RU2568810C1 - Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном - Google Patents

Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном Download PDF

Info

Publication number
RU2568810C1
RU2568810C1 RU2014142949/04A RU2014142949A RU2568810C1 RU 2568810 C1 RU2568810 C1 RU 2568810C1 RU 2014142949/04 A RU2014142949/04 A RU 2014142949/04A RU 2014142949 A RU2014142949 A RU 2014142949A RU 2568810 C1 RU2568810 C1 RU 2568810C1
Authority
RU
Russia
Prior art keywords
oxygen
catalyst
methane
nickel
chromium
Prior art date
Application number
RU2014142949/04A
Other languages
English (en)
Inventor
Павел Валерьевич Снытников
Валерий Александрович Кириллов
Юрий Иванович Амосов
Владимир Александрович Собянин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority to RU2014142949/04A priority Critical patent/RU2568810C1/ru
Application granted granted Critical
Publication of RU2568810C1 publication Critical patent/RU2568810C1/ru

Links

Abstract

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас. %, хром в пересчете на Cr2O3 в количестве 5-35%, оксид алюминия в количестве 5-70% и кислородсодержащее соединение магния - остальное. Предложен способ получения этого катализатора, включающий смешение кислородсодержащих соединений никеля, хрома, алюминия и магния с последующими стадиями сушки, прокаливания, таблетирования или формования. Описан также способ обогащения метаном смесей углеводородных газов путем конверсии в присутствии кислородсодержащих соединений на катализаторе, описанном выше. Технический результат - повышение активности, стабильности катализатора при проведении процесса обогащения метаном смесей углеводородных газов, преимущественно, при температуре 250-350°C и мольных отношениях H2O/C=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении H2O/C=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. 3 н. и 8 з.п. ф-лы, 1 табл., 5 пр.

