
magnesia
Prior art date
Application number
RU2014151238A
Other languages
English (en)
Inventor
Владимир Андреевич Батаев
Сергей Викторович Веселов
Андрей Геннадиевич Тюрин
Наталья Сергеевна Белоусова
Анатолий Андреевич Батаев
Харис Магсуманович Рахимянов
Ирина Владимировна Шемякина
Анатолий Маркович Аронов
Олег Викторович Медведко
Виктор Степанович Медведко
Нина Юрьевна Черкасова
Елена Викторовна Мельникова
Ольга Андреевна Горяйнова
Роман Сергеевич Тимаревский
Дмитрий Андреевич Ануфриенко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет", НГТУ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

Изобретение относится к способам получения керамических материалов на основе оксида алюминия и может быть использовано в медицине при производстве имплантатов, металлургии, радиотехнике, энергетике и теплотехнике. Технический результат заключается в получении плотного керамического материала, обладающего высокими физико-механическими характеристиками и удовлетворяющего медицинским требованиям для производства имплантатов. Для синтеза алюмомагнезиальной шпинели смешивают оксид алюминия с карбонатом магния в стехиометрическом соотношении и обжигают при режимах, обеспечивающих шпинелеобразование. Из порошка шпинели и оксида алюминия готовят суспензию, диспергируют, подвергают распылительной сушке с получением пресс-порошка со сферическими гранулами, формуют заготовки и обжигают при температуре 1550-1650°C. Для получения керамики используют смесь алюмомагнезиальной шпинели и оксида алюминия при следующем соотношении компонентов, мас. %: алюмомагнезиальная шпинель в пересчёте на оксид магния 0,1-0,3, оксид алюминия - остальное. 1 пр.

Description

Изобретение относится к способам получения керамических материалов на основе оксида алюминия и может быть использовано в медицине при производстве имплантатов, металлургии, радиотехнике, энергетике и теплотехнике.

Известен способ получения керамики (патент РФ №2198860 «Способ изготовления изделий из корундовой керамики», МПК С04В 35/101, опубл. 20.02.2003), при котором изготавливают мелкодисперсную смесь, содержащую тальк и глиноземистый компонент, вводят в состав шихты фракционированный корунд и временное связующее, проводят формование, сушку, обжиг и охлаждение изделий. При изготовлении мелкодисперсной смеси в качестве глиноземсодержащего компонента используют глинозем, при следующем соотношении компонентов смеси, мас. %: тальк 5-20, глинозем 80-95; в качестве корунда - электрокорунд, при следующем соотношении компонентов шихты, мас. %: 50-60 электрокорунд фракцией 3,0-0,5 мм, 40-50 указанная мелкодисперсная смесь; в качестве связующего - лигносульфонат. Обжиг изделий осуществляют при температуре 1600±50°C с изотермической выдержкой в течение времени, необходимого для образования равновесного количества алюмомагнезиальной шпинели.

Недостатком способа является низкая прочность материала при сжатии (45-50 МПа). Этот недостаток связан с тем, что изделия изготавливают одностадийным способом, при котором происходит линейное и объемное расширение материала, обусловленное реакцией шпинелеобразования.

Также известен способ получения керамики, являющийся прототипом предлагаемого способа (патент РФ №2486160 «Способ получения керамики на основе алюмомагнезиальной шпинели», МПК С04В 35/443, опубл. 27.06.2013), при котором смешивают порошки оксида алюминия (Al2O3) и оксида магния (MgO) в стехиометрическом соотношении, сушат, формуют и обжигают при режимах, обеспечивающих шпинелеобразование. Причем после образования шпинели проводят ее измельчение, добавляют порошок наноразмерных фракций оксида магния и порошок оксида галлия. Затем полученную массу одновременно сушат и гранулируют в потоке газа, после чего осуществляют повторное формование и отжиг, который проводят при температуре не более 1500°C.

