RU2560699C2 - Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител - Google Patents

Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител Download PDF

Info

Publication number
RU2560699C2
RU2560699C2 RU2013136204/15A RU2013136204A RU2560699C2 RU 2560699 C2 RU2560699 C2 RU 2560699C2 RU 2013136204/15 A RU2013136204/15 A RU 2013136204/15A RU 2013136204 A RU2013136204 A RU 2013136204A RU 2560699 C2 RU2560699 C2 RU 2560699C2
Authority
RU
Russia
Prior art keywords
nanoparticles
domain antibodies
conjugates
creating
nanoscale
Prior art date
Application number
RU2013136204/15A
Other languages
English (en)
Other versions
RU2013136204A (ru
Inventor
Игорь Руфаилович Набиев
Алена Владимировна Суханова
Original Assignee
федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) filed Critical федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ)
Priority to RU2013136204/15A priority Critical patent/RU2560699C2/ru
Publication of RU2013136204A publication Critical patent/RU2013136204A/ru
Application granted granted Critical
Publication of RU2560699C2 publication Critical patent/RU2560699C2/ru

Links

Images

Abstract

Изобретение относится к медицине и касается способа создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител, может применяться для производства диагностикумов новых поколений. Способ включает подготовку поверхности наночастиц при помощи производных полиэтиленгликоля, в С-концевую часть однодоменного антитела вводят гексагистидиновую последовательность аминокислот с терминальным остатком цистеина, наночастицы конъюгируют с однодоменными антителами с распознающими центрами таким образом, что распознающие центры однодоменных антител всегда ориентированы в сторону расположения анализируемых молекул. Изобретение обеспечивает высокочувствительную детекцию анализируемых молекул биологических маркеров заболеваний в биологических жидкостях и тканях. 19 з.п. ф-лы, 3 ил.