Description

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ).
Получаемый при нефтедобыче попутный нефтяной газ (ПНГ), представляющий собой смесь углеводородных газов, может быть источником получения широкого спектра C2+ углеводородов и метана. В качестве примера в таблице 1 приведены варианты составов ПНГ с малым и большим содержанием C2+ углеводородов.
Figure 00000001
Существующие в настоящее время технологии переработки попутных нефтяных газов ПНГ преимущественно основаны на сепарации углеводородов выше C2+ с последующим их использованием в технологических процессах газохимии.
Пример такого способа приведен в патенте RU 2340841, F25J 3/02, B01D 5/00, 10.12.2008. Процесс включает компримирование исходного попутно нефтяного газа ПНГ, его охлаждение и сепарацию с получением сухого газа и газового конденсата. Газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, после чего пропан-бутановую фракцию охлаждают и конденсируют. Предлагаемый технологический процесс подготовки попутного газа на малогабаритных установках пригоден к эксплуатации в условиях нефтепромыслов со слаборазвитой инфраструктурой и благодаря использованию малогабаритных газожидкостных сепараторов щелевого типа остается экономически эффективным в широком диапазоне производительностей от 1 млн до 1 млрд нм3/год. Таким образом, ПНГ от малоресурсных и малонапорных месторождений с расходом менее 1 млн нм3/год, идущий под низким давлением, в настоящее время в основном и сжигается на факелах (доля в общем объеме сжигаемого газа с таких скважин составляет более 50%). Организация сбора газа с подобных месторождений по сформировавшейся схеме является весьма капиталоемким мероприятием, со значительными эксплуатационными затратами. В связи с этим единственным экономически оправданным вариантом переработки ПНГ может быть конверсия углеводородов выше C2+ в метан и его дальнейшее использование для местного тепло- и энергоснабжения, например, согласно способам, приведенным в патентах РФ №244281, C10L 3/10, F17D 1/029, 20.02.2012 и РФ 2443764, C10L 3/10, 27.02.2012.
В общем случае протекающие в присутствии воды реакции можно характеризовать следующими уравнениями:
Figure 00000002
Возможность одновременного протекания этих реакций приводит к необходимости выбора условий и разработки катализатора селективного в отношении реакции (1)-(3), в присутствии которого можно проводить реакцию паровой конверсии CnHm и реакцию метанирования таким образом, чтобы не подвергать конверсии метан, содержащийся в исходной углеводородной смеси.
Наличие экзо- и эндотермических стадий приводит к тому, что общий тепловой эффект реакции зависит от температуры проведения процесса. Также с изменением температуры и соотношения H2O/C происходит изменение состава продуктов реакции - для увеличения выхода метана процесс необходимо проводить при возможно более низкой температуре и мольных отношениях H2O/C<1. Таким условиями могут быть диапазон температур 250-350°C и мольные отношения H2O/C=0.60-0.70 в расчете на CnHm или общим мольным отношении H2O/C=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. Поскольку исходная смесь содержит достаточное количество метана, то катализатор конверсии должен быть селективен только для проведения реакций паровой конверсии CnHm и метанирования.
В настоящее время известен катализатор предриформинга смеси, состоящей из природного газа, пропан-бутана и других углеводородов для получения водорода, синтез-газа в производствах аммиака и метанола (CN 102949994 (A). Катализатор содержит никель в количестве 6-22%, носитель оксид магния и оксид алюминия в соотношении от 3:1 до 12:1. Катализатор применим при температурах 350-650°C, мольных отношениях H2O/C=0.5-4.5, времени контакта 400-6000 ч-1, давлении 0.1-4 МПа.
Известен катализатор паровой конверсии смеси углеводородов, состоящей из метана и высших углеводородов при мольных отношениях 1.5: - 5:1 в области температур 300-700°C, содержащий 1-20 мас.% никеля и 0.4-5.0 мас.% KOH (US 7449168, B01J 23/78, C01B 3/26, 11.11.2009). В результате протекания реакции в продуктах образуются водород, оксид и диоксид углерода, непрореагировавщий метан и вода. Концентрация высших углеводородов в продуктах конверсии снижается по сравнению исходной смесью.
Известен никельсодержащий катализатор с добавками металлов VIII группы, использующийся для конверсии смеси метана и высших углеводородов (EP 1586535 A2). Катализатор содержит 25-80 мас.% никеля (преимущественно, 5-25%), в качестве носителя используется оксид алюминия или алюминат кальция. Катализатор работает при температурах 400-650°C, мольном отношении H2O/C=1,5-3, обеспечивает конверсию смеси углеводородов состава: метан 85-90%, этан 0,1-10%, пропан 0,1-5%, бутан 0,1-2%. Для снижения возможного коксообразования в реакционную смесь добавляется 0.1-0.50 молей кислорода на моль углеводородов.