Однако в указанном способе есть следующие недостатки: полученный материал обладает низкими физико-механическими характеристиками и содержит большое количество Mg, что недопустимо для медицинского материала. Исходные шпинелеобразующие компоненты (порошок оксида алюминия и оксида магния) обладают низкой реакционной способностью, поскольку поверхность частиц оксидов может содержать адсорбированные жидкости и газы. Обожженный при высокой температуре (1500°C) материал содержит прочные конгломераты, которые сохраняются в процессе последующего измельчения, не обеспечивая гомогенного распределения шпинели в алюмооксидной матрице. В то же время согласно литературным данным Al2O3 керамика обладает наилучшим комплексом механических свойств при однородном распределении шпинели по границам зерен матрицы. Кроме того, в связи с тем, что основой керамообразующей смеси в способе является алюмомагнезиальная шпинель, керамический материал содержит большое количество Mg, что недопустимо для медицинского материала, используемого при производстве имплантатов. В соответствии с требованиями международного стандарта (ISO 6474-1) максимальная массовая доля оксида магния не должна превышать 0,3%.

Задача (технический результат), решаемая предлагаемым изобретением, заключается в получении плотного керамического материала на основе оксида алюминия с алюмомагнезиальной шпинелью, обладающего высокими физико-механическими характеристиками и удовлетворяющего медицинским требованиям для производства имплантатов.

Поставленная задача достигается тем, что в способе получения керамики, заключающемся в синтезе алюмомагнезиальной шпинели, при котором смешивают оксид алюминия с реагентом в стехиометрическом соотношении и обжигают при режимах, обеспечивающих шпинелеобразование, из порошка шпинели и реагентов для получения керамики готовят суспензию, диспергируют, подвергают распылительной сушке с получением пресс-порошка со сферическими гранулами, формуют и обжигают, отличающийся тем, что в качестве реагента для синтеза шпинели используют карбонат магния, а для получения керамики используют смесь алюмомагнезиальной шпинели и оксида алюминия при следующем соотношении компонентов, мас. %:

алюмомагнезиальная шпинель в пересчете на оксид магния 0,1-0,3
оксид алюминия остальное

Обжиг керамообразующей смеси производят при температуре 1550-1650°C.

Предлагаемый способ осуществляют следующим образом.

В водной среде смешивают порошки оксида алюминия (Al2O3) и карбоната магния (MgCO3) в стехиометрическом соотношении (с учетом количества адсорбированной воды или гидроксидов в составе основного компонента), диспергированную смесь сушат, формуют и обжигают при режимах, обеспечивающих шпинелеобразование. Полученную алюмомагнезиальную шпинель добавляют в суспензию оксида алюминия. Затем полученную массу диспергируют в водной среде, гранулируют в потоке газа, предварительно добавив органические связующие добавки, после чего осуществляют формование и спекание, которое проводят при температуре 1550-1650°C.

Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем. При использовании в качестве исходных компонентов MgCO3 и Al2O3 реакция шпинелеобразования идет в 2 этапа и записывается так:

1. MgCO3+Al2O3→MgO+CO2↑+Al2O3

2. MgO+Al2O3→MgAl2O4

На первом этапе реакции происходит разложение карбоната магния и образование «свежего» оксида магния. Выделяющийся в процессе реакции углекислый газ способствует формированию пористой структуры прекурсора. Образующийся в процессе разложения оксид магния обладает высокой реакционной способностью, что обеспечивает полное протекание реакции шпинелеобразования при температуре до 1200°C. Реакция разложения карбоната инициирует взаимодействие оксида магния и Al2O3 (второй этап реакции) с образованием алюмомагниевой шпинели.

Пониженная температура шпинелеобразования и пористая структура прекурсора позволяют при последующем механическом измельчении получить высокодисперсный порошок шпинели. При производстве готовой керамики использование высокодисперсного порошка MgAl2O4 обеспечивает равномерное распределение добавки в алюмооксидной матрице, что способствует формированию высокого комплекса механических свойств материала.

Введение в оксид алюминия шпинели в количестве 0,35-1,06 мас. % (обеспечивающем 0,1-0,3 мас. % оксида магния) позволяет подготовить керамику с высокими показателями кажущейся плотности, прочности при сжатии и изгибе. На этапе обжига керамообразующей смеси при температуре 1550-1650°C алюмомагнезиальная шпинель, располагаясь по границам алюмооксидных частиц, способствует активизации процессов спекания и формирования плотной структуры керамики. Кроме того, такая концентрация MgO позволяет использовать материал для производства имплантатов для хирургии позвоночника.