Description

1.
Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител может применяться для производства диагностикумов новых поколений, обеспечивающих высочувствительную детекцию анализируемых молекул - биологических маркеров заболеваний в биологических жидкостях и тканях.
Известен способ, включающий применение водорастворимых фотолюминисцентных наночастиц, имеющих на своей поверхности меркаптоундеканоевую кислоту. Недостатком данного метода являются ограниченные функциональные возможности диагностической метки в связи с применением только одного вида наночастиц - полупроводниковых флуоресцентных нанокристаллов - и покрытий их поверхности только одним низкомолекулярным соединением - меркаптоундеканоевой кислотой, не обеспечивающим стабильности наночастиц в биологических жидкостях и тканях (WO 0017642(A2)).
Известен также способ, включающий применение водорастворимых фотолюминисцентных наночастиц состава CdSe/ZnS, имеющих на своей поверхности карбоксильную или аминогруппу, или карбоксильную и аминогруппу одновременно (WO2010/043053(Al)). В данном способе проводят подготовку поверхности наночастиц при помощи производных полиэтиленгликоля. Гидрофильный лиганд на поверхности таких наночастиц специфически связывается с нужной биомолекулой. Для определения анализируемой молекулы в образце используют однодоменные антитела из камелоидов. Этот способ выбран в качестве прототипа предложенного решения.
Основным недостатком способа является произвольно ориентированное конъюгирование антител с нанокристаллами, при котором значительное количество антител оказываются ориентированы таким образом, что их распознающие центры блокируются поверхностью нанокристаллов и не могут связаться с анализируемой молекулой в биологической жидкости или ткани. Указанный недостаток резко снижает чувствительность детекции анализируемых молекул с использованием диагностической метки, приготовленной согласно описанному способу. Другими недостатками данного способа является крупный конечный размер диагностической метки (около 30 нм), а также ограничение функциональных возможностей ее применения исключительно областью визуализации раковых клеток.
Технический результат изобретения заключается в расширении функциональных возможностей современных методов детекции биологических маркеров различных заболеваний, а также в повышении чувствительности детекции анализируемых молекул.
Указанный технический результат достигается тем, что в способе создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител, включающем подготовку поверхности наночастиц при помощи производных полиэтиленгликоля, в С-концевую часть однодоменного антитела вводят гексагистидиновую последовательность аминокислот с терминальным остатком цистеина, проводят очистку металлоаффинной хроматографией, далее восстанавливают межмолекулярные дисульфидные связи для получения мономерных фракций антител со свободными сульфгидрильными группами, поверхность наночастиц модифицируют низкомолекулярными соединениями, содержащими тиольные группы, с последующим их замещением производными полиэтиленгликоля с гидроксильными и тиольными группами; гидроксильные группы активируют, проводят конъюгацию между С-концевым остатком цистеина однодоменного антитела и активированной гидроксильной группой производного полиэтиленгликоля на поверхности наночастицы, при этом распознающие центры однодоменных антител ориентированы в сторону расположения анализируемых молекул.
Существует вариант, в котором в качестве наночастиц используют полупроводниковые нанокристаллы с разной длиной волны максимума флуоресценции.
Существует также вариант, в котором в качестве наночастиц используют магнитные наночастицы.
Возможен вариант, где в качестве наночастиц используют плазмонные наночастицы.
Возможен также вариант, где в качестве наночастиц используют одностенные нанотрубки.
Существует вариант, в котором в качестве наночастиц используют гибридные материалы, представляющие собой комбинации перечисленных наносистем.
Существует вариант, в котором наночастицы солюбилизируют в воде молекулами тиолсодержащих низкомолекулярных соединений и в дальнейшем модифицируют путем замещения молекул тиолсодержащих низкомолекулярных соединений производными полиэтиленгликоля.
Возможен также вариант, где в качестве первичного источника однодоменных антител используют особи семейства камелоидов или надотряда акул.
Существует вариант, в котором селекцию однодоменных антител проводят методом фагового дисплея.
Существует также вариант, в котором селекцию однодоменных антител проводят методом фагового дисплея при помощи хелперного фага КМ13.
Возможен вариант, где в С-концевую часть молекулы рекомбинантных однодоменных антител вводят гексагистидиновую последовательность аминокислот.
Возможен также вариант, где в С-концевую часть молекулы рекомбинантных однодоменных антител вводят терминальный остаток цистеина.
Возможен также вариант, где очистку однодоменных антител проводят методом металл-аффинной хроматографии.