Недостатками вышеуказанных катализаторов являются низкая активность при температуре 250-350°C, образование большого количества водорода и монооксида углерода при проведении процесса выше 350°C, быстрое протекание процессов зауглероживания при мольных отношениях H2O/C=1.5 и меньше.
Известен способ получения никель-алюмо-хромового катализатора (SU №403429, B01J 23/86, 1970) для гидрирования, например, органических соединений, очистки газов от кислорода и кислородсодержащих примесей, а также для процессов метанирования окислов углерода. Катализатор готовят путем смешения соединений никеля, алюминия и хрома с последующей сушкой, прокаливанием, таблетированием и восстановлением, при этом пастообразную или сухую смесь основного карбоната никеля и гидроокиси или окиси алюминия обрабатывают раствором хромого ангидрида.
Известен катализатор для гидрирования ароматических углеводородов и очистки газов от кислорода и окиси углерода (SU №780881, B01J 37/02, 1980), содержащий мас.%: 32,8-50,0 никеля, 20,4-23,8 оксида хрома, остальное - оксид алюминия. Катализатор готовят путем обработки пастообразной или сухой смеси основного карбоната никеля и окиси или гидроокиси алюминия раствором хромового ангидрида с последующей сушкой, прокаливанием и таблетированием.
Известен катализатор для очистки водородсодержащих газов от окислов углерода, (SU №1051764, B01J 23/86, 1990), содержащий, мас.%: 31,9-50,8 окись никеля, 17,2-30,0 алюминат кальция, 2,0-16,4 окись хрома и остальное - окись алюминия. Катализатор согласно изобретению готовят путем смешения исходных компонентов основного карбоната никеля, окиси алюминия, алюмината кальция и раствора хромового ангидрида с последующей сушкой, и прокалкой с образованием твердых растворов окислов на основе решеток NiO и Al2O3.
Известен способ получения катализатора для очистки водорода от примесей оксида углерода (RU 2055015, C01B 3/50, 1996), включающий смешение основного карбоната никеля, хромовой кислоты и измельченного гидрооксида или оксида алюминия с последующими сушкой, прокаливанием и формованием экструзией в гранулы и термообработкой. Катализатор содержит, мас.%: 20-25 никель, 7-10 оксида хрома, остальное - оксид алюминия.
Известен способ приготовления никельхромового катализатора для гидрирования бензола (RU 2054319, B01J 23/86, 20.02.96), включающий соосаждение активной никельхромовой композиции из раствора, содержащего нитрат никеля и хромовый ангидрид, в присутствии карбамида, обезвоживание, сушку и прокалку полученной массы с последующим формованием катализатора.
Известен никельалюмохромовый катализатор (прототип) для гидрирования органических соединений, для метанирования CO и CO2 и других процессов, содержащий никель в количестве 20-50 мас.%, оксид хрома (III) в количестве 10-30 мас.%, носитель на основе оксида алюминия - остальное, при этом носитель содержит по крайней мере одно соединение элемента из группы: К, Na, Si, Fe, Са в количестве 0,001-0,5 мас.% в пересчете на оксид (RU 2185240, B01J 23/883, 2002).
Практически во всех способах приготовления вышеописанных катализаторов присутствует стадия высокотемпературной термообработки, которая выполняется при температурах 650-850°C. Недостатком указанных катализаторов является высокая склонность к зауглероживанию и потеря активности в ходе проведения обогащения метаном смесей углеводородных газов, низкая термостабильность. В большинстве случаев этот недостаток связан с наличием высокотемпературных стадий термообработки при приготовлении катализаторов. Известно, что при температурах 700-850°C происходит агрегация частиц никеля и увеличение их размеров. Как следует из результатов работы (М. Tan et all. Journal of Catalysis 314 (2014) 117-131), при увеличении размеров частиц никеля с 5.6 нанометров до 12.3 нанометров в реакции паровой конверсии смеси метана и пропан-бутана реакция конверсии переходит в режим гидрокрекинга и содержание углерода на грамм катализатора увеличивается на порядок. Поэтому технология приготовления катализаторов должна обеспечивать размер частиц никеля не более шести нанометров.
Задачей, на решение которой направлено настоящее изобретение, является эффективно проводить, например, конвертирование попутных нефтяных или сырых природных газов в метан, удаляя тем самым отличные от метана углеводородсодержащие компоненты.
Технический результат - повышение активности, стабильности катализатора при проведении процесса обогащения смесей углеводородных газов метаном, при температуре ниже 450°C, преимущественно при температуре 250-350°C, и мольных отношениях H2O/С=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении H2O/С=0.33-0.63 в расчете на все присутствующие в смеси углеводороды.
Задача решается благодаря использованию более активных, стабильных и селективных по отношению к образованию метана катализаторов, содержащих никель, кислородсодержащие соединения хрома, алюминия и магния. Катализатор содержит в основном никель в количестве 25-60 мас.%, хром в пересчете на Cr2O3 в количестве 5-35 мас.%, оксид алюминия в количестве 5-70 мас.% и кислородсодержащее соединение магния Mg - остальное.