Пример конкретной реализации.

Подготовка керамического материала состоит из двух основных этапов, состоящих из следующих операций:

1 Этап. Подготовка алюмомагниевой шпинели.

1.1. Подготовка суспензии шпинелеобразующих компонентов. В состав суспензии входят дистиллированная вода, диспергирующий компонент и порошки оксида алюминия (Al2O3) и карбоната магния (MgCO3) в следующем соотношении:

дистиллированная вода: 40 мас. %,

порошок Al2O3 марки CT 3000 SG (Almatis, Германия): 28 мас. %,

порошок MgCO3 (ГОСТ 6419-78): 28 мас. %,

диспергатор DolapixCE 64 (Zschimmer&Schwarz, Германия): 4 мас. %

1.2 Диспергирование суспензии. Операцию производят на валковой мельнице в течение 24 часов. В качестве мелющих тел используют шары из оксида алюминия диаметром 5-10 мм. Соотношение суспензия/шары должно составлять 1/5 при загрузке мельницы не более 50% по объему.

1.3 Сушка суспензии. Готовую суспензию сушат при температуре 100-150°C до полного испарения влаги.

1.4 Формование материала. Для обеспечения наиболее полного протекания химической реакции подготовленную смесь прессуют при давлении 100 МПа.

1.5 Синтез шпинели. Операцию производят при температуре 1200°C и выдержке в течение 6 часов.

2 Этап. Производство керамики.

2.1 Подготовка суспензии керамической смеси. В состав суспензии входят дистиллированная вода, диспергирующий компонент и порошки оксида алюминия (Al2O3) и алюмомагнезиальной шпинели (MgAl2O4). При этом соотношение порошковых компонентов составляет:

порошок MgAl2O4:0,35-1,06 мас. % (обеспечивающем 0,1-0,3 мас. % оксида магния);

порошок Al2O3 марки CT 3000 SG (Almatis, Германия): 99,65-98,94 мас. % (по отношению к оксиду магния 99,7-99,9 мас. %);

массовое соотношение порошковой смеси к воде составляет 60:40. Количество диспергатора Dolapix СЕ 64 (Zschimmer&Schwarz, Германия): 4 мас. % от общей массы порошковых компонентов.

2.2 Диспергирование суспензии. Операцию производят на валковой мельнице в течение 24 часов. В качестве мелющих тел используют шары из оксида алюминия диаметром 5-10 мм. Соотношение суспензия:шары должно составлять 1:5 при загрузке мельницы не более 50% по объему.

2.3 Введение органических связующих. После завершения этапа диспергирования в суспензию вводят органические компоненты и производят дополнительное перемешивание в мельнице в течение 1 часа. Состав органических реактивов:

Optapix AC95 (Zschimmer&Schwarz, Германия): 1% от массы порошка,

Zusoplast 9002 (Zschimmer&Schwarz, Германия): 1% от массы порошка.

2.3 Гранулирование порошка. Готовую суспензию подвергают распылительной сушке на установке Mobil Minor (GEA Process Engineering A/S) с получением сферических гранул размером 20-100 мкм.

2.4 Оптимизация содержания влаги в гранулированном порошке.

2.5 Формование пресс-порошка. Прессование порошка производят на одноосевом прессе с усилием 100 МПа.

2.5 Спекание керамики. Операцию производят в печи LHT 02/17 (Nabertherm) при температуре 1600°C с выдержкой в течение 3 часов.

Подготовленный в соответствии с предложенными режимами материал обладает следующими показателями физических и механических свойств: кажущаяся плотность не менее 3,94 г/см3, прочность при изгибе (при испытании по схеме трехточечного изгиба) не менее 440 МПа, прочность при сжатии не менее 1200 МПа, микротвердость не менее 16000 МПа, вязкость разрушения 3,4 МПа·м1/2.

Таким образом, предложенный способ позволяет получать плотный керамический материал на основе оксида алюминия с алюмомагнезиальной шпинелью, который обладает высокими физико-механическими характеристиками и удовлетворяет медицинским требованиям международного стандарта (ISO 6474-1) для производства имплантатов.