Существует также вариант, в котором после очистки однодоменных антител проводят реакцию восстановления межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина для получения мономерной фракции антител со свободными сульфгидрильными группами.
Возможен вариант, где реакцию восстановления межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина проводят в течение 25-35 мин при температуре 20-25°C.
Существует вариант, в котором наночастицы модифицируют производными полиэтиленгликоля, имеющими в своем составе гидроксильную и тиольную группы.
Существует также вариант, в котором после модификации поверхности наночастиц производными полиэтиленгликоля, имеющими в своем составе гидроксильную и тиольную группы, конъюгирование наночастиц проводят через стадию активации поверхности при помощи N-(п-малеимидофенил)-изоцианата.
Возможен вариант, где стадию активации поверхности наночастиц при помощи N-(п-малеимидофенил)-изоцианата проводят в диапазоне значений pH 8.4-8.6 в течение 30-60 мин в темноте, при комнатной температуре и постоянном мягком перемешивании.
Возможен также вариант, где наночастицы модифицируют смесью двух производных полиэтиленгликоля, имеющих в своем составе гидроксильную и тиольную группы или амино- и тиольную группы.
Существует вариант, в котором после модификации поверхности наночастиц смесью двух производных полиэтиленгликоля, имеющих в своем составе гидроксильную и тиольную группы или амино- и тиольную группы, конъюгирование наночастиц проводят через стадию активации поверхности при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата.
Существует также вариант, в котором стадию активации поверхности наночастиц при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата проводят в диапазоне значений pH 7.1-7.3 в течение 55-65 мин в темноте, при комнатной температуре и постоянном мягком перемешивании.
На фиг. 1 изображена схема подготовки поверхности наночастиц и конъюгации наночастиц и однодоменных антител.
1 - неорганическая наночастица; 1.1 - наночастица, солюблизированная цистеином; 1.2 - наночастица, поверхность которой модифицирована производными полиэтиленгликоля; 1.3 - конъюгат наночастицы и однодоменных антител; 2 - однодоменное антитело; 3 - распознающий центр однодоменного антитела (часть молекулы однодоменного антитела, способная распознавать анализируемую молекулу - биомаркер заболевания); 4 - молекула цистеина; 5 - молекулы производных полиэтиленгликоля; 6 - аминокислотная последовательность, содержащая шесть остатков гистидина и С-концевой остаток цистеина, вводимые генно-инженерными методами в последовательность аминокислот молекулы рекомбинантных однодоменных антител для аффинной очистки (с использованием гексагистидиновой последовательности) и проведения конъюгации с наночастицами, используя экспонированный остаток цистеина; 7 - молекула оксида триоктилфосфина.
На фиг. 2 изображена наноразмерная диагностическая метка, приготовленная с использованием изложенного способа, а также ее состав и типичный размер.
1 - наночастица; 2 - однодоменное антитело; 3 - распознающий центр однодоменного антитела; 4 - молекулы производных полиэтиленгликоля на поверхности наночастицы; 5 - аминокислотная последовательность, содержащая шесть остатков гистидина и С-концевой остаток цистеина, вводимые генно-инженерными методами в последовательность аминокислот молекулы рекомбинантных однодоменных антител для аффинной очистки (с использованием гексагистидиновой последовательности) и проведения конъюгации с наночастицами (используя экспонированный остаток цистеина);
На фиг. 3 приведена фотография среза эпителиальных крипт кишечника при иммуногистохимическом окрашивании онкологического биомаркера СБА с помощью конъюгатов однодоменных антител анти-СЕА и квантовых точек с максимумом флюоресценции при 570 нм, позволяющих проводить дифференцированную идентификацию патологически измененной ткани, меченной конъюгатами (области изображения оранжево-красного цвета), от здоровой ткани, с которой конъюгаты квантовых точек и однодоменных антител не взаимодействуют.
Способ создания реализуется следующим образом. Наноразмерная диагностическая метка 1.3 (фиг. 1) на основе конъюгатов наночастиц и однодоменных антител состоит из наночастицы 1, для перевода которой в водную фазу на первом этапе используют низкомолекулярное тиолсодержащее соединение 4 (например, DL-цистеин). Далее, молекулу низкомолекулярного тиолсодержащего соединения 4 на поверхности нанокристаллов замещают производными полиэтиленгликоля 5, имеющими в своем составе тиольную группу для связи с поверхностью, гидрофобную алифатическую часть, остаток полиэтиленгликоля и концевую, экспонированную в раствор, гидроксильную или амино- или карбоксильную группу. Затем проводят активацию гидроксильной группы при помощи N-(п-малеимидофенил)-изоцианата, либо амино-группы при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата (фиг. 1 - активация поверхности). Такие малеимидактивированные группы реагируют с сульфгидрильной группой остатка цистеина (ссылка 1) молекул рекомбинантных однодоменных антител с образованием конъюгата - наноразмерной диагностической метки 1.3 (фиг. 1).