Задача решается также способом получения катализатора для обогащения метаном смесей углеводородных газов, включающим смешение кислородсодержащих соединений никеля, хрома, алюминия и магния с последующими стадиями сушки, прокаливания, таблетирования или формования. Способ получения катализатора предусматривает, что добавление кислородсодержащего соединения магния Mg производят одновременно со смешением кислородсодержащих соединений никеля, хрома, алюминия и/или после сушки, и/или прокаливания катализаторной массы, полученной смешением кислородсодержащих соединений никеля, хрома, алюминия. Способ получения катализатора предусматривает, что перед таблетированием или формованием в катализаторную массу добавляют графит или графитоподобный углеродный материал. При этом графитоподобный углеродный материал может представлять собой трехмерную углеродную матрицу с объемом пор 0.2-1.7 см3/г, образованную ленточными слоями углерода толщиной 10-1000 нм и с радиусом кривизны 10-1000 нм, обладающую истинной плотностью, равной 1.80-2.10 г/см3, рентгеновской плотностью 2.112-2.236 г/см3 и пористой структурой с распределением пор с максимумом в диапазоне 20-200 нм или бипористой структурой с распределением пор с дополнительным максимумом в диапазоне 4-20 нм.
Задача решается также способом обогащения метаном смесей углеводородных газов путем конверсии в присутствии кислородсодержащих соединений на катализаторе, описанном выше. В качестве кислородсодержащих соединений, используют, например, пары воды или углекислый газ, или кислорода, или воздуха, или их любую смесь, преимущественно, пары воды. Обогащение метаном смесей углеводородных газов проводят ниже 450°C, преимущественно, при температуре 250-350°C, при мольных отношениях H2O/С=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении H2O/С=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. Конверсия может быть проведена при давлении выше атмосферного. Кроме метана, продуктами конверсии могут являться, например, водород и/или монооксид углерода, и/или углекислый газ.
Предлагаемое изобретение иллюстрируется следующими примерами по приготовлению катализаторов определенного выше состава и примерами, описывающими результаты испытаний катализаторов в процессе обогащения метаном смесей углеводородных газов.
Пример 1
В смеситель засыпают 1 кг основного карбоната никеля, затем оксид алюминия в количестве 0,72 кг, перемешивают в течение 30 мин, затем засыпают хромовый ангидрид в количестве 0,22 кг. Вновь перемешивают в течение 10 мин, вливают 750 мл воды с растворенным азотнокислым магнием в количестве 260 г, перемешивают в течение не менее 1 ч при 80-90°C до получения густой массы, далее прокаливают при 400°C, таблетируют с графитом, восстанавливают.
Полученный катализатор содержит, мас.%: NiO - 37, Cr2O3 - 9,5, Al2O3 - 48,5, MgO - 5.
Пример 2
Аналогично примеру 1, только процесс таблетирования проводят с графитоподобным углеродным материалом.
Пример 3
В смеситель засыпают 1,3 кг основного карбоната никеля, затем оксид алюминия в количестве 0,3 кг, азотнокислый магний в количестве 260 г, перемешивают в течение 30 мин, затем засыпают хромовый ангидрид в количестве 0,63 кг. Вновь перемешивают в течение 10 мин, вливают 750 мл воды, перемешивают в течение не менее 1 ч при 80-90°C до получения густой массы, далее прокаливают при 400°C, таблетируют с графитом, восстанавливают.
Полученный катализатор содержит, мас.%: NiO - 48, Cr2O3 - 27, Al2O3 - 20, MgO - 5.
Пример 4
Проведение процесса обогащения метаном смесей углеводородных газов проводят с использованием смеси следующего состава, об.%: 17 C3H8, 34 CH4, 49 H2O. Отношение H2O/C=0.58. Скорость потока 2000 ч-1.
Катализатор используют согласно примеру 1. При температуре 300°C обеспечивается 100% конверсия пропана. Концентрация метана в смеси (на сухой газ) составляет 86 об.%. Другие продукты конверсии - 4 об.% H2 и 10 об.% CO2.
Пример 5
Проведение процесса обогащения метаном смесей углеводородных газов проводят с использованием смеси следующего состава, об.%: 20 C3H8, 39 CH4, 41 H2O. Отношение H2O/C=0.42. Скорость потока 3100 ч-1. Давление - 5 атм.
Катализатор используют согласно примеру 3. При температуре 320°C обеспечивается 100% конверсия пропана. Концентрация метана в смеси (на сухой газ) составляет 85 об.%. Другие продукты конверсии - 5 об.% H2 и 10 об.% CO2.
Рассмотренные примеры не показывают и не ограничивают всех возможных вариантов проведения процесса обогащения метаном смесей углеводородных газов, а также способов приготовления катализаторов.
Предложенный катализатор, способ его приготовления и способ проведения процесса обогащения метаном смесей углеводородных газов позволяет эффективно проводить, например, конвертирование попутных нефтяных или сырых природных газов в метан, удаляя тем самым отличные от метана углеводородсодержащие компоненты.