Claims (1)

  1. Способ получения керамики, заключающийся в синтезе алюмомагнезиальной шпинели, при котором смешивают оксид алюминия с реагентом в стехиометрическом соотношении и обжигают при режимах, обеспечивающих шпинелеобразование, из порошка шпинели и реагентов для получения керамики готовят суспензию, диспергируют, подвергают распылительной сушке с получением пресс-порошка со сферическими гранулами, формуют и обжигают, отличающийся тем, что в качестве реагента для синтеза шпинели используют карбонат магния, а для получения керамики используют смесь алюмомагнезиальной шпинели и оксида алюминия при следующем соотношении компонентов, мас. %:
    алюмомагнезиальная шпинель в пересчете на оксид магния 0,1-0,3;
    оксид алюминия - остальное;
    причем обжиг керамообразующей смеси производят при температуре 1550-1650°C.
RU2014151238A 2014-12-18 2014-12-18 Способ получения керамики RU2571876C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151238A RU2571876C1 (ru) 2014-12-18 2014-12-18 Способ получения керамики

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151238A RU2571876C1 (ru) 2014-12-18 2014-12-18 Способ получения керамики

Publications (1)

Publication Number Publication Date
RU2571876C1 true RU2571876C1 (ru) 2015-12-27

Family

ID=55023378

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151238A RU2571876C1 (ru) 2014-12-18 2014-12-18 Способ получения керамики

Country Status (1)

Country Link
RU (1) RU2571876C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483143C1 (ru) * 2011-12-07 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева") Катод электролизера для получения металлических порошков
RU2486160C1 (ru) * 2011-12-14 2013-06-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения керамики на основе алюмомагнезиальной шпинели
RU2522487C2 (ru) * 2012-11-02 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" Способ получения конструкционной алюмооксидной керамики

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483143C1 (ru) * 2011-12-07 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева") Катод электролизера для получения металлических порошков
RU2486160C1 (ru) * 2011-12-14 2013-06-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ получения керамики на основе алюмомагнезиальной шпинели
RU2522487C2 (ru) * 2012-11-02 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" Способ получения конструкционной алюмооксидной керамики

Similar Documents

Publication Publication Date Title
US4977114A (en) Zirconia ceramics and method for producing same
Laberty-Robert et al. Dense yttria stabilized zirconia: sintering and microstructure
Tampieri et al. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity
US5096858A (en) In situ production of silicon carbide reinforced ceramic composites
Maca et al. Two-step sintering of oxide ceramics with various crystal structures
Rajendran Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics
Juang et al. Effect of calcination on sintering of hydroxyapatite
US20060009347A1 (en) Method for producing aluminum magnesium titanate sintered product
US3637406A (en) Ultrapure alumina ceramics formed by coprecipitation
Biamino et al. Alumina–zirconia–yttria nanocomposites prepared by solution combustion synthesis
US20070142208A1 (en) High porosity cordierite ceramic honeycomb article and method
JPH06183833A (ja) ジルコニアボールおよびその製造方法
Azar et al. Effect of initial particle packing on the sintering of nanostructured transition alumina
RU2196889C1 (ru) Проппанты и способ их изготовления
JP2012229139A (ja) 多孔体セラミックスとその製造方法
Chen et al. Microstructure and mechanical properties of hydroxyapatite obtained by gel-casting process
Tripathi et al. Synthesis and densification of magnesium aluminate spinel: effect of MgO reactivity
JP2002289413A (ja) 電磁波吸収体用複合粉末材料、電磁波吸収体およびその製造方法
JP2003226571A (ja) 酸素ラジカル含有カルシウムアルミネートの製造方法
Wu et al. Novel porous Si3N4 ceramics prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent
Prabhakaran et al. Synthesis of nanocrystalline magnesium aluminate (MgAl2O4) spinel powder by the urea–formaldehyde polymer gel combustion route
JP5230935B2 (ja) チタン酸アルミニウムマグネシウム結晶構造物及びその製造方法
Lee Sintering behavior and mechanical properties of injection-molded zirconia powder
US7291574B2 (en) Zirconia sintered body and a method for producing the same
US20090098365A1 (en) Nanocrystalline sintered bodies made from alpha aluminum oxide method for production and use thereof