Наночастицы 1 (фиг. 2) конъюгируют с однодоменными антителами 2 таким высокоориентированным образом, что распознающий центр однодоменного антитела 3 всегда ориентирован в сторону раствора, а не в сторону поверхности наночастицы, и, таким образом, не блокируется поверхностью наночастицы, а способен эффективно связывать анализируемую молекулу. Типичный размер создаваемой наноразмерной диагностической метки не превышает 11 нм.
В одном из вариантов, в качестве наночастиц используют полупроводниковые нанокристаллы состава «ядро-оболочка» CdSe/ZnS с различными длинами волны максимума флуоресценции (от 450 до 650 нм) и с квантовым выходом более 70%.
В другом варианте, в качестве наночастиц используют магнитные наночастицы состава Fe2O3 или кобальтсодержащие наночастицы.
В третьем варианте, в качестве наночастиц используют плазмонные наночастицы серебра и золота.
В четвертом варианте, в качестве наночастиц могут использоваться одностенные углеродные нанотрубки.
Также в качестве наночастиц используют гибридные материалы, представляющие собой комбинации перечисленных наносистем.
На первом этапе поверхность наночастиц модифицируют молекулой низкомолекулярного тиолсодержащего соединения (например, DL-цистеина) 4 (фиг. 1), что делает их растворимыми в воде. Далее, поверхность наночастиц модифицируют путем замещения молекул DL-цистеина производными полиэтиленгликоля 5, что придает им стабильность в водных растворах в течение более чем полугодового временного промежутка и стабильность в биологических жидкостях и тканях сроком до нескольких недель. В качестве первичного источника однодоменных антител используют особи семейства камелоидов или надотряда акул. Антитела, полученные из данных организмов, отличаются высокой стабильностью, малыми размерами, а также простотой получения.
Селекцию рекомбинантных однодоменных антител проводят методом фагового дисплея, что повышает специфичность распознавания ими анализируемых молекул.
Селекцию однодоменных антител проводят методом фагового дисплея при помощи хелперного фага КМ13, данный протокол обеспечивает быстрое получение высокоспецифичных клонов антител.
На следующем этапе, в С-концевую часть молекулы однодоменных антител вводят гексагистидиновую последовательность аминокислот 6 (фиг. 1), что значительно упрощает процедуру их очистки. Таким образом, очистку однодоменных антител проводят методом металл-аффинной хроматографии при помощи гексагистидиновой последовательностив С-концевой части молекулы антител.
В С-концевую часть молекулы однодоменных антител вводят терминальный остаток цистеина, что позволяет в дальнейшем провести конъюгацию тиольной группы цистеина с активированной группой на поверхности наночастиц с высокой специфичностью. После очистки однодоменных антител проводят реакцию восстановления межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина для получения мономерной фракции антител со свободными сульфгидрильными группами, что в дальнейшем позволяет получить высокоориентированные наноразмерные диагностические метки.
Восстановление межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина проводят в течение 25-35 мин при температуре 20-25°C, что позволяет получить фракцию мономерных антител.
Наночастицы модифицируют производными полиэтиленгликоля 5 (фиг. 1), имеющими в своем составе гидроксильную и тиольную группы. При этом реакцию конъюгации наночастиц проводят через стадию активации поверхности при помощи N-(п-малеимидофенил)-изоцианата. Реакцию проводят в диапазоне значений pH 8.4-8.6 в течение 30-60 мин в темноте при постоянном мягком перемешивании.
Наночастицы также модифицируют смесью двух производных полиэтиленгликоля, имеющих в своем составе гидроксильную и тиольную группы или амино- и тиольную группы. При этом реакцию конъюгации наночастиц с однодоменными антителами проводят через стадию активации поверхности наночастиц при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата. Реакцию проводят в диапазоне значений pH 7.1-7.3 в течение 55-65 мин в темноте, при комнатной температуре и постоянном мягком перемешивании.
Наночастицы конъюгируют с однодоменными антителами высокоориентированным образом (фиг. 1 и фиг. 2) и, с помощью полученных наноразмерных диагностических меток, детектируют анализируемую молекулу в биологическом образце. В данном случае в качестве биологического образца выступают биологические жидкости (кровь, сыворотки крови, бронхиальные смывы, моча, спинно-мозговая жидкость) и срезы тканей (биопсийный материал) (фиг. 3).
Описанный способ расширяет функциональные возможности современных методов детекции биологических маркеров различных заболеваний по сравнению с прототипом за счет использования различных наноматериалов в качестве визуализирующего агента, а также повышает чувствительность детекции анализируемых молекул за счет высокой ориентированности однодоменных антител в приготовленных конъюгатах.
Литература
1. Hermanson, G.T., Bioconjugate Techniques, Second Edition 2008: Academic Press.