Claims (11)

1. Катализатор для обогащения смесей углеводородных газов метаном, содержащий никель, кислородсодержащие соединения хрома, алюминия, отличающийся тем, что дополнительно содержит кислородсодержащее соединение магния при следующем массовом содержании компонентов в катализаторе: никель 25-60 мас.%, хром в пересчете на Cr2O3 5-35 мас.%, оксид алюминия 5-70 мас.%, кислородсодержащее соединение магния - остальное.
2. Способ получения катализатора для обогащения смесей углеводородных газов метаном, включающий смешение кислородсодержащих соединений никеля, хрома, алюминия с последующими сушкой, прокаливанием, таблетированием или формованием, восстановлением, отличающийся тем, что в катализатор добавляют кислородсодержащие соединения магния, полученный катализатор содержит никель в количестве 25-60 мас.%, хром в пересчете на Cr2O3 в количестве 5-35 мас.%, оксид алюминия в количестве 5-70 мас.%, кислородсодержащее соединение магния - остальное.
3. Способ по п. 2, отличающийся тем, что добавление кислородсодержащего соединения магния производят одновременно со смешением кислородсодержащих соединений никеля, хрома, алюминия.
4. Способ по п. 2, отличающийся тем, что добавление кислородсодержащего соединения магния производят после сушки и/или прокаливания катализаторной массы, полученной смешением кислородсодержащих соединений никеля, хрома, алюминия.
5. Способ по п. 2, отличающийся тем, что перед таблетированием или формованием в катализаторную массу добавляют графит или графитоподобный углеродный материал.
6. Способ по п. 5, отличающийся тем, что графитоподобный углеродный материал представляет собой трехмерную углеродную матрицу с объемом пор 0.2-1.7 см3/г, образованную ленточными слоями углерода толщиной 10-1000 нм и с радиусом кривизны 10-1000 нм, обладающую истинной плотностью, равной 1.80-2.10 г/см3, рентгеновской плотностью 2.112-2.236 г/см3 и пористой структурой с распределением пор с максимумом в диапазоне 20-200 нм или бипористой структурой с распределением пор с дополнительным максимумом в диапазоне 4-20 нм.
7. Способ обогащения смесей углеводородных газов метаном путем конверсии в присутствии кислородсодержащих соединений, отличающийся тем, что в качестве катализатора используют катализатор по п.1 или приготовленный по пп. 2-6.
8. Способ по п. 7, отличающийся тем, что в качестве кислородсодержащих соединений используют, например, пары воды или углекислый газ, или кислорода, или воздуха, или их любую смесь, преимущественно пары воды.
9. Способ по п. 7, отличающийся тем, что конверсию проводят при температуре ниже 450°C, преимущественно при температуре 250-350°C.
10. Способ по п. 7, отличающийся тем, что конверсию проводят при мольных отношениях H2O/С ниже 1.5, преимущественно при мольных отношениях Н2О/С=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении Н2О/С=0.33-0.63 в расчете на все присутствующие в смеси углеводороды.
11. Способ по п. 7, отличающийся тем, что конверсию проводят при давлении выше атмосферного.
RU2014142949/04A 2014-10-27 2014-10-27 Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном RU2568810C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014142949/04A RU2568810C1 (ru) 2014-10-27 2014-10-27 Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014142949/04A RU2568810C1 (ru) 2014-10-27 2014-10-27 Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Publications (1)

Publication Number Publication Date
RU2568810C1 true RU2568810C1 (ru) 2015-11-20

Family

ID=54598164

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014142949/04A RU2568810C1 (ru) 2014-10-27 2014-10-27 Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Country Status (1)

Country Link
RU (1) RU2568810C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804486C1 (ru) * 2023-02-17 2023-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Способ приготовления никель-хромового катализатора для гидрирования органических соединений, содержащих карбонильную группу

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695856A (en) * 1969-03-20 1972-10-03 Azote & Prod Chim Magnesia supports for catalysts in hydrocarbon reforming
RU2185240C2 (ru) * 2000-04-24 2002-07-20 Закрытое акционерное общество "Катализаторная компания" Никельалюмохромовый катализатор для гидрирования органических соединений, для метанирования co и co2 и других процессов и способ его получения
EP1586535A2 (en) * 2004-03-19 2005-10-19 Air Products And Chemicals, Inc. Process for prereforming and reforming of natural gas containing higher hydrocarbons
RU2476267C2 (ru) * 2008-07-23 2013-02-27 Джапан Петролеум Эксплорейшн Ко., Лтд. Композитный оксид катализатора риформинга углеводородов, способ его получения и способ получения синтез-газа с его использованием

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695856A (en) * 1969-03-20 1972-10-03 Azote & Prod Chim Magnesia supports for catalysts in hydrocarbon reforming
RU2185240C2 (ru) * 2000-04-24 2002-07-20 Закрытое акционерное общество "Катализаторная компания" Никельалюмохромовый катализатор для гидрирования органических соединений, для метанирования co и co2 и других процессов и способ его получения
EP1586535A2 (en) * 2004-03-19 2005-10-19 Air Products And Chemicals, Inc. Process for prereforming and reforming of natural gas containing higher hydrocarbons
RU2476267C2 (ru) * 2008-07-23 2013-02-27 Джапан Петролеум Эксплорейшн Ко., Лтд. Композитный оксид катализатора риформинга углеводородов, способ его получения и способ получения синтез-газа с его использованием

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804486C1 (ru) * 2023-02-17 2023-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Способ приготовления никель-хромового катализатора для гидрирования органических соединений, содержащих карбонильную группу

Similar Documents

Publication Publication Date Title
JP5592250B2 (ja) 二酸化炭素の合成ガスへの接触水素化
CN105555707B (zh) 液态烃热中和重整的催化剂和方法
JP5411133B2 (ja) 二酸化炭素の合成ガスへの接触水素化
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
AU2012243063B2 (en) Metal supported silica based catalytic membrane reactor assembly
US3186797A (en) Process for catalytically steam reforming hydrocarbons
García-Vargas et al. Catalytic and kinetic analysis of the methane tri-reforming over a Ni–Mg/β-SiC catalyst
CN101016494B (zh) 液化石油气的制造方法
TW201119979A (en) Process for the oxidative coupling of methane
JP2014532559A5 (ru)
Wang et al. Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4
CA2170408A1 (en) Catalyst and process for the production of hydrogen and/or methane
CN106140165A (zh) 多孔炭载双晶相钴基费托合成催化剂及其制备方法与应用
RU2446010C2 (ru) Способ получения водорода прямым разложением природного газа и снг
JP2005035842A (ja) 水素製造システム
Xu et al. Hydrogen from wood vinegar via catalytic reforming over Ni/Ce/γ-Al2O3 catalyst
Wang et al. Effective hydrogen production from partial oxidation of propane over composite Ni/Al2O3SiC catalyst
Sun et al. Effects of CaO addition on Ni/CeO2–ZrO2–Al2O3 coated monolith catalysts for steam reforming of N-decane
DK201670027A1 (en) Method for pre-reforming olefin-containing hydrocarbon streams, pre-reforming catalyst and method for preparing the catalyst
AU2016245430A1 (en) Catalyst composition and catalytic processes for producing liquid hydrocarbons
RU2568810C1 (ru) Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном
Makvandi et al. COx free hydrogen production by catalytic decomposition of methane over porous Ni/Al2O3 catalysts
WO2017082752A1 (ru) Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном
JPWO2009104742A1 (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法
JP2007313450A (ja) 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20170728

PD4A Correction of name of patent owner