Claims (20)

1. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител, включающий подготовку поверхности наночастиц при помощи производных полиэтиленгликоля, отличающийся тем, что в С-концевую часть однодоменного антитела вводят гексагистидиновую последовательность аминокислот с терминальным остатком цистеина, проводят очистку металлоаффинной хроматографией, далее восстанавливают межмолекулярные дисульфидные связи для получения мономерных фракций антител со свободными сульфгидрильными группами, поверхность наночастиц модифицируют низкомолекулярными соединениями, содержащими тиольные группы, с последующим их замещением производными полиэтиленгликоля с гидроксильными и тиольными группами; гидроксильные группы активируют, проводят конъюгацию между С-концевым остатком цистеина однодоменного антитела и активированной гидроксильной группой производного полиэтиленгликоля на поверхности наночастицы, при этом распознающие центры однодоменных антител ориентированы в сторону расположения анализируемых молекул.
2. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что в качестве наночастиц используют полупроводниковые нанокристаллы с разной длиной волны максимума флуоресценции.
3. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что в качестве наночастиц используют магнитные наночастицы.
4. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что в качестве наночастиц используют плазмонные наночастицы.
5. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что в качестве наночастиц используют одностенные нанотрубки.
6. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по пп. 2, 3, 4, 5, отличающийся тем, что в качестве наночастиц используют гибридные материалы, представляющие собой комбинации перечисленных наносистем.
7. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что в качестве первичного источника однодоменных антител используют особи семейства камелоидов или надотряда акул.
8. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что селекцию однодоменных антител проводят методом фагового дисплея.
9. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 8, отличающийся тем, что селекцию однодоменных антител проводят методом фагового дисплея при помощи хелперного фага КМ13.
10. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что после очистки однодоменных антител проводят реакцию восстановления межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина для получения мономерной фракции антител со свободными сульфгидрильными группами.
11. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 10, отличающийся тем, что восстановление межмолекулярных дисульфидных связей при помощи трис-(2-карбоксиэтил)фосфина проводят в течение 25-35 минут при температуре 20-25°C.
12. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что после модификации поверхности наночастиц производными полиэтиленгликоля, имеющими в своем составе гидроксильную и тиольную группы, конъюгирование наночастиц и однодоменных антител проводят через стадию активации поверхности наночастиц при помощи N-(п-малеимидофенил)-изоцианата.
13. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 12, отличающийся тем, что стадию активации поверхности наночастиц при помощи N-(п-малеимидофенил)-изоцианата проводят в диапазоне значений pH 8.4-8.6 в течение 30-60 мин в темноте при комнатной температуре и постоянном мягком перемешивании.
14. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что наночастицы модифицируют смесью двух производных полиэтиленгликоля, имеющих в своем составе гидроксильную и тиольную группы или амино- и тиольную группы.
15. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 14, отличающийся тем, что после модификации поверхности наночастиц смесью двух производных полиэтиленгликоля, имеющих в своем составе гидроксильную и тиольную группы или амино- и тиольную группы, конъюгирование наночастиц и однодоменных антител проводят через стадию активации поверхности наночастиц при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата.
16. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 15, отличающийся тем, что стадию активации поверхности наночастиц при помощи сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата проводят в диапазоне значений pH 7.1-7.3 в течение 55-65 мин в темноте, при комнатной температуре и постоянном мягком перемешивании.
17. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что после стадии активации поверхности наночастиц по пп. 13, 16 фракции активированных наночастиц подвергают очистке от избытка N-(п-малеимидофенил)-изоцианата и сульфосукцинимидил-4-(N-малеимидометил)-циклогексан-1-карбоксилата с помощью гель-фильтрационной хроматографии.
18. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что полученные очищенные активированные наночастицы по п. 17 смешивают с мономерными однодоменными антителами, содержащими свободную сульфгидрильную группу С-концевого остатка цистеина по п. 1.
19. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 1, отличающийся тем, что реакцию конъюгирования очищенных активированных наночастиц по п. 18 и однодоменных антител, содержащих свободную сульфгидрильную группу С-концевого остатка цистеина, проводят путем инкубирования реакционной смеси в диапазоне значений pH 7.1-7.3 в течение 110-130 мин в темноте, при комнатной температуре и постоянном мягком перемешивании.
20. Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител по п. 19, отличающийся тем, что после инкубации конъюгат наночастиц и однодоменных антител подвергают очистке с помощью гель-фильтрационной хроматографии.
RU2013136204/15A 2013-08-02 2013-08-02 Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител RU2560699C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013136204/15A RU2560699C2 (ru) 2013-08-02 2013-08-02 Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013136204/15A RU2560699C2 (ru) 2013-08-02 2013-08-02 Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител

Publications (2)

Publication Number Publication Date
RU2013136204A RU2013136204A (ru) 2015-02-10
RU2560699C2 true RU2560699C2 (ru) 2015-08-20

Family

ID=53281679

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013136204/15A RU2560699C2 (ru) 2013-08-02 2013-08-02 Способ создания наноразмерной диагностической метки на основе конъюгатов наночастиц и однодоменных антител

Country Status (1)

Country Link
RU (1) RU2560699C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638446C1 (ru) * 2016-12-14 2017-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ направленного разрушения раковых клеток

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200600752A1 (ru) * 2003-10-10 2007-08-31 Иммьюноджен, Инк. Способ прицельного воздействия на определенные популяции клеток с помощью конъюгатов из майтансиноида и агента клеточного связывания, соединенных через нерасщепляемый линкер, конъюгаты и способы получения таких конъюгатов
RU2327702C2 (ru) * 2002-03-06 2008-06-27 Фрезениус Каби Дойчланд Гмбх Конъюгат гидроксиалкилкрахмала и низкомолекулярного вещества и способ его получения
RU2007117144A (ru) * 2004-10-08 2008-11-20 Аффитек Ас (No) Способы скрининга библиотеки антител
RU2007112509A (ru) * 2004-10-08 2008-11-27 Домантис Лимитед (Gb) Антагонисты и способы их применения
EA016517B1 (ru) * 2011-04-05 2012-05-30 Федеральное Государственное Бюджетное Учреждение "Научно-Исследовательский Институт Эпидемиологии И Микробиологии Имени Почетного Академика Н.Ф. Гамалеи" Министерства Здравоохранения И Социального Развития Российской Федерации Рекомбинантная псевдоаденовирусная наночастица, фармацевтическая композиция для профилактики или терапии гриппа (варианты), способ профилактики или терапии гриппа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2327702C2 (ru) * 2002-03-06 2008-06-27 Фрезениус Каби Дойчланд Гмбх Конъюгат гидроксиалкилкрахмала и низкомолекулярного вещества и способ его получения
EA200600752A1 (ru) * 2003-10-10 2007-08-31 Иммьюноджен, Инк. Способ прицельного воздействия на определенные популяции клеток с помощью конъюгатов из майтансиноида и агента клеточного связывания, соединенных через нерасщепляемый линкер, конъюгаты и способы получения таких конъюгатов
RU2007117144A (ru) * 2004-10-08 2008-11-20 Аффитек Ас (No) Способы скрининга библиотеки антител
RU2007112509A (ru) * 2004-10-08 2008-11-27 Домантис Лимитед (Gb) Антагонисты и способы их применения
EA016517B1 (ru) * 2011-04-05 2012-05-30 Федеральное Государственное Бюджетное Учреждение "Научно-Исследовательский Институт Эпидемиологии И Микробиологии Имени Почетного Академика Н.Ф. Гамалеи" Министерства Здравоохранения И Социального Развития Российской Федерации Рекомбинантная псевдоаденовирусная наночастица, фармацевтическая композиция для профилактики или терапии гриппа (варианты), способ профилактики или терапии гриппа

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ВОРОБЬЕВ И.А. и др. Флуоресцентные полупроводниковые нанокристаллы в микроскопии и цитометрии, Ж.Цитология, 2011, т.53, N5 стр.392-403. *
РОДЧЕНКОВА М и др. Оптимизация условий хромато-масс-спектрометрического метода для качественного и полуколичественного протеомного анализа, Ж. Аналитика, 2013 N3(10), стр.40-46, найдено в Интернет: www.j-analytics.ru найдено 08.07.14. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638446C1 (ru) * 2016-12-14 2017-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ направленного разрушения раковых клеток

Also Published As

Publication number Publication date
RU2013136204A (ru) 2015-02-10

Similar Documents

Publication Publication Date Title
Alkahtani et al. Fluorescent nanodiamonds: past, present, and future
Zong et al. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications
Volkov Quantum dots in nanomedicine: recent trends, advances and unresolved issues
Mukherjee et al. Quantum dot as probe for disease diagnosis and monitoring
Bilan et al. Quantum dot surface chemistry and functionalization for cell targeting and imaging
ES2731432T3 (es) Transportadores poliméricos para inmunohistoquímica e hibridación in situ
Tyrakowski et al. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status
Qiao et al. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles
Puertas et al. Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle− antibody conjugates
Park et al. Medically translatable quantum dots for biosensing and imaging
Wang et al. The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles
Chen et al. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4: Yb, Tm/NaGdF4 core–shell upconverting nanoparticles to gold nanorods
DK2244741T3 (en) Fluorescent imaging agents
Jain Role of nanobiotechnology in developing personalized medicine for cancer
TW201125586A (en) Targeted nanoclusters and methods of their use
JP6194882B2 (ja) 生体物質の検出方法
Zdobnova et al. Quantum dots for molecular diagnostics of tumors
Tasso et al. Oriented bioconjugation of unmodified antibodies to quantum dots capped with copolymeric ligands as versatile cellular imaging tools
US20160153975A1 (en) Nanocomposites, methods of making same, and applications of same for multicolor surface enhanced raman spectroscopy (sers) detections
Liu et al. Engineering monovalent quantum dot− antibody bioconjugates with a hybrid gel system
CN103687854A (zh) 碳酸酐酶靶向剂及其使用方法
JP2009531332A (ja) 癌細胞株のインビボイメージングのための方法及び試薬
US20180059114A1 (en) Magnetic nanostructure for detecting and isolating circulating tumor cells comprising antibody- and magnetic nanoparticle-conjugated conductive polymer
Ma et al. Phage display-derived oligopeptide-functionalized probes for in vivo specific photoacoustic imaging of osteosarcoma
Maus et al. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200803